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Abstract

This work presents a detailed methodology
for uncertainty analysis applied to a reference
equation of state (EOS) based on Helmholtz
energy. With increasing interest in uncertain-
ties of thermal process models, it is important
to quantify the property uncertainties from the
EOS. However, literature relating to EOS either
does not report uncertainties or report under-
estimated values. This work addresses the is-
sue by introducing a covariance-based method-
ology of uncertainty analysis based on a linear
approximation. The uncertainty ranges of the
EOS properties (95 % confidence intervals) are
calculated from the experimental values and the
EOS model structure through the parameter
covariance matrix and subsequent linear error
propagation. In this case study, the Helmholtz-
based EOS of propane is analyzed.The uncer-
tainty methodology is general and is applicable
to any novel or existing EOS because it does
not re-train the EOS. The study demonstrates
the insights a thorough uncertainty analysis can
give for EOS users and developers. Uncertain-
ties vary strongly as a function of the state
point, and uncertainties of saturation proper-

ties are much larger than the uncertainties of
the vapor region due to the use of Maxwell cri-
teria to calculate the saturation properties.

1 Introduction1

In recent years, there have been several ap-2

plications of uncertainty analysis of thermal3

systems. This includes the selection of work-4

ing fluids for Rankine cycles,1 virtual sen-5

sors of air conditioning systems,2,3 chiller con-6

trol systems,4 and evaluation of chiller perfor-7

mance models for fault detection and diagnos-8

tics (FDD) algorithms.5 There have been sys-9

tematic efforts in describing the uncertainty of10

both fundamental physicochemical models6 as11

well as correlation-based property models for12

process engineering applications.7,8 The uncer-13

tainties of equations of state (EOS) have not yet14

been adequately studied; most studies neglect15

the impact of the uncertainty of the EOS. On16

the other hand, the accuracy of the EOS is com-17

monly considered in the literature, but analy-18

ses of accuracy only consider the difference be-19

tween the output predicted by the model and20

experimental data. The consideration of accu-21
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racy instead of uncertainty is common among22

studies of EOS of different substances.9–12 To23

this extent, the accuracy is different from the24

uncertainty of the output of the EOS, which25

is the range of statistically possible outcomes26

of the model given different property observa-27

tions and is usually reported by the 95 % con-28

fidence interval. Uncertainty of the EOS may29

also be as important as the other uncertainties.30

For example, the accuracy of the curve fit for31

the saturation pressure for the refrigerant blend32

R410A13 is 0.5 % of the pressure value, and this33

is on par with the measurement uncertainty of34

refrigerant pressure.14 It is crucial, in the scope35

of good modeling practices, to take the uncer-36

tainties of EOS into account in order to estab-37

lish the application range and the reliability of38

a thermal systems model.39

In this manuscript a clear distinction is made40

between accuracy and uncertainty. The authors41

are aware that some studies13 also consider un-42

certainty to be the difference between modeled43

and measured data, and do not use the term44

accuracy. However, for the sake of clarity, we45

intend to use the term accuracy and uncertainty46

separately in this manuscript.47

Accuracy and uncertainty are different mea-48

sures and are both important to assess the per-49

formance of a model.15,16 Analysis of model ac-50

curacy in the literature of multiparameter ref-51

erence EOS has mostly so far only involved52

the calculation of the closeness between some53

model results and known measurement val-54

ues.9–12 While a comparison of “closeness” can55

validate if a model yields an accurate repre-56

sentation of measurement values, it cannot de-57

scribe the overall reliability of model results,58

and this model accuracy analysis does not tell59

the whole story for property estimates that are60

not associated with any known measurement61

values. The effect of the lack of information62

can only be quantified by uncertainty quantifi-63

cation.17 Some variables calculated by the EOS64

such as enthalpy and entropy can only be mea-65

sured through differences relative to a reference66

point, and it is critical to conduct uncertainty67

calculations for the estimates of these variables68

by approaches such as covariance matrix calcu-69

lation to show the variability of the estimated70

enthalpy and entropy differences. Furthermore,71

uncertainty propagation also helps a user to un-72

derstand how the uncertainty of an EOS affects73

the result of a thermodynamic cycle model or74

other process models, especially, when the op-75

eration characteristics of the cycle cannot be76

measured and hence an analysis of model ac-77

curacy is unavailable. To do so, it is necessary78

to make an analysis of the uncertainty of the79

EOS in addition to the commonly performed80

analyses on their accuracy.81

Some studies14,18 consider the accuracy of82

EOS of refrigerants9–12 as the uncertainties of83

EOS, and they ignore the effect of the develop-84

ment of the EOS to the uncertainties of EOS.85

Two studies were conducted to account for the86

uncertainty due to the covariance.19,20 Both of87

them propagated the uncertainty of measure-88

ment data that were used to fit the EOS for89

the uncertainty of the EOS. One of them re-90

quired complete knowledge of the uncertainty91

of measurement data to build the EOS which92

is unavailable for some EOS.19 The other one93

only involved covariance between the input data94

and the EOS and did not involve covariance be-95

tween the EOS parameters – a crucial part of96

EOS uncertainty.20 In addition, the method20
97

required re-fitting of the EOS which would be98

too difficult to be used for all existing EOS. Two99

other studies were conducted to show how to100

compare the propagation of the EOS parameter101

uncertainties to the output of a process model.102

The uncertainties of two EOS (cubic-type and103

SAFT-type) were analyzed. The method did104

not use the covariance matrix, but used a boot-105

strap method as an alternative to estimate the106

uncertainties of the EOS parameters.21,22 While107

the methods performed well for specific appli-108

cations, it was too computationally expensive109

for general use. There is a need to find another110

method that is less computationally expensive111

to quantify the uncertainty of EOS of fluids.112

There is also an increasing industrial inter-113

est in the analysis of the uncertainty of EOS114

and the state-of-the-art is to conduct the uncer-115

tainty analysis using only the accuracy of the116

EOS in the literature12 or the propagation of117

the uncertainties from the inputs23 for compu-118

tationally efficient calculation. However, these119
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two techniques are insufficient to cover impor-120

tant uncertainty components in the estimation121

of a thermodynamic property of a pure sub-122

stance as shown in Table 1.123
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Table 1 shows the sources of uncertainties in124

the various steps to build an EOS of a pure125

substance and to use the EOS to estimate a126

thermodynamic property of the substance. It127

categorizes the uncertainty sources by struc-128

tural uncertainties, epistemic (systematic) un-129

certainties, and stochastic uncertainties accord-130

ing to Sin et al.24 In step 1, there are structural131

uncertainties for the mathematical form of the132

EOS, because other mathematical forms could133

be used to construct the EOS. Step 2 adds epis-134

temic uncertainties to the process because the135

choices of training data of the EOS are subjec-136

tive. Step 3 adds the epistemic and stochastic137

uncertainties of experimental setups and sen-138

sors, and different training data points have139

different uncertainty values.25 Step 4 only in-140

troduces epistemic uncertainties of the numer-141

ical errors of numerical methods in the param-142

eter estimation. The uncertainties involved are143

rather typically small (less than 10−6 % of the144

estimated dependent variable)18 and are not145

calculated. However, the same process also en-146

ables the calculation of uncertainties of param-147

eters which are highly related to the uncertain-148

ties in Steps 1 and 2. Step 5 is similar to Step 3:149

another set of data from experiments for the in-150

puts to the EOS is considered that involves the151

epistemic and stochastic uncertainties of new152

measurement values. Step 6 is the use of the153

EOS and may involve numerical iterations to154

solve implicit equations, and hence its uncer-155

tainties are not calculated.156

Table 1 not only shows the sources of uncer-157

tainties but also a critical feature of the uncer-158

tainty of a model: the uncertainty of a model159

output at a condition is not only determined160

by the uncertainty of training data at that con-161

dition. While intuition suggests that the un-162

certainty of a model at an accurately measured163

training data point should be small, the uncer-164

tainty of a model output at the data point also165

depends on other factors such as the structural166

uncertainty and the subjective uncertainties in167

the choices of training data. For example, if the168

structure of the model propagates the large un-169

certainty of model outputs at some conditions170

to model outputs at other conditions, the un-171

certainty of model outputs at other conditions172

may become larger than expected even if the173

corresponding training data points are observed174

accurately. Hence factors that affect the uncer-175

tainties of models in addition to measurement176

uncertainties of model inputs must be consid-177

ered.178

While there are many important components179

of uncertainties as shown in Table 1, previously180

reported methods only cover part of them. The181

“uncertainties” mentioned in the work of Lem-182

mon et al.12 only partially involve the calcu-183

lation of the sum of squares of errors between184

estimation and measurement values of thermo-185

dynamic properties and part of the uncertainty186

components (a) and (b) in Table 1. Uncertain-187

ties propagated by the method of Kline and Mc-188

Clintock23 only involve uncertainty component189

(e). Some methods also fail to address issues190

such as difficulty to refit the EOS and lack of191

knowledge of measurement uncertianties of the192

training data. Hence a study should be con-193

ducted to perform the uncertainty analysis of194

EOSs with other methods.195

This paper aims to describe a covariance-196

based method to calculate uncertainty due to197

both the sum of squares of residuals and the198

covariance matrix of the EOS of fluids with199

the same applicable range as the EOS, using200

the example of a multiparameter reference EOS201

of propane (CAS registry number: 74-98-6).12202

The developed method does not require re-203

fitting of the equation of state of the fluid and204

can be used for an EOS of any pure substance.205

The method is written in general form. If full206

and reliable measurement data are available,207

the methodology allows to take measurement208

uncertainty into account. However, if compre-209

hensive information of the uncertainty of the210

training data is not available, the methodol-211

ogy shows how the EOS prediction uncertainty212

can be calculated without measurement uncer-213

tainty. Hence, the method invites both develop-214

ers and users of EOS to consider the uncertainty215

through the covariance.216

To validate the method, study its applicabil-217

ity, and illustrate its applications, the uncer-218

tainty is visualized in the saturation dome of219

the temperature-entropy and pressure-enthalpy220

diagrams. The uncertainties of sound speed,221

5



specific heat, and density at different temper-222

ature and pressure are also visualized to study223

how they change under various conditions.224

2 Uncertainty of parame-225

ter estimation by param-226

eter covariance matrix227

In this paper, the uncertainty calculation pre-228

sented is based on the parameter covariance229

matrix.26,27 The parameter covariance matrix230

quantifies the uncertainties of the parameters231

in an equation from a linear regression. It is232

calculated based on a linear approximation to233

a regression problem - the commonly performed234

regression for the fitting of the EOS parameters235

to experimental values - and is helpful for the236

derivation of the uncertainty of output of the237

regression equation - the equation of state.238

As an example, we consider a property y that239

is described by a model F (X, θ), with X as the240

matrix of input variables and θ being a vec-241

tor of model parameters.28 X represents the242

experimental measurements. The uncertainty243

analysis is performed after the successful iden-244

tification of the best parameter estimates θ∗245

through non-linear regression (fitting to exper-246

imental values by minimization of an objective247

function) and is begun by the calculation of its248

parameter covariance matrix.249

The calculation of the parameter covari-250

ance matrix allows linear error propagation251

for nonlinear regression models. Consider-252

ing the above-mentioned property y described253

by F (X, θ), the underlying assumption of this254

method for uncertainty analysis is that the er-255

rors ε (i.e. the differences between the model256

prediction and the experiments) are indepen-257

dently distributed and defined by a Gaussian258

distribution white noise (normal distribution259

with zero mean and unit standard deviation σ)260

as expressed by Eq. (1).261

y = F (X, θ) + ε ε ∼ N(0, σ2) (1)

where y is a dependent variable of a regression262

equation, X is a matrix of independent variable263

of a regression equation, F is a function of a264

regression equation, θ is a parameter vector of a265

regression equation, ε is an error of a regression266

equation, σ is a standard deviation, N(0, σ2) is267

a Normal distribution with mean at zero and268

standard deviation at σ.269

To calculate the parameter covariance matrix270

from the results of Eq. (1), other terms such as271

the sum of squared errors and the Jacobian of272

function F (X, θ) in Eq. (1) are needed. From273

the parameter estimation, the weighted sum of274

squared errors SSE between the experimental275

and predicted data (yexp and F (X, θ)) can be276

quantified as Eq. (2).277

SSE = Σiwi · (yexpi − F (θ))2 (2)

where SSE is the sum of squares of errors,278

exp means experimental data, and wi is the279

weighting factor in multi-variable non-linear re-280

gression281

The Jacobian of function F (X, θ) represents282

the local sensitivity of the property model283

F (X, θ) with respect to the parameter values284

θ. It can be calculated by taking partial deriva-285

tives of F (X, θ) as shown in Eq. (3).286

J(X, θ) =



∂F (x1, θ)

∂θ1
. . .

∂F (x1, θ)

∂θk
. . .

∂F (x1, θ)

∂θm
. . . . . . . . . . . . . . .

∂F (xi, θ)

∂θk
. . .

∂F (xi, θ)

∂θk
. . .

∂F (xi, θ)

∂θm
. . . . . . . . . . . . . . .

∂F (xn, θ)

∂θ1
. . .

∂F (xn, θ)

∂θk
. . .

∂F (xn, θ)

∂θm


(3)

Its adaptation and calculation steps for EOS287

will be discussed in later sections in detail.288

The parameter wi is the weighting factor of289

the residuals (yexpi − F (θ)). When there is no290

weighting needed, wi is assigned to be 1. In291

multivariate non-linear regression,26 when fit-292

ting the experimental data of different proper-293

ties and orders of magnitude (e.g., pressure and294

temperature), a weighting factor is needed to295

normalize the residuals, and wi will be set to296

values such as 1/(yexpi )2.297

The covariance matrix of the parameters is in298

its general form written as a function of the Ja-299

cobian matrix, J(X, θ∗), and the measurement300

6



uncertainty matrix, V :26301

COV (θ∗) = (J(X, θ∗)T · V −1 · J(X, θ∗))−1 (4)

J(X, θ∗) expresses the derivatives of F (X, θ)
with respect to all parameters and is evaluated
at parameter estimates θ∗. V is a matrix con-
taining the measurement uncertainty for each
data point as diagonal elements. Furthermore,
correlation information between the respective
measurement values can be represented as off-
diagonal elements. The elements of V are rep-
resented as variances σ2, where σk,k would rep-
resent the standard deviation of measurement
k and n the number of measured data points:

V =


σ2
1,1 . . . σ2

1,k . . . σ2
1,n

. . . . . . . . . . . . . . .
σ2
1,k . . . σ2

i,k . . . σ2
k,n

. . . . . . . . . . . . . . .
σ2
n,1 . . . σ2

n,k . . . σ2
n,n

 (5)

If accurate measurement uncertainties are
available, V can be used. However, correla-
tion information is often not available for the
measurement values or it is assumed that the
measurements were uncorrelated. Hence, V is
approximated as a diagonal matrix with mea-
surement uncertainties:

V =


σ2
1,1 0 0 0 0
0 . . . 0 0 0
0 0 σ2

k,k 0 0
0 0 0 . . . 0
0 0 0 0 σ2

n,n

 (6)

V = diag[σ2
1,1, . . . , σ

2
k,k, . . . , σ

2
n,n] (7)

If the measurement uncertainties are not302

properly reported for all data points, assuming303

arbitrary uncertainties can lead to over- or un-304

derestimated uncertainties in θ and y. In order305

to produce a simple assumption for the value306

of σ2, which is the variance of the errors ε, σ2
307

can be estimated by the sum of squared errors308

as shown in Eq. (8).309

σ2 ≈ SSE

n−m
(8)

where n is the number of data points and m is310

the number of parameters in a regression equa-311

tion312

In Eq. (8), SSE is the value of the sum313

of squared errors of the objective function ob-314

tained from the least-squares parameter estima-315

tion method, n is the number of data points,316

and m is the number of parameters.317

Hence, the covariance matrix of parameters318

can be re-written by Eq. (9).26319

COV (θ∗) = σ2(J(X, θ∗)TJ(X, θ∗))−1 (9)

where COV is a covariance matrix, θ∗is an es-320

timated parameter vector of a regression equa-321

tion and J is a Jacobian matrix.322

In Eq. (9), SSE is the value of the sum of323

squared errors objective function obtained from324

the least-squares parameter estimation method,325

n is the number of data points, and m is the326

number of parameters.327

With COV (θ∗), the interdependence of the328

parameters in the property model F (X, θ) can329

be quantified. This is done by calculating the330

corresponding elements of the parameter corre-331

lation matrix obtained by Eq. (10).332

Corr(θ∗i , θ
∗
j ) =

COV (θ∗i , θ
∗
j )√

V ar(θ∗i )V ar(θ
∗
j )

(10)

where Corr means correlated coefficient and333

V ar is a Variance334

In Eq. (10), COV (θ∗i , θ
∗
j ) is the respective el-335

ement of the covariance matrix, and V ar(θ∗i )336

and V ar(θ∗j ) are the variances of the respective337

parameters.338

The covariance matrix of the property model339

predictions can be approximated by linear error340

propagation through the Jacobian of a vector of341

independent variables ~x and the covariance of342

the parameter estimates as shown in Eq. (11).343

COV (ypred) = J(~x, θ∗)COV (θ∗)J(~x, θ∗)T

(11)
where pred means predicted values.344

With the covariance matrices of the param-
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eters and the property model predictions, the
uncertainty of the parameters and the property
model predictions can be quantified using the
confidence intervals of the parameters and prop-
erty model predictions. If the assumptions be-
hind the model are satisfied (as assumed in the
previous steps), the parameter estimates will
follow a Student t-distribution and the confi-
dence interval of parameters can be expressed
as Eq. (12).

θ∗1−γt/2 = θ∗±
√

diag(COV (θ∗)) · t(n−m, γt/2)
(12)

where γt is the Student t distribution per-345

centile and diag is a vector formed by the diag-346

onal entries of a matrix.347

Similarly, the confidence intervals of the prop-348

erty predictions are given by Eq. (13).349

ypred1−γt/2 − y
pred

= ±
√

diag(COV (ypred)) · t(n−m, γt/2)
(13)

In Eqs. (12) and (13), t(n−m, γt/2) is the Stu-350

dent t-distribution value corresponding to the351

γt/2 percentile of the Student t-distribution,352

diag(COV (θ∗)) represents the diagonal el-353

ements of COV (θ∗), and diag(COV (ypred))354

are the corresponding diagonal elements of355

COV (ypred).356

The confidence intervals from Eqs. (12)357

and (13) can be regarded as the uncertainty358

of the parameters and the property model pre-359

dictions, respectively, in very simple regression360

models with uncorrelated parameters. They361

quantify the range of possible outcomes of the362

EOS if the regression process is repeated with363

data points obtained at other experimental364

conditions. However, since all parameters are365

correlated with each other at some degree, the366

basic theory is too simple for complex models367

like EOS which estimate different types of out-368

puts based upon various types of experimental369

data. The forthcoming sections describe how370

the theory can be applied to the EOS to calcu-371

late its uncertainty.372

The authors would also like to highlight373

the problem of systematic measurement errors.374

The assumption of ideally and independently375

distributed measurement errors (according to376

Eq. (1)) would correspond to completely uncor-377

related measurement data (white noise). How-378

ever, it is likely that data points from the379

same data source will be correlated and sys-380

tematically higher or lower than another source.381

These systematic errors depend on many fac-382

tors such as the experimental set-up, the loca-383

tion and the experimentalists themselves. In384

the current methodology these correlated mea-385

surement errors have not been systematically386

incorporated, since it is out of the scope of the387

current work.388

3 Equation of state and its389

uncertainty calculation390

The thermodynamic properties of pure fluids391

were first calculated by using the ideal gas laws392

and variations of ideal gas laws.29,30 In recent393

years, EOS have been developed that are based394

on the fundamental formulation of the non-395

dimensionalized Helmholtz energy α = a/(RT )396

with temperature T and density ρ as indepen-397

dent variables. Extensive literature is available398

on these highly flexible empirical multiparame-399

ter equations of state.9,12,30 The detailed formu-400

lations and derivations for the equations of state401

used in this paper can be found in the support-402

ing material, where all the property equations403

and variables of the EOS are listed.404

3.1 Uncertainty of properties405

with T and ρ as inputs406

We use the following formulation of the non-407

dimensionalized Helmholtz energy α with tem-408

perature and density as independent variables:409

α(
[
θEOS, Tc, ρc

]
, T, ρ) =α0(

[
θEOS, Tc, ρc

]
, T, ρ)

+ αr(
[
θEOS, Tc, ρc

]
, T, ρ)

(14)

where α is dimensionless Helmholtz en-410

ergy, α0 is ideal gas component of dimen-411

sionless Helmholtz energy, αr is dimensionless412

Helmholtz energy due to intermolecular forces,413
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δ, is reduced density, τ is reciprocal of reduced414

temperature and EOS means equation of state.415

Equation (14) is the the sum of two terms: α0
416

is the non-dimensionalized Helmholtz energy of417

an ideal gas, and αr accounts for the contri-418

bution to Helmholtz energy as a result of inter-419

molecular forces, where θEOS are the parameters420

of the EOS. We use the notation
[
θEOS, Tc, ρc

]
421

to clearly indicate that θEOS, Tc and ρc are422

model parameters of the EOS. ρc is the density423

at the critical point and Tc the critical tempera-424

ture. In some EOS (one example would be that425

of refrigerant R-134a31), a reference state other426

than the critical point is used to reduce the427

temperature and density, but that is not fur-428

ther discussed here. In this work, we consider429

the EOS of propane of Lemmon et al.12 and430

the EOS parameters θEOS can be obtained from431

the same work. From the non-dimensionalized432

Helmholtz energy EOS other fluid properties433

can be derived and calculated given tempera-434

ture T , density ρ and parameters
[
θEOS, Tc, ρc

]
:435

the pressure p, the molar internal energy u, the436

molar enthalpy h, the molar entropy s, the mo-437

lar Gibbs energy g, the molar Helmholtz energy438

a , the molar isochoric heat capacity cv, the mo-439

lar isobaric heat capacity cp, the speed of sound440

w, the fugacity coefficient φ, the second virial441

coefficient B, the third virial coefficient C, and442

the ideal gas isobaric heat capacity cp0
12,30 (see443

?? for detailed derivations of all property equa-444

tions).445

where p, Pressure in Pa, ρ is density in446

mol/m3, ρc is critical density in mol/m3, u, is447

molar internal energy in J/mol, h is molar en-448

thalpy in J/mol, s is molar entropy in J/mol-449

K, g is molar Gibbs energy in J/mol-K, a is450

molar Helmholtz energy in J/mol, cv is molar451

isochoric heat capacity in J/mol-K, cp is molar452

isobaric heat capacity in J/mol-K, w is speed453

of sound in m/s, φ is Fugacity coefficient, B is454

second virial coefficient in m3/mol, C is third455

virial coefficient in m6/mol, cp0 is ideal gas spe-456

cific isobaric heat capacity in J/mol-K.457

In the literature, Eq. (14) is conventionally458

written in terms of the reduced density δ = ρ/ρc459

and reciprocal reduced temperature τ = Tc/T ,460

where δ and τ are the independent variables of461

the EOS and θEOS are the parameters. How-462

ever, there are usually considerable differences463

among investigators in the measurement of the464

critical temperature Tc and critical density ρc as465

shown by Lemmon et al.12 This means that it is466

necessary to take into account the measurement467

uncertainties of the critical point when calculat-468

ing the uncertainty of the EOS outputs.469

The covariance-based uncertainty analysis470

method, which version for simple linear regres-471

sion models has been outlined in Section 2, is472

now described for the Helmholtz-based EOS.473

Equation (14) can be written analogously to474

Eq. (1) assuming ideally and independently dis-475

tributed errors defined by a Gaussian distribu-476

tion white noise.477

y = F (X, ϑ) + ε ε ∼ N(0, σ2) (15)

y := [p, u, h, s, g, a, cv, cp, ω, φ,B,C, cp0] (16)

X := (T, ρ) (17)

ϑ := [θEOS, Tc, ρc] (18)

Tc and ρc are defined according to the ex-478

perimental results of thermodynamic properties479

around the critical point, and we assume that480

the parameter estimation for θEOS (parameter481

optimization and fitting to a large set of exper-482

imental data) has been completed by the devel-483

opers of the EOS . The set of parameters called484

θ∗EOS is known from the literature.11 Hence, the485

parameter estimates θ∗EOS are used in this study486

for the uncertainty analysis and re-training of487

the data is not necessary.488

The parameters of the EOS are given by489

θEOS = [θ1, ..., θj, ..., θm], with m being the num-490

ber of parameters.491

However, experimental data need to be col-492

lected or taken from the work of the developers493

of the EOS because it is needed to calculate the494

errors (differences between experimental data495

and predicted values by the EOS). For exam-496

ple, in the case of propane, the EOS has been497

fitted to experimental data of p, psat, cv, cp, w,498

B, cp0 as functions of T and ρ. These vari-499
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ables are called fitted (or observed) variables500

because some of their values are measured and501

included in the fitting process. Other variables502

(e.g., u, h, s, g, a, C and φ) are called (purely)503

predicted variables because none of their experi-504

mental measurements are included in the fitting505

process of the EOS. Some EOSs may have dif-506

ferent sets of fitted variables and predicted vari-507

ables depending on experimental data availabil-508

ity, but the proposed method focuses on using509

the aforementioned set of fitted and predictive510

variables for simplicity. The parameter covari-511

ance matrix (i.e. the uncertainty information512

of the parameter estimates θ∗EOS) is obtained513

through the use of data. The uncertainties of514

T , ρ, p, cv, cp, w, B and cp0 as well as u, h, s,515

C, φ, a and g estimated by the EOS are then516

obtained by linear error propagation.517

For the fitted properties, there are a number518

of n experimental data points respectively, e.g.519

pexp = [pexp1 , ..., pexpnp ], cexpv = [cexpv 1 , ..., c
exp
v ncv

], etc.520

We describe specifically how the uncertainty521

analysis described in Section 2 can be applied to522

the estimation of the uncertainty of the predic-523

tions of EOS. We will use the notation intro-524

duced above for α(
[
θEOS, Tc, ρc

]
, T, ρ), where525

the parameters for the EOS are θEOS, Tc and526

ρc, and the independent variables are T and ρ.527

Equation (9) described the covariance matrix528

of the parameters determined from the vari-529

ances of errors σ2 and the Jacobian J(θ∗), where530

σ2 is obtained from the sum of squared errors531

SSE of the objective function from the least-532

square parameter estimation. Hence, in the533

case of the fundamental EOS for propane, as534

described by Lemmon et al.,12 SSE is described535

as the sum of squared relative errors – the dif-536

ference between the predicted and experimen-537

tal property value divided by the experimental538

value (least square regression). Hence, for the539

example of the fitted property cp, its variance540

σ2 should be written as541

σ2
cp ≈

SSEcp
ncp −mcp

(19)

where ncp is the number of data points for cp
and mcp is the number of EOS parameters that
are needed to calculate cp using the EOS (note
ncp−mcp > 0). SSEcp is the value of the sum of

squared relative errors objective function from
the parameter estimation.12 In order to obtain
SSEcp the parameter estimation does not need
to be retrained:

SSEcp =

ncp∑
i=1

[
cp

exp
i − cp (θ∗EOS, τi, δi)

cp
exp
i

]2
(20)

where i is the index for the experimental con-542

dition (Ti, ρi), cp
exp
i is the experimental value of543

specific heat and cp(θ
∗
EOS, τi, δi) is the predicted544

specific heat value. The estimates for variances545

of the other fitted properties are obtained for546

σ2
cv , σ

2
w, σ2

B, σ2
cp0

and σ2
pc . The estimate for the547

error of Tc and ρc (σ2
Tc

and σ2
ρc) can be calcu-548

lated from the standard deviation of the exper-549

imental measurements. Lemmon et al.12 used550

a different objective function for the residual551

errors in the pressure as shown in Eq. (21), in552

order to obtain similar magnitudes of the liquid553

and vapor phase.554

SSEp =
∑
i

pexpi − p(θ∗EOS, τi, δi)

ρexpi

(
∂pi
∂ρi

)
T


2

(21)

where pexpi is the experimental pressure value,555

p(θ∗EOS, τi, δi) is the predicted pressure value,556

ρexpi is the experimental density value and557

∂pi
∂ρi

∣∣∣∣
T

is the partial derivative of the pressure558

with respect to the density calculated at θ∗EOS.559

In order for the uncertainty assessment of the560

EOS to be consistent with the EOS itself, the561

exact objective function used in the training of562

the EOS is needed, but this is very difficult to563

achieve in practice. The state-of-the-art fitting564

process includes addition and removal of data565

points and constraints in an iterative fashion,566

and it is not possible to obtain the weights that567

were ultimately used in the regression process.568

Therefore, the weights that were used in the569

fitting process of Lemmon et al.12 are unknow-570

able, and an estimation of the objective func-571

tion (i.e. the corresponding SSE) is required.572

While Eq. (21) is appropriate for pressure573

data points with density and temperature as574
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independent variables, it is not suitable for va-575

por pressure data. For vapor pressure data, the576

desired residue would be577

SSEpsat =
∑
i

[
pexpi − psat(θ∗EOS, τi)

pexpi

]2
, (22)

though this form is not suitable because the578

evaluation of psat requires an iterative solution579

for the vapor pressure, which is a calculation580

fraught with potential perils. For that reason,581

it is preferrable, and common practice, to mini-582

mize the difference in Gibbs energy between the583

saturated liquid and vapor phases for the given584

temperature and pressure (see for instance Bell585

et al.32). In this case, the densities must be586

solved for in each phase, but the full resolution587

of the Maxwell criteria is not required.588

To describe the minimization process in terms589

of SSE, Eq. (23) is used with vapor pressure590

data.591

SSEg =∑
i

[
g(θ∗EOS, τi,

ρmin,i

ρc
)− g(θ∗EOS, τi,

ρmax,i

ρc
)

RT exp
i

]2
(23)

ρmin,i = min(~ρ(T exp
i , pexpi )) (24)

ρmax,i = max(~ρ(T exp
i , pexpi )) (25)

where ρmin is the minimum density calculated592

by iteratively solving for density from the speci-593

fied temperature and pressure, ρmax is the maxi-594

mum density calculated from the same iterative595

calculation of density, R is the universal gas596

constant, T exp
i is the experimental temperature597

reading in the vapor pressure data.598

One may wonder if the SSE in Eq. (23) is599

suitable to describe the deviation in pressure600

differences between estimated and measured va-601

por pressure. To verify that Eq. (23) is approxi-602

mately equivalent to Eq. (22), the relative devi-603

ation between the estimated and pressure pres-604

sure is plotted with the difference of the Gibbs605

energy of saturated liquid and vapor divided by606

the product of the gas constant and T , as well607

as more accurate approximations to Eq. (22).608

The derivations in the supplemental material609

explain how this non-dimensionalization can be610

obtained, following the assumptions that a)611

a first-order series expansion of Gibbs energy612

with respect to pressure difference can be used,613

b) the vapor phase derivative of Gibbs energy614

with respect to pressure at constant tempera-615

ture is much greater in magnitude than that of616

the liquid phase, and c) the vapor phase can be617

treated as an ideal gas.618

Figure 1 presents numerical values for each619

of the approximations to the vapor pressure620

residue of propane. This figure demonstrates621

that ∆g/(RT ) provides a fair representation622

of the saturation pressure residue although the623

second-order expansion yields a superior evalu-624

ation of the vapor pressure residue.625

0.5 0.0 0.5
(pexp pcalc)/pexp 

0.6

0.4

0.2

0.0

0.2

0.4

0.6
ap

pr
ox

im
at

io
n

RT
first
second

Figure 1: Comparing three different approxima-
tions to the deviation in pressure with relative
error in pressure calculation. For more infor-
mation, see the derivations in the supplemental
material (RT: res = ∆g/(RT ), first: a first-
order expansion in pressure difference, dropping
the liquid derivative without any further simpli-
fications, second: a second order expansion in
pressure difference without any further simpli-
fications)

The results show that the difference of Gibbs626

energy can effectively describe the difference627
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between estimated and measured vapor pres-628

sure. However, since the differences of pressure629

are not really used in the estimation of the co-630

efficients in the Helmholtz-energy-based EOS,631

Eq. (23) is used in this study.632

A diagonal matrix containing all the er-633

ror variances can then be built as follows in634

Eq. (26).635

where V is a matrix of variance.636

The V matrix in Eq. (26) contain 2npv num-637

ber of σ2
g because each σ2

g is calculated by two638

predicted values: the predicted values of Gibbs639

energy of saturated vapor and the predicted val-640

ues of Gibbs energy of saturated liquid.641

The Jacobian for all of the fitted properties642

needs to be calculated at the specific experi-643

mental measurement point of the variables T644

and ρ (or τ and δ respectively for their dimen-645

sionless form), and at the specific fitted param-646

eter values θ∗EOS. However, since the variances647

σ2
p, σ

2
g , σ

2
cp , σ

2
cv , σ

2
w, σ2

B, σ2
cp0

, σ2
Tc

and σ2
pc used648

relative errors, the elements of the Jacobians649

need to be normalized by their corresponding650

experimental value. As an example, the gen-651

eral analytical expression of the Jacobian of p652

can be written as Eq. (27).653

While the Jacobians of an experimental data654

point of most fitted variables can be calculated655

in a similar way as Eq. (27), the Jacobian of656

each experimental observation of vapor pressure657

are calculated differently because they have two658

predicted values of Gibbs energy in each dif-659

ference term in Eq. (23). To involve the par-660

tial derivatives of both predicted values in the661

SSEg, the Jacobian of vapor pressure is a 2 ×662

(m+2) matrix as Eq. (28)663

The first row of the Jacobian in Eq. (28) cor-664

responds to the predicted values of Gibbs en-665

ergy of the maximum density value at the vapor666

pressure, and the second row of the Jacobian667

corresponds to the predicted values of Gibbs668

energy of the minimum density values at the669

corresponding temperature.670

The Jacobian of the fitted data of p at multi-671

ple experimental data points of τ and δ, evalu-672

ated at the parameter estimates θ∗EOS is then673

given by Eq. (29), where Jp(θ
∗
EOS, τ, δ) is a674

np x (m+2) matrix with θ∗EOS = [θ∗1, ..., θ
∗
m],675

τ = [τ1, ..., τnp ] and δ = [δ1, ..., δnp ]. pexpi are676

the corresponding experimental values used to677

normalize the Jacobian. The method to calcu-678

late the partial derivatives is discussed in the679

Supplementary Materials for reference.680

Assuming that the uncertainties of critical681

properties have no effect on the estimation682

of the coefficients θEOS and do not propagate683

through their estimation process, the Jacobian684

of p evaluated at the experimental values can685

be simplified by setting the last two columns of686

values in Eq. (29) as zeros.687

It is important to notice that Jp is evaluated688

at the parameter estimates θ∗EOS, but is a func-689

tion of T and ρ. In analogy, the Jacobian for690

the other fitted data can be obtained, giving691

Jcv , Jcp , Jw, JB and Jcp0 . Since we are account-692

ing for the effect of the uncertainties of critical693

densities and critical temperature, their Jaco-694

bians are given as695

JTc =


01xm

∂Tc
∂Tc,1

1
Tc,1

0

. . . . . . . . .
01xm

∂Tc
∂Tc,i

1
Tc,i

0

. . . . . . . . .
01xm

∂Tc
∂Tc,nTc

1
Tc,nTc

0



=


01xm

1
nTcTc,1

0

. . . . . . . . .
01xm

1
nTcTc,i

0

. . . . . . . . .
01xm

1
nTcTc,nTc

0



(30)

Jρc =


01xm 0 ∂ρc

∂ρc,1
1
ρc,1

. . . . . . . . .

01xm 0 ∂ρc
∂ρc,i

1
ρc,i

. . . . . . . . .

01xm 0 ∂ρc
∂ρc,nρc

1
ρc,nρc



=


01xm 0 1

nρcρc,1

. . . . . . . . .
01xm 0 1

nρcρc,i

. . . . . . . . .
01xm 0 1

nρcρc,nρc

 .
(31)

The combined Jacobian of the fitted data p,696

pv, cv, cp, w, B and cp0 can constructed as in697

Eq. (32).698
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V = diag[σ2
p, ..., σ

2
p︸ ︷︷ ︸

np

, σ2
g , ..., σ

2
g︸ ︷︷ ︸

2npv

, σ2
cv , ..., σ

2
cv︸ ︷︷ ︸

ncv

, σ2
cp , ..., σ

2
cp︸ ︷︷ ︸

ncp

, σ2
w, ..., σ

2
w︸ ︷︷ ︸

nw

, σ2
B, ..., σ

2
B︸ ︷︷ ︸

nB

, σ2
ncp0

, ..., σ2
ncp0︸ ︷︷ ︸

ncp0

, σ2
Tc , ..., σ

2
Tc︸ ︷︷ ︸

nTc

, σ2
ρc , ..., σ

2
ρc︸ ︷︷ ︸

nρc

]

(26)

Jp(
[
θ∗EOS, Tc, ρc

]
, Ti, ρi) =

1

pexpi

[
∂p
∂θ1

(θ∗EOS, Ti, ρi) . . . ∂p
∂θM

(θ∗EOS, Ti, ρi)
∂p
∂Tc

(θ∗EOS, Ti, ρi)
∂p
∂ρc

(θ∗EOS, Ti, ρi)
]

(27)

Jpv(
[
θ∗EOS, Tc, ρc

]
, Ti, pi) =

1

RTi
×[

∂g
∂θ1

(θ∗EOS, Ti, ρmin,i) . . . ∂g
∂θM

(θ∗EOS, Ti, ρmin,i)
∂g
∂Tc

(θ∗EOS, Ti, ρmin,i)
∂g
∂ρc

(θ∗EOS, Ti, ρmin,i)
∂g
∂θ1

(θ∗EOS, Ti, ρmax,i) . . . ∂g
∂θM

(θ∗EOS, Ti, ρmax,i)
∂g
∂Tc

(θ∗EOS, Ti, ρmax,i)
∂g
∂ρc

(θ∗EOS, Ti, ρmax,i)

]
(28)

Jp =



∂p
∂θ1

∣∣
θ∗EOS,T1,ρ1

pexp1

. . .

∂p
∂θm

∣∣
θ∗EOS,T1,ρ1

pexp1

∂p
∂τ1

∣∣
θ∗EOS,T1,ρ1

∂τ1
∂Tc

pexp1

∂p
∂δ1

∣∣
θ∗EOS,T1,ρ1

∂δ1
∂ρc

pexp1

. . . . . . . . . . . . . . .
∂p
∂θ1

∣∣
θ∗EOS,Ti,ρi

pexpi

. . .

∂p
∂θm

∣∣
θ∗EOS,Ti,ρi

pexpi

∂p
∂τi

∣∣
θ∗EOS,Ti,ρi

∂τi
∂Tc

pexpi

∂p
∂δi

∣∣
θ∗EOS,Ti,ρi

∂δi
∂ρc

pexpi

. . . . . . . . . . . . . . .
∂p
∂θ1

∣∣
θ∗EOS,Tnp ,ρnp

pexpnp

. . .

∂p
∂θm

∣∣
θ∗EOS,Tnp ,ρnp

pexpnp

∂p
∂τnp

∣∣
θ∗EOS,Tnp ,ρnp

∂τnp
∂Tc

pexpnp

∂p
∂δnp

∣∣
θ∗EOS,Tnp ,ρnp

∂δnp
∂ρc

pexpnp


(29)

Jtot(
[
θ∗EOS, Tc, ρc

]
, T, ρ, p) =



Jp(
[
θ∗EOS, Tc, ρc

]
, T, ρ)

Jpv(
[
θ∗EOS, Tc, ρc

]
, T, p)

Jcv(
[
θ∗EOS, Tc, ρc

]
, T, ρ)

Jcp(
[
θ∗EOS, Tc, ρc

]
, T, ρ)

Jw(
[
θ∗EOS, Tc, ρc

]
, T, ρ)

JB(
[
θ∗EOS, Tc, ρc

]
, T )

Jcp0(
[
θ∗EOS, Tc, ρc

]
, T )

JTc
Jρc


(32)

where tot means total.699

The Jacobian Jtot(
[
θ∗EOS, Tc, ρc

]
, T, ρ, p) is a700

(np+2npv +ncv +ncp+nw+nB+ncp0 +nTc +nρc)701

x (m+ 2) matrix. Jpv are functions of T and p702

because their SSE in Eq. (23) have no density703

values as inputs. JB and Jcp0 are not functions704

of δ because B and cp0 depend on temperature705

only.706

In Eq. (32), with the exception of Jpv , all707

output variables are assumed to be associated708

with measurements of temperature and den-709

sity. However, in actual experiments, other710

sets of variables like temperature and pressure711

are more natural independent variables. Hence,712
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conversion for the measurement data point is713

needed before it can be used to calculate the714

Jacobian. For data with temperature and pres-715

sure measurement but unknown density val-716

ues, the density values are calculated from the717

temperature and pressure measurement via the718

EOS. The conversion method for density of dif-719

ferent variables is outlined in Table 2.720

Table 2: Methods of data conversion for density
values in Jacobian calculation

Type of mea-
surement

Density values

cp0 Not needed
p, ρ, T From ρ measurement

only
B Not needed
w, cp and cv Calculated by T and p

from EOS

According to Eq. (9), the covariance matrix721

can be given as in Eq. (33).722

The size of COV (
[
θ∗EOS, Tc, ρc

]
) depends on723

the number of parameters in the EOS. For ex-724

ample, the EOS of propane has 97 parameters725

that are obtained from measured data in the726

literature. Taking into account Tc and ρc, its727

covariance matrix is a 99×99 square matrix.12728

The EOS of refrigerant R-22 has 55 parameters729

and its covariance matrix is a 57×57 square ma-730

trix.9731

Following Eq. (9), the variance σ2
p is only mul-732

tiplied with the elements of Jp(θ
∗
EOS, τ, δ); the733

same holds for the other properties. In order to734

illustrate this, it is possible to re-write Eq. (32)735

in the following way736

V −1·Jtot(
[
θ∗EOS, Tc, ρc

]
, T, ρ, p) =



1/σ2
p · Jp

1/σ2
g · Jpv

1/σcv · Jcv
1/σ2

cp · Jcp
1/σ2

w · Jw
1/σ2

B · JB
1/σ2

cp0
· Jcp0

1/σ2
Tc
· JTc

1/σ2
ρc · Jρc


(34)

The variances σ are essentially weighting fac-737

tors for the elements of the Jacobian.738

To avoid refitting the EOS for the covariance739

between the coefficients and the critical values,740

it is assumed that the uncertainties of critical741

properties have a negligible effect on the esti-742

mation of the coefficients θEOS. The covariance743

can be written as744

COV (
[
θ∗EOS, Tc, ρc

]
)

=


COV (θ∗EOS) 0 0

0
σ2
Tc

T 2
c

0

0 0
σ2
ρc

ρ2c

 (35)

where COV (θ∗EOS) is the submatrix of745

COV (
[
θ∗EOS, Tc, ρc

]
) describing the covariances746

of the EOS parameters but not Tc and ρc.747

COV (θ∗EOS) can also be obtained directly by748

using Eqs. (32) and (33) when Tc and ρc are as-749

sumed to be known perfectly and have therefore750

no uncertainty.751

Calculating COV (θ∗EOS) based on Eq. (35), it752

is possible to calculate the respective 95% con-753

fidence interval of the EOS parameter values754

θEOS755

θEOS,1−γt/2

=θ∗EOS ±
√

diag(COV (θ∗EOS)) · t(n−m, γt/2)

(36)

In Eq. (36) t(n − m, γt/2) is the Student t-756

distribution value corresponding to the γt/2757

percentile of the Student t-distribution.758

The covariance of the prediction of a certain759

property is obtained from the respective Jaco-760

bian and the parameter covariance matrix and761

is dimensionalized so that its unit should be the762

square of that of the property. For example, the763

covariance COV (p) for a pressure p is given by764

Eqs. (37) and (38).765

where j is a Jacobian vector766

The COV (
[
θ∗EOS, Tc, ρc

]
) is a matrix with767

elements independent of the input variables768

to EOS. However, the adjusted Jacobian769

jp(
[
θ∗EOS, Tc, ρc

]
, T, ρ) depends on the value of770
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COV (
[
θ∗EOS, Tc, ρc

]
) =

[
Jtot(

[
θ∗EOS, Tc, ρc

]
, T, ρ)T · V −1 · Jtot(

[
θ∗EOS, Tc, ρc

]
, T, ρ)

]−1
(33)

COV (p) = Jp(
[
θ∗EOS, Tc, ρc

]
, T, ρ) · COV (

[
θ∗EOS, Tc, ρc

]
) · Jp(

[
θ∗EOS, Tc, ρc

]
, T, ρ)T · p2

= jp(
[
θ∗EOS, Tc, ρc

]
, T, ρ) · COV (

[
θ∗EOS, Tc, ρc

]
) · jp(

[
θ∗EOS, Tc, ρc

]
, T, ρ)T

(37)

jp(
[
θ∗EOS, Tc, ρc

]
, T, ρ) =

[
∂p
∂θ1

(θ∗EOS, T, ρ) . . . ∂p
∂θM

(θ∗EOS, T, ρ) ∂p
∂Tc

(θ∗EOS, T, ρ) ∂p
∂ρc

(θ∗EOS, T, ρ)
]

(38)

T or ρ for the prediction. In complete analogy771

the covariance matrix is obtained for purely pre-772

dicted properties such as entropy s by Eqs. (39)773

and (40). The covariance matrix of other pre-774

dicted properties (e.g. u, h, a, g, φ and C) can775

be calculated in a similar manner.776

The calculation of the two covariance matri-777

ces is numerically not trivial. The parameter778

covariance matrix COV (
[
θ∗EOS, Tc, ρc

]
) is the-779

oretically obtained through an inversion (see780

Eq. (33)). However, both the Jacobians and the781

parameter covariance matrices are very large782

sparse matrices and the parameter covariance783

matrix can also be positive semi-definite, which784

means it has columns that are numerically close785

to being linearly dependent. We recommend786

the following procedure to overcome these is-787

sues:788

1. In order to store more significant digits of789

matrix elements and to allow more precise790

matrix operations compared to ordinary791

algebraic calculation of matrices, we rec-792

ommend the usage of arbitrary precision793

methods, such as mpmath in the Python794

programming language.795

2. For the calculation of the covariance ma-796

trices of the properties, e.g. COV (p) or797

COV (s), we have used LU decomposi-798

tion. The calculation is shown in the sup-799

porting information.800

Having obtained the respective covariance801

matrices of the properties, it is now possible802

to calculate the 95% confidence interval of the803

respective properties. Eqs. (41) and (42) allow804

for a calculation of the 95% confidence interval805

for pressure p and entropy s. The same holds806

for the other properties.807

ppred1−γt/2 = ppred±
√

diag(COV (p))·t(n−m, γt/2)

(41)

spred1−γt/2 = spred±
√

diag(COV (s))·t(n−m, γt/2)

(42)
It is important to notice that in this study808

the sum of squared errors and the Jacobian of809

the fitted properties used relative values, i.e.810

the residuals and the derivatives have been di-811

vided by the corresponding experimental value.812

This corresponded to the objective function for813

the fitting of the parameters used by Lem-814

mon et al.12 However, this means that the co-815

variance matrices provide the relative uncer-816

tainties, which subsequently need to be mul-817

tiplied with the corresponding predicted ther-818

modynamic property from the EOS, in order to819

obtain the absolute uncertainty range as shown820

in Eqs. (41) and (42).821

Similar methods can be used to calculate the822

uncertainties of the differences of properties be-823

cause covariance of differences or sums of prop-824

erties can be calculated in a similar manner.825

This is especially important for properties like826

u, s, h, a and g, in which only the differ-827

ence of values matters in EOS applications.828

For example, to calculate the uncertainty of829

the difference of two entropy values s1(T1, ρ1)830

and s2(T2, ρ2), one can first calculate the Jaco-831

bian of the difference between the two values832
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COV (s) = js(
[
θ∗EOS, Tc, ρc

]
, T, ρ) · COV (

[
θ∗EOS, Tc, ρc

]
) · js(

[
θ∗EOS, Tc, ρc

]
, T, ρ)T (39)

js(
[
θ∗EOS, Tc, ρc

]
, T, ρ) =

[
∂s
∂θ1

(θ∗EOS, T, ρ) . . . ∂s
∂θM

(θ∗EOS, T, ρ) ∂s
∂Tc

(θ∗EOS, T, ρ) ∂s
∂ρc

(θ∗EOS, T, ρ)
]

(40)

by Eq. (43) and calculate the covariance using833

Eq. (44).834

js1−s2(
[
θ∗EOS, Tc, ρc

]
, T, ρ)T

=


∂s1
∂θ1

(θ∗EOS, T1, ρ1)− ∂s2
∂θ1

(θ∗EOS, T2, ρ2)
...

∂s1
∂θm

(θ∗EOS, T1, ρ1)− ∂s2
∂θm

(θ∗EOS, T2, ρ2)
∂s1
∂Tc

(θ∗EOS, T1, ρ1)− ∂s2
∂Tc

(θ∗EOS, T2, ρ2)
∂s1
∂ρc

(θ∗EOS, T1, ρ1)− ∂s2
∂ρc

(θ∗EOS, T2, ρ2)


(43)

The uncertainty of the difference between s1835

and s2 can be calculated by Eq. (45).836

3.2 Properties with inputs other837

than T and ρ838

In practical applications of EOS, there are
many scenarios where the inputs to the EOS
are not temperature and density. For exam-
ple, a user may be given the measured temper-
ature and pressure of a fluid to find the speed of
sound, and the user must use an iterative solver
to find the density of the fluid first before calcu-
lating the speed of sound. For substances that
are either superheated vapor or subcooled liq-
uid, if the output variable required is neither
temperature nor density, the calculation of the
uncertainty of the output variable will follow
that in Section 3.1 after calculating the missing
temperature and density values by using an it-
erative solver on the EOS. However, if the out-
put variable is either temperature or density,
the uncertainty of the output variable should
be calculated by propagating the uncertainty of
the input variable due to the EOS to the output
using the linearization of the EOS.23,33 This is

done by Eqs. (46) and (47).

∆T pred

=

∣∣∣∣( ∂Tpred

∂x1

∣∣∣
x2

∆x1

)
+

(
∂Tpred

∂x2

∣∣∣
x1

∆x2

)∣∣∣∣
(46)

∆ρpred

=

∣∣∣∣( ∂ρpred

∂x1

∣∣∣
x2

∆x1

)
+

(
∂ρpred

∂x2

∣∣∣
x1

∆x2

)∣∣∣∣
(47)

where ∆x is the standard uncertainty of vari-839

able x, T pred and ρpred are the temperature and840

density values predicted by using an iterative841

solver with the EOS, x1 and x2 are the inde-842

pendent variables used to predict T pred or ρpred,843

∆x1 and ∆x2 are the EOS uncertainties of the844

variables x1 and x2 calculated by using the tem-845

perature and density values in Eq. (42), and846

the partial derivatives are obtained according847

to Thorade and Saadat.34848

If any of x1 and x2 in Eqs. (46) and (47) are T849

or ρ, their corresponding uncertainties in these850

equations will be zero.851

Since the use of Eqs. (46) and (47) is a result852

of the difficulty to define covariance of temper-853

ature and density, calculating the uncertainties854

of the sums and differences of temperature and855

density with equations similar to Eq. (45) is im-856

possible. Hence the calculation of the uncer-857

tainties of the sums and differences of tempera-858

ture and density is the same as that of ordinary859

variables and follows the method in Kline and860

McClintock.23861

3.3 Saturated liquid and vapor862

properties863

Calculation of thermodynamic properties of a864

fluid that is based on temperature and density865
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COV (s1 − s2) = js1−s2(
[
θ∗EOS, Tc, ρc

]
, T, ρ) · COV (

[
θ∗EOS, Tc, ρc

]
) · js1−s2(

[
θ∗EOS, Tc, ρc

]
, T, ρ)T (44)

spred1,1−γt/2 − s
pred
2,1−γt/2 = s1 − s2 ±

√
diag(COV (s1 − s2)) · t(n−m, γt/2) (45)

values for a homogeneous phase can be achieved866

by the procedure in Section 3.1. However, users867

of EOS are often asked for fluid properties of868

saturated liquid and vapor of a fluid given a869

temperature or pressure value only. According870

to Lemmon et al.,12 this is achieved by finding871

two density values for which Gibbs energy and872

pressure values are equivalent at the given tem-873

perature value – this is the Maxwell’s criteria.874

The smaller density value corresponds to the875

density of saturated vapor whereas the larger876

density value corresponds to the density of sat-877

urated liquid, and the other properties of satu-878

rated liquid and vapor can be calculated from879

the density values. The uncertainty of the ther-880

modynamic properties (calculated through the881

equations in ??) can be calculated in the same882

manner as that in Section 3.1 once the density883

values are found. The calculation of the residu-884

als in the Maxwell criteria is given by Eqs. (48)885

and (49).886

res1 = g(ρv, T )− g(ρl, T ) (48)

res2 = p(ρv, T )− p(ρl, T ), (49)

where res is a residual function.887

where res1 and res2 are residual functions of888

the Maxwell criteria. By finding the density889

values that lead to zero values for both residual890

functions, the saturation densities of the fluid891

at a certain temperature T can be found.892

The uncertainty of the Gibbs energy differ-893

ence in Eq. (48) given by ∆res1 can be calcu-894

lated by calculating the covariance of the Gibbs895

energy values from Eq. (52).896

The uncertainties of the density values can897

then be calculated by propagating the uncer-898

tainties of the residual functions as shown in899

Eqs. (50) and (51).900

∆ρl

=

∣∣∣∣( ∂res1
∂ρl

∣∣∣
T

)−1

∆res1 +
(
∂res2
∂ρl

∣∣∣
T

)−1

∆res2

∣∣∣∣
(50)

∆ρv

=

∣∣∣∣( ∂res1
∂ρv

∣∣∣
T

)−1

∆res1 +
(
∂res2
∂ρv

∣∣∣
T

)−1

∆res2

∣∣∣∣
(51)

However, ∆res2 in Eqs. (50) and (51) involves901

uncertainty of pressure of saturated liquid that902

changes very nonlinearly with respect to den-903

sity. The rapid changes of the sensitivity of904

saturated liquid pressure with density renders905

linear error propagation to be invalid to cal-906

culate the uncertainties in Eqs. (50) and (51).907

To calculate ∆res2 for the linear error propa-908

gation in Eqs. (50) and (51), the uncertainty of909

the Gibbs energy difference in Eq. (52) is used910

to approximate the uncertainty of difference of911

pressure values as shown in Eq. (53).912

∆res2 =
p∆res1
RT

(53)

Equation (53) is used because the relative dif-913

ference of Gibbs energy between saturated liq-914

uid and vapor changes proportionally with the915

difference of estimated and measured saturated916

pressure as shown in Fig. 1.917

Since residual functions calculate the differ-918

ences of Gibbs energy and pressure respectively,919

the uncertainties of the corresponding Gibbs920

energy and pressure at saturation are given by921

the uncertainties of the residual functions as922

shown in Eqs. (54) and (55).923
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∆res1 =
√

diag(COV (g(ρv, T )− g(ρl, T ))) · t(n−m, γt/2) (52)

∆gsat = ∆res1 (54)

∆psat = ∆res2 (55)

where sat means saturation.924

With the approximation in Eq. (53), the un-925

certainties of p and g at saturation in Eqs. (54)926

and (55) and the definition of fugacity, the un-927

certainty of fugacity coefficient φ at saturation928

can be derived to be zero and the relative un-929

certainty of fugacity equals to the relative un-930

certainty of pressure at saturation in Eq. (55).931

However, other thermodynamic properties at932

the saturated states are calculated by solving933

the original EOS with the density values from934

the Maxwell criteria and the original tempera-935

ture input to the Maxwell criteria. The calcu-936

lation would propagate the uncertainties calcu-937

lated from Eqs. (50) and (51), and the uncer-938

tainties from Eqs. (50) and (51) will be added939

to the uncertainties from Eq. (42) to calculate940

the uncertainties of these thermodynamic prop-941

erties. For example, the uncertainty of entropy942

of saturated liquid and saturated vapor are cal-943

culated by adding the uncertainties as Eqs. (56)944

and (57).945

∆sl =

√√√√√ diag(COV (s(T, ρl))) · t(n−m, γt/2)2

+

( ∂sl
∂T

∣∣∣
sat

∂ρl
∂T

∣∣∣
sat

∆ρl

)2

(56)

∆sv =

√√√√√ diag(COV (s(T, ρv))) · t(n−m, γt/2)2

+

(
∂sv
∂T |sat
∂ρv
∂T |sat

∆ρv

)2

(57)
where l means saturated liquid and v is satu-946

rated vapor.947

When the uncertainty of the differences be-948

tween the entropy of saturated liquid or vapor949

and an entropy value in a homogeneous phase950

is needed, the calculation can be carried out by951

Eqs. (58) and (59).952

The uncertainty of the entropy of vaporiza-953

tion can be calculated by Eq. (60).954

Uncertainties of other properties (e.g., u, h,955

a, cp, cv and φ) of saturated liquid and va-956

por can be calculated in a similar manner as957

Eqs. (56) and (57). Numerically, the uncer-958

tainties can also be calculated from Eq. (42)959

with density and temperature of the saturated960

liquid and vapor, but Eq. (42) does not in-961

clude the uncertainty in the EOS caused by962

the Maxwell criteria and underestimates the un-963

certainties. Hence when the uncertainties of964

properties at saturation are needed, Eqs. (56)965

and (57) should be used to calculate the uncer-966

tainties of entropy of the saturated liquid and967

vapor instead.968

Properties other than temperature can be969

used as inputs to the EOS to calculate the ther-970

modynamic properties of saturated states; for971

instance pressure can be used as an input to find972

the saturation temperature of a fluid at that973

pressure. To calculate the uncertainty of satu-974

ration temperature, the uncertainty of pressure975

in Eq. (55) can be used to propagate the un-976

certainty of the EOS to the saturation temper-977

ature value, and the uncertainty of saturation978

temperature can be calculated by Eq. (61).979

∆Tsat =

∣∣∣∣( dT

dp

∣∣∣∣
sat

)
∆psat

∣∣∣∣ (61)

where
dT

dp
|sat is calculated by the Clapeyron980

relation as shown in Eq. (62).29981

dT

dp

∣∣∣∣
sat

=
1/ρl − 1/ρv
sv − sl

(62)

and the uncertainty in vapor pressure ∆psat is982

obtained from Eq. (53).983
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∆(sl − s1p) =

√√√√diag(COV (s(T, ρl)− s1p(T1p, ρ1p))) · t(n−m, γt/2)2 +

(
∂sl
∂T

∣∣
sat

∂ρl
∂T

∣∣
sat

∆ρl

)2

(58)

∆(sv − s1p) =

√√√√diag(COV (s(T, ρv)− s1p(T1p, ρ1p))) · t(n−m, γt/2)2 +

(
∂sv
∂T

∣∣
sat

∂ρv
∂T

∣∣
sat

∆ρv

)2

(59)

∆(sv − sl) =

√√√√√diag(COV (s(T, ρv)− s(T, ρl))) · t(n−m, γt/2)2

+

( ∂sl
∂T

∣∣∣
sat

∂ρl
∂T

∣∣∣
sat

∆ρl −
∂sv
∂T |sat
∂ρv
∂T |sat

∆ρv

)2
(60)

3.4 Thermodynamic quality984

When defining the thermodynamic state of liq-985

uid and vapor phases in equilibrium of a pure986

substance, an additional property called ther-987

modynamic quality as defined by988

q =
1/ρ− 1/ρl(T )

1/ρv(T )− 1/ρl(T )
(63)

where q is thermodynamic quality.989

is commonly used, where ρl is the density990

of saturated liquid, ρv is the density of satu-991

rated vapor, q is the thermodynamic quality,992

and ρv ≤ ρ ≤ ρl.993

Although q is not given as part of an out-994

put of a part of Helmholtz-based EOS, it is995

commonly computed as an internal function in996

software packages calculating thermodynamic997

properties, and hence it is necessary to define its998

uncertainty calculation. From Eq. (63), it can999

be seen that the uncertainty of thermodynamic1000

quality due to EOS mainly comes from the cal-1001

culation of the density of the saturated liquid1002

and vapor. By propagating the uncertainty of1003

the density of saturated liquid and vapor, the1004

uncertainty of thermodynamic quality due to1005

the EOS can be calculated by Eq. (64).1006

∆q =

∣∣∣∣ ∂q∂ρv ∆ρv +
∂q

∂ρl
∆ρl

∣∣∣∣ (64)

∂q

∂ρl
=

1− q

ρ2l

(
1

ρv
− 1

ρl

) (65)

∂q

∂ρv
=

q

ρ2v

(
1

ρv
− 1

ρl

) (66)

where ∆q is the uncertainty of the thermody-1007

namic quality, and ∆ρv and ∆ρl are uncertain-1008

ties calculated in Section 3.3.1009

If either temperature or density are not given1010

as inputs to the EOS, they will be first calcu-1011

lated by solving the EOS iteratively. The tem-1012

perature and density values will be used to cal-1013

culate uncertainty of the thermodynamic qual-1014

ity according to Eq. (64).1015

3.5 Other thermodynamic prop-1016

erties of two-phase mixtures1017

The calculation method of the uncertainty of1018

the property from the EOS for two-phase sys-1019

tems with input variables other than tempera-1020

ture and density is different from that in Sec-1021

tions 3.1 and 3.2, because it involves the cal-1022

culation of the thermodynamic quality. In this1023

case, the uncertainties calculated in Section 3.31024

related to the Maxwell criteria are also involved1025

in the calculation of the uncertainties of proper-1026
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ties using thermodynamic quality as one of the1027

inputs.1028

When the thermodynamic quality is 0 (satu-1029

rated liquid) or 1 (saturated vapor), the uncer-1030

tainty of the properties can be calculated based1031

on the equations in Section 3.3, and their uncer-1032

tainties are given by Eqs. (54), (55) and (61).1033

However, for all other properties, their uncer-1034

tainties are calculated with a different method.1035

For example, if the uncertainty of an entropy1036

value is calculated with an intermediate ther-1037

modynamic property as one of its inputs, to in-1038

clude the uncertainty propagated from the use1039

of the Maxwell criteria, its calculation will be1040

carried out with Eq. (67).1041

∆s2p

=

√√√√√
(
∂s2p
∂q
|T∆q

)2

+diag(COV (s2p)) · t(n−m, γt/2)2

=

√
[(sv − sl)∆q]2
+diag(COV (s2p)) · t(n−m, γt/2)2

(67)
where 2p is two-phase.1042

where the subscript 2p means two-phase fluid.1043

For the uncertainty of its difference with en-1044

tropy values in single phase, the uncertainty can1045

be calculated by Eq. (68).1046

∆(s2p(T2p, q2p)− s1p)

=

√√√√√ [(sv(T2p)− sl(T2p))∆q2p]2

+diag(COV (s2p − s1p))
·t(n−m, γt/2)2

(68)

where 1p is one-phase.1047

When the uncertainty of its difference with1048

entropy values of the saturated liquid or vapor1049

is needed, the uncertainty can be calculated by1050

Eqs. (69) and (70).1051

The uncertainty of the difference between a1052

pair of two-phase entropy states can be calcu-1053

lated by Eq. (71). The uncertainty of properties1054

u, h and a can also be calculated in a manner1055

similar to Eqs. (67) to (70).1056

The uncertainty of density can be calculated1057

from1058

∆ρ2p =

√(
−1/ρ2

1/ρv − 1/ρl
∆q

)2

+ (∆ρ)2, (72)

where ∆ρ comes from Eq. (47).1059

The properties cp and w are undefined for1060

two-phase states and therefore do not have any1061

uncertainty values associated with them.1062

3.6 Summary1063

Figure 2 summarizes the choice of uncertainty1064

calculation method of the EOS based on the1065

input variables and the phase of the fluid where1066

the uncertainty of a property value is needed.1067

When the input variables are temperature1068

and density, the calculation method follows the1069

basic uncertainty calculation method derived in1070

Section 3.1 because the calculation does not1071

involve the determination of the phase of the1072

fluid nor any iterative calculation. If the input1073

variables are not temperature and density, the1074

EOS would involve iterative calculation. For1075

superheated vapor and subcooled liquid, the1076

method should follow Section 3.2. For satu-1077

rated vapor and liquid, the calculation involves1078

the Maxwell criteria and Section 3.3 should be1079

followed. For two-phase states, if the output is1080

Gibbs energy, pressure, fugacity coefficient or1081

temperature, the calculation method would be1082

the same as that of saturated liquid and va-1083

por, and the method in Section 3.3 should be1084

followed. If the output is thermodynamic qual-1085

ity, the uncertainty calculation method in Sec-1086

tion 3.4 should be used. Otherwise, the uncer-1087

tainty calculation method in Section 3.5 should1088

be followed.1089

When the differences of properties are needed,1090

the calculation steps of the uncertainties follow1091

the flowchart in Fig. 31092

If the difference involves T , ρ, or q, whose co-1093

variance cannot be calculated directly, the un-1094

certainty of the differences will be calculated1095

by propagating the uncertainties of individual1096

property values with methods in Kline and Mc-1097

Clintock.23 If the inputs are all T and ρ, no1098

Maxwell criteria will be involved even for two-1099
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∆(s2p(T2p, q2p)− sl(Tl)) =

√√√√√√√√√√
diag(COV (s2p(T2p, q2p)− sl(Tl))) · t(n−m, γt/2)2

+


∂sl(Tl)

∂T

∣∣∣∣
sat

∂ρl(Tl)

∂T

∣∣∣∣
sat

∆ρl(Tl)− [(sv(T2p)− sl(T2p))∆q2p]


2

(69)

∆(s2p(T2p, q2p)− sv(Tv)) =

√√√√√√√√√√
diag(COV (s2p(T2p, q2p)− sv(Tv))) · t(n−m, γt/2)2

+


∂sv(Tv)

∂T

∣∣∣∣
sat

∂ρv(Tv)

∂T

∣∣∣∣
sat

∆ρv(Tv)− [(sv(T2p)− sl(T2p))∆q2p]


2

(70)

phase substances, and the uncertainty of prop-1100

erty differences can be calculated directly fol-1101

lowing Section 3.1. If the difference involves1102

two-phase states, the property calculation fol-1103

lows that listed in Section 3.5. If the difference1104

involves saturated liquid or vapor, the method1105

to calculate the uncertainty of property differ-1106

ences in Section 3.3. Otherwise, the calculation1107

method of uncertainty methods listed in Sec-1108

tion 3.1 will be used.1109

The Python code used to calculate the uncer-1110

tainties is listed in the Supplementary Materials1111

for reference.1112

4 Results and Discussion1113

To illustrate the application of the proposed un-1114

certainty calculation method, it is applied to1115

the EOS of propane.12 Its EOS is Helmholtz-1116

energy-explicit, and the proposed uncertainty1117

calculation method can be applied to it to1118

demonstrate how uncertainties of the EOS af-1119

fect the properties estimated by the EOS.1120

4.1 Experimental data1121

The experimental data used in this work were1122

obtained via NIST ThermoDataEngine (TDE)1123

#103b.35–38 The data sources are summarized1124

in Table 3, and a more detailed list of the exper-1125

imental data considered is provided in the Sup-1126

porting Data. These data span several different1127

types, including densities, saturation proper-1128

ties (vapor pressure, latent heat of vaporization,1129

etc.) and properties in homogeneous phases1130

(speed of sound, heat capacities, etc.).1131

The resultant normalized σ values in Eq. (26)1132

that are calculated based on the deviations be-1133

tween the data in Table 3 and the estimation1134

from the EOS are listed in Table 4. These σ val-1135

ues come from the relative deviations between1136

the EOS and the measurement results. The rel-1137

ative deviation between measurement data and1138

the EOS estimation of pressure from the data1139

sets of liquid and vapor density yield the largest1140

values in Table 4. It can be seen that the ma-1141

jor source of uncertainties come from the de-1142

viations of the measurement data of density of1143

liquid and vapor with the EOS estimation. The1144

relative deviations between measurement and1145

∆(s2p,1(T2p,1, q2p,1)−s2p,2(T2p,2, q2p,2)) =

√
diag(COV (s2p,1 − s2p,2)) · t(n−m, γt/2)2

+ ([(sv(T2p,1)− sl(T2p,1))∆q2p,1]− [(sv(T2p,2)− sl(T2p,2))∆q2p,2])2

(71)
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Are the input variables T
and ρ with no q as output?

Follow Section 3.1

Is the state superheated or
subcooled?

Follow Section 3.2

Is the state saturated vapor
or saturated liquid?

Follow Section 3.3

Is the EOS output g, p, φ or
T?

Follow Section 3.3

Is thermodynamic quality
the EOS output?

Follow Section 3.4

Follow Section 3.5

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Figure 2: Flowchart showing the choice of equations to calculate the uncertainties of EOS based
on the input variables and state of the fluid
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Are the outputs
T , ρ, or q?

Calculate the uncer-
tainties individually

and follow Kline
and McClintock23

Are the input
variables T and ρ
only with no q as

output?

Follow Section 3.1

Is the state
two-phase?

Follow Section 3.5

Is the state
saturated vapor

or liquid?
Follow Section 3.3

Follow Section 3.2

Yes

No

Yes

No

Yes

No

Yes

No

Figure 3: Flowchart showing the choice of equations to calculate the uncertainties of property
differences

the EOS estimation of specific heat capacity1146

of liquid and vapor, saturation pressure, sec-1147

ond virial coefficient and speed of sound also1148

contribute to the uncertainties of the EOS sig-1149

nificantly. However, the relative deviations be-1150

tween measurement and the EOS estimation of1151

ideal gas specific heat capacity, critical temper-1152

ature and critical density are much smaller than1153

that of the other properties, and they do not1154

contribute to the uncertainty of the EOS as1155

significantly as the measurement of the other1156

properties.1157

Table 4 also shows the corresponding stan-1158

dard measurement uncertainty of different1159

property values that are converted. These1160

uncertainty values were taken from Thermo-1161

DataEngine and represent a combination of1162

experimental uncertainties ascribed by the indi-1163

vidual researcher as well as, when appropriate,1164

expert evaluation to increase the uncertainty1165

to a more reasonable value if the claimed un-1166

certainty is not reasonable. These standard1167

uncertainty values are calculated by averag-1168

ing the standard measurement uncertainties of1169

the measurement data, and they can be com-1170

pared directly with the normalized σ values.1171

The results show that the noramlized σ are not1172

significantly larger than their corresponding1173
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Table 3: Summary of experimental data from TDE considered in this study. Any experimental
data points flagged by TDE as being unreliable were not included.

Data type N T range p range
K MPa

Tc 45
pc 38
ρc 18
psat 1392 85 to 369 1.6332×10−10 to 4.91426

Liquid ρ 3746 88 to 369 0.3546 to 1072.7
Saturated Liquid ρ 528 86 to 369

Vapor ρ 3494 243 to 609 0.040934 to 1047
Saturated Vapor ρ 100 230 to 369

Second Virial Coefficient B 167 183 to 559
Enthalpy of Vaporization 50 186 to 362

Liquid cp 108 89 to 366 0.101325 to 5.43
Vapor cp 138 273 to 573 0.049033 to 10.3421

cp0 50 148 to 353
Homogeneous Phase cp 110 100 to 374

Liquid w 655 90 to 339 1.92 to 60.58
Saturated Vapor w 59 90 to 325

Vapor w 423 225 to 375 0.01008 to 0.8513
Homogenous Phase w 593 239 to 498 9.80665×10−6 to 101.337

measurement uncertainties with the exception1174

of the second virial coefficient and the speed of1175

sound. For these two variables, the normalized1176

σ are at least 100.0% larger than their mea-1177

surement counterparts. The normalized σ for1178

p from data sets of liquid and vapor ρ is also1179

much larger than the relative standard mea-1180

surement uncertainty of p values at saturation.1181

The results show that the inaccuracy of EOS1182

estimation may also play a critical role in the1183

uncertainty of EOS besides the measurement1184

uncertainty of the experimental data.1185

We present the results in three parts. First1186

the parameter identifiability is analyzed. Then1187

the uncertainties of saturation properties are1188

studied. Finally the variation of uncertainties1189

with the thermodynamic state points are pre-1190

sented and discussed.1191

4.2 Covariance, correlation ma-1192

trix and identifiability1193

Considering the parameter covariance matrix1194

(as calculated by Eq. 9) it is also possible1195

to assess the parameter identifiability. The1196

square-root of the diagonal elements of the1197

covariance matrix (i.e.
√

diag(COV (θ∗EOS)))1198

correspond to the parameter standard devia-1199

tion. If the standard deviations with respect to1200

the parameter values are large, parameters are1201

not practically identifiable. This means that1202

there are not enough data to estimate the pa-1203

rameters with the current model and objective1204

function. We chose as a metric for practical1205

identifiability:
∣∣∣√diag(COV (θ∗EOS))/θ∗EOS

∣∣∣. In1206

the given study nearly all the parameters (be-1207

sides n16 and n17) have a small standard de-1208

viation compared to the parameter value, i.e.1209 ∣∣∣√diag(COV (θ∗EOS))/θ∗EOS

∣∣∣ < 0.1 (see the Sup-1210

porting Information). This result implies that1211

the amount of experimental data used for the1212

parameter fitting (see Lemmon et al.12) and1213

the uncertainty analysis is sufficiently high to1214

guarantee the identification of the parameters1215

from the data. A small amount of experimen-1216

tal data would lead to poor identifiability and1217

therefore parameter values with large standard1218
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Table 4: Normalized σ values from deviations between measurement and EOS estimation in Eq. (26)
for propane, and their corresponding average relative standard measurement uncertainty

Property Normalized σ Corresponding average rela-
tive standard uncertainty

cp0 5.104 × 10−3 1.448 %
cp 8.113 × 10−2 4.391 %
cv 7.021 × 10−2 1.081 %
Saturated liquid
and vapor p

2.661 × 10−2 5.228 %

p from data sets of
liquid and vapor ρ

1.465 × 10−1 Not available

ρc 4.447 × 10−6 1.306 %
Tc 7.767 × 10−6 0.100 %
B 3.880 × 10−2 1.623 %
w 6.388 × 10−2 0.196 %

deviations. It is recommended that develop-1219

ers of Helmholtz-type EoS analyze the parame-1220

ter covariance matrix with respect to parameter1221

identifiability in order to ensure that sufficient1222

experimental data has been used for the fitting1223

of the respective parameters.1224

The parameter correlation matrix (obtained1225

by Eq. 10), contains information of the corre-1226

lation coefficients between the parameters; the1227

parameter correlation matrix is attached in the1228

supplementary material. Several of the parame-1229

ters are highly correlated, corresponding to high1230

correlation coefficients> ±0.7 (a correlation co-1231

efficient equal to 1 would correspond to a per-1232

fect correlation). This means that many param-1233

eters are not independent from each other, due1234

to the structure of the equations: Parameters1235

increase or decrease, when other ones increase1236

or decrease. However, due to the fact that a suf-1237

ficiently large amount of experimental data has1238

been used for the calculation, the high correla-1239

tion coefficients did not lead to high parameter1240

uncertainties.1241

4.3 Saturated property uncer-1242

tainty1243

To understand the magnitude of uncertain-1244

ties of various properties within the applica-1245

ble range of the EOS, the uncertainties of den-1246

sity and enthalpy along the saturation curves1247

are plotted from the triple point temperature1248

of 85.525 K to the critical temperature12 with1249

uncertainty bounds overlaid as shown in Fig. 4.1250

The uncertainties in Figure 4 are reasonable1251

at most conditions except near the critical point1252

in both diagrams and at low temperature for1253

saturated vapor in Fig. 4a. The uncertainties1254

of properties near the critical point are much1255

larger than ones further from the critical point,1256

which is also reported in Lemmon et al.12 with-1257

out quantification. The reason for the large un-1258

certainties is due to the mathematical structure1259

of the Maxwell criteria as shown in Section 3.3.1260

According to the Maxwell criteria and Eqs. (50)1261

and (51), the uncertainties of the density of sat-1262

urated liquid and vapor and hence the uncer-1263

tainties of other saturated properties depend on1264

the derivative of densities with respect to pres-1265

sure and Gibbs energy. As the temperature of1266

a saturated substance approaches the critical1267

point, the saturation densities change rapidly1268

along the saturation line, and the derivatives of1269

densities with respect to pressure become very1270

large in magnitude, as shown in Fig. 5.1271

The trend of the derivative increasing to in-1272

finity at the critical temperature as shown in1273

Fig. 5 are unavoidable because critical points1274

are classically defined as the point where ∂ρ
∂p

∣∣∣
T

1275

and ∂2ρ
∂p2

∣∣∣
T

are infinite.29 The uncertainties of1276

saturated liquid and vapor properties depend1277
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(a) Change of relative uncertainty of ρ of saturated liquid
and vapor with temperature along the saturation line

(b) p-h diagram with uncertainties of h relative to its ref-
erence state

Figure 4: Uncertainties along saturation lines
in different property diagrams from 85.525 K
to the critical temperature

on the uncertainties of their densities; hence1278

their large derivatives with respect to pressure1279

near the critical point results in large uncertain-1280

ties as shown in Fig. 4.1281

Figure 5: Changes of relative derivatives of den-
sity with respect to pressure with temperature
from 85.525 K to the critical temperature of
propane

Fig. 5 also explains why the uncertainty of1282

saturated vapor is large at low temperature in1283

Fig. 4a. The relative derivatives of density of1284

saturated vapor with respect to pressure is in-1285

creasing with decreasing temperature. These1286

increasing derivatives propagate into the uncer-1287

tainty of saturated density by Maxwell crite-1288

ria, and the uncertainty of density of saturated1289

vapor becomes large. In contrast, the relative1290

derivative of density of saturated liquid is de-1291

creasing with decreasing temperature, and by1292

the same uncertainty propagation mechanism,1293

the uncertainty of density of saturated liquid1294

becomes small at low temperature in Fig. 4a.1295

To examine the uncertainty of saturation1296

pressure along the saturation line, the un-1297

certainty of saturation temperature and the1298

relative uncertainty of pressure calculated by1299

Eq. (73) are plotted with the saturation prop-1300

erties in Fig. 6.1301

Relative uncertainty of variable x =
∆x

x
(73)

.1302
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(a) Changes of uncertainty of saturation temperature with
temperature

(b) Changes of relative uncertainty of saturation pressure
with pressure

Figure 6: Changes of saturation property un-
certainties with their corresponding properties

Figure 6a shows that the uncertainty of sat-1303

uration temperature becomes more significant1304

at lower temperature. At temperature around1305

200 K, the uncertainty peaks at around 1.5 K,1306

and it approaches 1 K as the temperature is1307

lowered to the triple point of propane. How-1308

ever, when the uncertainty is studied from the1309

perspective of pressure in Figure 6b, the relative1310

uncertainty of saturation pressure is found to be1311

increasing as the pressure drops. The cause of1312

the large uncertainty is due to the scattering of1313

the deviations between the estimated and mea-1314

sured pressure at low pressure levels as shown1315

in Fig. 7.1316

Figure 7: Relative deviations of pressure esti-
mates

As the pressure drops, the relative deviations1317

between the estimated and measured pressure1318

scatter. At high pressure, the relative devi-1319

ations concentrate between +10% and -10%.1320

However, as lower pressure, the distribution of1321

the relative deviations widens to between +401322

% and -30 %. The large scattering of the rela-1323

tive deviation of saturation pressure at low lev-1324

els results in the increase of relative uncertain-1325

ties of saturation pressure with a drop of pres-1326

sure.1327

To have a more comprehensive understand-1328

ing, the relative uncertainty of pressure in the1329

single phase region is also studied by plot-1330

ting the contour plot of its relative uncer-1331

tainty over a temperature-specific-volume (T -1332

1/ρ) plot. The contour plot is shown in Fig. 8.1333

Figure 8 shows that the relative uncertainties1334
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Figure 8: Relative uncertainty of pressure in a
T -1/ρ diagram

of pressure of vapor in the single-phase region1335

are much less than the relative uncertainties of1336

saturation pressure. There are some relative1337

uncertainties of pressure of subcooled liquid at1338

high densities that are high, but it fits the gen-1339

eral understanding that the derivative of pres-1340

sure with density is high in that regime and1341

hence the relative uncertainty of pressure in the1342

regime is high.1343

4.4 Uncertainty of properties in1344

the single-phase region1345

To further understand how the uncertainties of1346

EOS change in the single-phase region, the rel-1347

ative uncertainties of speed of sound, isochoric1348

specific heat capacity, isobaric specific heat ca-1349

pacity and density are calculated at different1350

temperature and pressure state points, and the1351

results are shown in Figs. 9a to 9d.1352

Figure 9a shows that the relative uncertainty1353

of speed of sound is lower than 4 % in most1354

cases except conditions near the critical point1355

and at pressure higher than 108 Pa. At pressure1356

higher than 108 Pa, only speed of sound data1357

were only collected near 240 K and density data1358

were collected between 370 K and 610 K. Other1359

property data were not collected in the pressure1360

regime. Thus the figure only shows an uncer-1361

tainty value lower than 8% between 240 K and1362

610 K at pressure higher than 108 Pa, and the1363

uncertainty of the speed of sound remains high1364

at all other temperature values in the pressure1365

regime.1366

Figures 9b and 9c show a similar pattern in1367

which the relative uncertainty remains lower1368

than 4 % in the subcooled liquid region and1369

highly superheated vapor region. However, the1370

relative uncertainties of the specific heat are1371

much more significant near the the saturated1372

vapor line at 250 K. While the cp and cv of su-1373

perheated vapor near the saturated curve at low1374

temperatures should behave as an ideal gas, the1375

relative uncertainties of cp and cv near the sat-1376

urated curve at around 250 K are much higher1377

than one of their ideal gas counterparts at lower1378

pressure. While this may be caused by the ap-1379

proximation to use model deviation instead of1380

measurement uncertainty to conduct the calcu-1381

lation, it may also caused by potential overffit-1382

ing issues in the part of the EOS related to the1383

residual Helmholtz energy.1384

Overfitting arises when a regression equation1385

contains too many coefficients and is fit for1386

the random variation in the experimental data1387

rather than the systematic relationship between1388

variables. Equations with overfitting issues usu-1389

ally result in very accurate prediction at the ex-1390

perimental data points but large model uncer-1391

tainties.39 Since cp and cv in the vapor phase1392

with the exception of ones near the critical1393

point should not differ too much from their ideal1394

gas counterparts and the EOS part of the ideal1395

gas contribution (α0 in Eq. (14)) is not complex1396

enough to result in significant overfitting, the1397

large uncertainty is likely caused by the over-1398

fitting of the residual part of the Helmholtz1399

energy arising from the intermolecular forces1400

(αr in Eq. (14)). To mitigate these issues and1401

the uncertainties, simplification of EOS or con-1402

straints to the coefficients such as penalization1403

should be made to reduce these unexpectedly1404

high uncertainties.401405

Figure 9d shows a different pattern. Rela-1406

tive uncertainty of density is lower than 0.25 %1407

for all subcooled liquid states and is lower than1408
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(a) Relative uncertainty of speed of sound (b) Relative uncertainty of cv

(c) Relative uncertainty of cp (d) Relative uncertainty of density

Figure 9: Relative uncertainties in p-T coordinates

1 % for most highly superheated vapor states.1409

The relative uncertainty of density of the su-1410

perheated vapor at higher pressures also ranges1411

between 1 % and 4 %. The relative uncertainty1412

only exceeds 8 % in the critical region.1413

In summary, the relative uncertainties of EOS1414

are in general large in the critical region. For1415

pressure and speed of sound, their relative un-1416

certainties in the subcooled liquid region are1417

higher than that of the superheated vapor re-1418

gion. For specific heat capacities and densities,1419

the relative uncertainties of superheated vapor1420

close to saturation are higher than those of the1421

subcooled liquid and more highly superheated1422
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vapor.1423

5 Conclusion1424

In this paper, a method to calculate the1425

uncertainty of thermodynamic properties of1426

Helmholtz-energy-explicit EOS is developed1427

based on the parameter covariance matrix of1428

nonlinear regression models. The covariance1429

matrix can be calculated from the experimen-1430

tal data in the literature and the Jacobian ma-1431

trix of the EOS with respect to the parameters1432

of the EOS. To ensure that the effects of the1433

Maxwell criteria and uncertainties of the dif-1434

ferences of properties such as enthalpy values1435

are properly calculated, the uncertainty calcu-1436

lation method also involves the linearization of1437

the EOS and the covariance of the differences1438

of properties.1439

To test the applicability and validity of the1440

calculation method, it is demonstrated by a1441

calculation of the uncertainties of the EOS of1442

propane. The method also enables an analy-1443

sis of the parameter correlation matrix which1444

shows how the parameters are correlated with1445

each other. It also demonstrates how the use1446

of the Maxwell criteria and the rapid change1447

of properties with respect to the state of the1448

substances around their critical point result in1449

larger uncertainties of properties along the su-1450

perheated vapor line than the uncertainties of1451

properties in the single-phase region. The re-1452

sults of this study allow users to take into ac-1453

count the uncertainties of the EOS in process1454

model simulations. However, the results also1455

show some limitations of the method:1456

• The uncertainty analysis does not present1457

the effect of experimental uncertainty of1458

the training data to the EOS because of1459

the lack of information in some data sets1460

of propane. The authors strongly en-1461

courage future research to take into ac-1462

count measurement uncertainties, if full1463

and trustful measurement uncertainties1464

have been obtained for each data point.1465

• The uncertainty analysis follows a lin-1466

ear propagation of error approach. This1467

method is the only computationally1468

tractable method that could be used for a1469

nonlinear model like the equation of state1470

studied here. Other more advanced sam-1471

pling techniques (Markov Chain Monte1472

Carlo (MCMC) sampling methods, etc.)1473

are too computationally expensive to be1474

practically applied in technical applica-1475

tions.1476

• The method assumes a Gaussian distri-1477

bution for the uncertainties of the EOS,1478

and may fail to calculate the appropri-1479

ate value at conditions which uncertain-1480

ties distribute differently from the Gaus-1481

sian distribution.1482

• The method assumes that all experimen-1483

tal data points are not correlated with1484

each other. However, some training data1485

points are not associated with compre-1486

hensive information on their measure-1487

ment uncertainties and hence information1488

on correlation between data, and more re-1489

search is needed before the effect of corre-1490

lation can be comprehensively accounted1491

for by an uncertainty calculation method.1492

• The method does not involve the struc-1493

tural uncertainty in Table 1.1494

• The state-of-the-art fitting process of the1495

EOS includes addition and removal of1496

data points and constraints in an itera-1497

tive fashion, and it is computationally ex-1498

pensive to involve the constantly chang-1499

ing and exact objective function for the1500

fit of the EOS into the uncertainty calcu-1501

lation method. Thus the method has to1502

use an approximated objective function of1503

the EOS for the uncertainty calculation,1504

and it is unknown how much error is in-1505

troduced by the difference as a result.1506

Last but not least, it is recommended that1507

users and developers of EOS perform this type1508

of analysis in order to obtain insights about the1509

uncertainties of the properties calculated by the1510

EOS. Since the method does not incorporate1511

other sources of uncertainties such as experi-1512

mental uncertainties shown in Table 1, other1513
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methods to involve the experimental uncertain-1514

ties should also be used to have a comprehensive1515

understanding of uncertainties of EOS.1516

Supporting Information. Supporting In-1517

formation is provided in three files. One file1518

contains the mathematical derivation related to1519

the differences of the expressions in this pa-1520

per from that in some statistical textbooks,1521

derivation for the Gibbs energy approximation1522

in Fig. 1, the parameter identifiability analysis1523

results, the Python code used to calculate the1524

uncertainties of the thermodynamic properties1525

of propane and the list of sources of experimen-1526

tal data being used in the study. The covari-1527

ance matrix is provided in pcov.csv, and the1528

correlation matrix is provided in pcor.csv.1529
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