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 

Abstract--A major challenge for future wide area measurement 

systems is how to efficiently monitor and control the power system, 

which requires accurate and real-time tracking of the phase, 

frequency, and Power Factor (PF) of the system. The presence of 

inter and sub harmonics, especially in a distribution system caused 

by widely used non-linear power loads, rectifiers, and inverters, 

will distort estimation of phase/frequency and make it difficult to 

track the voltage, current and frequency variations. In this paper 

we present a new approach to identify and track the harmonics, 

sub-harmonics and inter-harmonics, as well as observe their 

impact on the power system. We propose a two-stage processing 

approach that consists of a subspace-based estimation method to 

detect and identify all harmonic components, followed by a low-

complexity fast tracking algorithm to monitor frequency 

variations of voltage and current signals in real-time with great 

accuracy. The simulation results show that the proposed approach 

can provide highly reliable estimation and fast tracking of the 

harmonic components, while avoiding the impact of time variance. 

 
Index Term-- Power Grid, Frequency Estimation and Tracking, 

Harmonic, Sub-harmonic, Inter-Harmonic, Subspace. 

I.  INTRODUCTION 

he increasing deployment of residential renewables and an 

extensive use of nonlinear devices in the distribution 

system can produce undesirable harmonic distortions. Such 

distortions can severely impact phase/frequency estimation in 

power systems, especially distributed grid systems. For grid 

monitoring for instance, the presence of harmonic distortions 

can degrade the performance of Phasor Measurement Units 

(PMUs) for tracking voltage, current, and frequency variations. 

Therefore, awareness and identification of all the harmonic 

spectral components, such as inter-harmonic and sub- 

harmonic, can greatly enhance the power system’s reliability, 

hence reducing harm to the system [1, 2]. As a result, harmonic 

analysis for power grid has received considerable attention in 

recent years [3, 4]. While there is a great deal of effort involved 

in estimating the harmonics, study of inter-harmonics and sub-

harmonics is still in its infancy. In particular, it is hard to 

pinpoint inter-harmonic and sub-harmonic frequencies since 

they are discrete and not integer multiples of the fundamental 

frequency. 

Well known frequency estimation techniques, such as zero 

crossing [5, 6], least squares error technique [7-9], Newton 
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method [10], Kalman filter [11, 12], Prony method [13], 

artificial neural network [14], demodulation approaches [15-

17], wavelet [18, 19], non-uniform sampling [20-27], and 

Fourier-based methods such as Discrete Fourier Transform 

(DFT) [16, 28-30] have been extensively studied in the past.  

In addition, a Phase-Locked Loop (PLL)-based estimation 

algorithm has been investigated in [31]. While this algorithm is 

capable of extracting phase, frequency and amplitude of the 

fundamental component from a heavily distorted signal, it is 

unable to estimate and track the harmonic components.  In [32], 

PLL and Adaptive Notch Filter (ANF) are considered mainly to 

handle the DC component in the power signal. An amplitude 

ANF based scheme is also proposed in [33] that can offer a high 

degree of immunity and insensitivity to power system 

disturbances. The authors in [34] propose an adaptive observer 

to estimate capacitor voltages based on the measurement of arm 

currents. In [35], several modal identification methods are 

invoked to investigate lightly damped electromechanical modes 

in powers systems. However, these methods generally lack the 

ability to identify and estimate inter-harmonics and sub-

harmonics. Even the most widely used Fourier-based methods 

for harmonic estimation are unable to accurately estimate the 

inter-harmonic and sub-harmonic components.  

This is mainly due to the unsuitability of synchronizing the 

sampling procedure to inter-harmonics and sub-harmonics, 

where a variable and long analysis window, under the 

assumption that the signal is stationary, would be required. 

These techniques also assume that harmonic magnitudes are 

constant during the estimation process. In reality harmonic 

frequencies and their magnitudes are not stationary due to 

sudden variations in power systems such as switching on-off a 

large load or other transient operations caused by faults. Under 

these conditions, it would be essential to develop a method that 

is capable of dynamically tracking not only the harmonic, but 

also inter-harmonic and sub-harmonic magnitudes, as well as 

the phase angles of each harmonic component.  As a result, the 

task of developing a robust and reliable estimation method for 

real-time monitoring and analysis of harmonic variations is 

becoming a major challenge. In particular, we believe under 

transient conditions, any reliable approach should be based on 

first identifying the presence of all important harmonic 

components in order to accurately track their frequencies and 

magnitudes in a timely manner. Therefore, in this paper we 

present a novel two-tier detection and fast tracking scheme. For 

harmonic detection we developed a subspace-based method for 
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loosely identifying polluted harmonic components. For each 

identified component, a low-complexity tracking algorithm is 

then deployed to accurately track each identified harmonic 

component. We should point out that a subspace-based method, 

in contrast to the Fourier-based methods, can achieve relatively 

high accuracy in frequency and amplitude estimation without 

requiring sampling synchronization with any inter/sub 

harmonic components.  

By implementing an eigen decomposition, subspace-based 

estimation methods [36-40] can decompose the autocorrelation 

matrix of the noise-polluted signal into two subspaces; namely 

a signal subspace and a noise subspace. For a noisy power 

signal the fundamental and harmonic components will be 

grouped to the signal space with 𝐾 eigenvalues bigger than 𝜎2, 

where 𝜎2 is the noise variance. After retrieving information of 

the fundamental frequency and all its harmonic components, a 

low-complexity fast tracking algorithm, which is based on the 

method introduced in [41], is then considered for fast tracking 

phase/frequency in recursive mode. However, it is important to 

note that this method does not perform well due to its inability 

to accurately estimate each harmonic in the presence of other 

harmonics. Therefore, for the tracking stage we developed a 

modified version of the algorithm. The new algorithm is 

capable of accurately tracking the fundamental frequency and 

its harmonic as well as inter-harmonic components by using the 

information obtained during the subspace estimation stage. 

The paper is organized as follows. In Section II we begin by 

presenting a low complexity amplitude and frequency tracking 

algorithm, which is applied to estimate the amplitude and 

frequency of each specific harmonic component. After 

providing a brief background of subspace-based estimation 

methods, we then discuss its application for power signal 

estimation in Section III.  A subspace tracking algorithm is then 

presented and discussed in Section IV for estimation of 

fundamental frequency and all its spectral components. In 

Section V, we introduce a novel integrated spectral 

decomposition and tracking scheme with low complexity and a 

fast convergence rate. Section VI presents simulation results in 

terms of frequency and amplitude tracking under harmonic 

distortions, followed by the conclusion in Section VII. 

II.  FAST AND LOW-COMPLEXITY TRACKING ALGORITHM 

In power systems the sinusoid/cosine form of signal voltage 

and current may contain harmonics, decaying DC offset 

components and noise. In [41], a method to extract sinusoid 

signals and estimation from their parameters is presented. The 

method is based on a core unit, as depicted in Fig. 1. In this 

approach a multiplicity of core units in a parallel or cascaded 

manner [41, 42] can be used to decompose a multi-component 

input signal into its constituent sinusoidal components (i.e., Fig. 

2.4 of [41]). The method is shown to be able to detect and track 

voltage sag more quickly than other methods, such as Root 

Mean Square (RMS), Fourier transform, and peak voltage 

detection methods [43]. Although this tracking scheme is very 

robust to decaying DC offset and noise, its performance is 

severely degraded in the presence of harmonics, as shown in 

Fig. 2.  In other words, this method, with cascaded or parallel 

core structures, is unable to provide accurate estimation of 

harmonics, since the fundamental signal is treated as part of the 

error signal when estimating harmonics. Any such estimation 

inaccuracies of harmonics will consequently affect estimation 

of the fundamental signal.   

To overcome such deficiencies, we have proposed a new 

multiple core unit structure to mitigate the impact of harmonics. 

Fig. 1 shows the block diagram of the proposed tracking scheme 

which is described below: 

 Let’s assume that the power signal is expressed as 

𝑥(𝑡) = ∑ 𝐴𝑖
𝐾−1
𝑖=0 sin(2𝜋𝑓𝑖  𝑡 +  𝜑𝑖  ) + 𝑛(𝑡),  i = 0, 1, … (1) 

where 𝐴𝑖  , 𝑓𝑖 , 𝜑𝑖  and 𝑛(𝑡)  correspond to the amplitude, 

frequency, the phase angle of the 𝑖 th order of the harmonic 

component of the signal and the additive Gaussian white noise 

(AWGN), respectively. For i = 0, 𝑓0 represents the fundamental 

frequency. In power systems faults and load changes result in 

the fluctuation of 𝐴𝑖 , 𝑓𝑖 and 𝜑𝑖. Please note that the harmonics 

in this equation consist of classic harmonics (i.e., multiple 

integer of the fundamental frequency), sub-harmonics and 

inter-harmonics.  

Gradient descent methods can be employed to minimize the 

least square error between the input signal 𝑥(𝑡) and the desired 

signal 𝐴𝑖 sin(2𝜋𝑓𝑖  𝑡 +  𝜑𝑖  ) [44]. The manifold containing all 

sinusoidal signals in 𝑥(𝑡) can be defined as M: 

M= {𝐴(𝑡) sin(2𝜋𝑓(𝑡)𝑡 + 𝜑(𝑡) )}                   (2) 

where 𝐴(𝑡) ∈ [𝐴𝑚𝑖𝑛 , 𝐴𝑚𝑎𝑥] , 𝑓(𝑡) ∈ [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] , 𝜑(𝑡) ∈
[𝜑𝑚𝑖𝑛 , 𝜑𝑚𝑎𝑥]. The parameter vector belonging to parameter 

space 𝛷 = [𝐴, 𝑓, 𝜑] can be expressed as: 

𝜙(𝑡) = [𝐴(𝑡), 𝑓(𝑡), 𝜑(𝑡)]𝑇           (3) 

where 𝑇  denotes matrix transposition. We define a desired 

sinusoidal component as follows: 

𝑦(𝑡, 𝜙(𝑡)) = 𝐴(𝑡) sin(2𝜋𝑓(𝑡)𝑡 +  𝜑(𝑡)).          (4) 

To extract any desired component, such as the 𝑖 th order of 

harmonics from 𝑥(𝑡), would require identifying an optimum 

𝜙𝑖 , 𝑖 = 0, 1, ⋯ , 𝐾 − 1, according to the following equation 

𝜙𝑖 = arg min
𝜙𝑖(𝑡)∈𝛷

𝑑[𝑦(𝑡, 𝜙𝑖(𝑡)), (𝑥(𝑡) − ∑ 𝐴𝑗sin 𝜓𝑗
𝐾−1
𝑗=0,𝑗≠𝑖 )],(5) 

where 𝑑[𝑦(𝑡, 𝜙𝑖(𝑡)), (𝑥(𝑡) − ∑ 𝐴𝑗sin 𝜓𝑗
𝐾−1
𝑗=0,𝑗≠𝑖 )]  is the 

distance function between 𝑦(𝑡, 𝜙𝑖(𝑡))  and 𝑥(𝑡) −

∑ 𝐴𝑗sin 𝜓𝑗
𝐾−1
𝑗=0,𝑗≠𝑖 , while 𝐴𝑗sin 𝜓𝑗 is the estimated component of 

the 𝑗 th order of harmonics. In the case of the fundamental 

component (i = 0) we can show; 

𝜙0 = arg min
𝜙0(𝑡)∈𝛷

𝑑[𝑦(𝑡, 𝜙0(𝑡)), (𝑥(𝑡) − ∑ 𝐴𝑗sin 𝜓𝑗
𝐾−1
𝑗=1 )]. (6) 

Based on (5), the corresponding cost function can be shown as 

𝒥(𝑡, 𝜙(𝑡)) = 𝑑2(𝑡, 𝜙(𝑡)) ≜ 𝑒2(𝑡)       

                                           = [𝑥(𝑡) − ∑ 𝐴𝑗sin 𝜓𝑗
𝐾−1
𝑗=0 ]

2
.        (7) 

The gradient decent method is then used to estimate 

parameter vector 𝜙: 
𝑑𝜙(𝑡)

𝑑𝑡
= −𝛶

𝜕[𝒥(𝑡,𝜙(𝑡))]

𝜕𝜙(𝑡)
,   (8) 

where the positive diagonal matrix 𝛶 is the algorithm regulating 

constant matrix. Using the mathematical proof in [41], a set of 

nonlinear differential equations for the 𝑖th spectrum component 

can be derived as: 

𝐴𝑖̂
̇ = 2𝜇1

𝑖 𝑒 sin 𝜓𝑖̂          (9) 

𝜔𝑖̂
̇ = 2𝜇2

𝑖 𝑒𝐴𝑖̂ cos 𝜓𝑖̂          (10) 

𝜓𝑖̂
̇ = 𝜔𝑖̂ + 2𝜇2

𝑖 𝜇3
𝑖 𝑒𝐴𝑖̂ cos 𝜓𝑖̂        (11) 

where 𝐴𝑖̂ is the estimation of amplitude 𝐴𝑖, 𝜔𝑖̂ is the estimation 

of frequency 𝜔𝑖 = 2𝜋𝑓𝑖 , 𝜓𝑖̂  is the estimation of total phase 

𝜓𝑖 = 𝜔𝑖𝑡 + 𝜑𝑖 , and 𝑒(𝑡) = 𝑥(𝑡) − ∑ 𝐴𝑖̂sin 𝜓𝑖̂
𝐾−1
𝑖=0  is the error 
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signal between the input signal and its estimation. Step 

parameter 𝜇1
𝑖  is used to control the convergence speed and 

accuracy of the 𝑖 th component’s amplitude, while step 

parameters 𝜇2
𝑖  and 𝜇3

𝑖  are pre-set to get a trade-off between 

convergence speed and accuracy of the 𝑖 th component’s 

frequency. Based on the first order time derivative 

approximation, the discretized form of the Eqs. (9) - (11) can 

be written as: 

𝐴𝑖[𝑛 + 1] = 𝐴𝑖[𝑛] + 2𝑇𝑠𝜇1
𝑖 𝑒[𝑛] sin(𝜓𝑖[𝑛]),          (12) 

𝜔𝑖[𝑛 + 1] = 𝜔𝑖[𝑛] + 2𝑇𝑠𝜇2
𝑖 𝑒[𝑛]𝐴𝑖[𝑛] cos(𝜓𝑖[𝑛]),      (13) 

𝜓𝑖[𝑛 + 1] = 𝜓𝑖[𝑛] + 𝑇𝑠𝜔𝑖[𝑛] +
2𝑇𝑠𝜇2

𝑖 𝜇3
𝑖 𝑒[𝑛]𝐴𝑖[𝑛] cos(𝜓𝑖[𝑛]),      (14) 

𝑦𝑖[𝑛] = 𝐴𝑖[𝑛] sin(𝜓𝑖[𝑛]),   (15) 

while the error signal can be expressed as: 

𝑒[𝑛] = 𝑥[𝑛] − ∑ 𝑦𝑖[𝑛] = 𝑥[𝑛] − ∑ 𝐴𝑖[𝑛] sin(𝜓𝑖[𝑛])𝐾−1
𝑖=0

𝐾−1
𝑖=0 ,     

(16) 

where 𝑛 is the time step index and 𝑇𝑠 is the sampling interval. 

The implementation of the proposed tracking algorithm is 

displayed in Fig. 1. 

As shown in Fig. 7 of Section VI, the proposed algorithm 

achieves significant improvement over the tracking algorithm 

of [41]. Furthermore, different step parameters can be used to 

estimate the fundamental frequency and harmonics’ frequency 

in order to attain a better performance. With prior knowledge of 

the fundamental frequency and harmonics’ frequencies, the 

proposed algorithm is capable of simultaneously tracking 

multiple signal components, including inter harmonics and sub-

harmonics, as demonstrated in Fig. 8 of Section VI. It is 

important to point out that having prior knowledge of the signal 

spectral components was the main factor in the versatility of the 

proposed tracking scheme. Without prior knowledge of the 

signal spectral components (e.g., without identifying them 

through subspace methods), it would be practically impossible 

to accurately track all the components by using the cascaded 

multiple core units of [41, 42]. More precisely, it is important 

to know the correct number of core units and their 

corresponding initial values.  

To acquire such an advance knowledge would require 

identifying all spectral components of the power signal. To 

achieve this, we developed a subspace-based estimation 

method, which is described next.  

III.  SUBSPACE BASED SPECTRUM ESTIMATION 

Subspace-based estimation methods have been widely 

applied to spectrum analysis and general parameter estimation. 

By implementing an eigen decomposition, subspace-based 

estimation methods can decompose the autocorrelation matrix 

of the noise-polluted signal into two subspaces, namely a signal 

subspace and a noise subspace. The signal subspace contains 𝐾 

orthonormal eigenvectors corresponding to the 𝐾  largest 

eigenvalues of the autocorrelation matrix, while the noise 

subspace consists of 𝑁 − 𝐾  orthonormal eigenvectors 

corresponding to the eigenvalue 𝜎2  of the autocorrelation 

matrix, where 𝜎2  is the noise variance. When applying 

subspace-based methods to the noisy power signal, the 

fundamental signal and harmonic components will be grouped 

to the signal space with an eigenvalue bigger than 𝜎2 . In 

contrast to Fourier-based methods, subspace-based methods 

can achieve relatively high accuracy in frequency and 

amplitude estimation, without the effect of synchronizing with 

inter-harmonics and sub-harmonics. 

 
Figure 1: Block diagram of the proposed tracking algorithm. 

 
Figure 2: The frequency estimation performance of the tracking algorithm 
[36] with or without harmonics. 

For the sake of spectral analysis, a general model of the 

power signal in complex form can be derived from Eq. (1) as 

𝑥(𝑡) = 𝐴0𝑒𝑗𝑤0𝑡+𝜑0 + ∑ 𝐴𝑖𝑒
𝑗𝑤𝑖𝑡+𝜑𝑖

𝐾−1

𝑖=1

+ 𝑛(𝑡), 𝑖 =  0, 1, …  

(17) 

where, 𝐴𝑖  , 𝑤𝑖 = 2π𝑓𝑖 , 𝜑𝑖  and 𝑛(𝑡)  correspond to the 

amplitude, angular frequency, the phase angle of the 𝑖th order 

inter/intra harmonic component of the power signal and the 

additive Gaussian white noise (AWGN), respectively. For 𝑖 =
0, 𝑓0 represents the fundamental frequency. For a window of 𝑁 

samples, the corresponding power signal vector is denoted as: 

𝒙 = [𝑥1 𝑥2  ⋯  𝑥𝑛 ⋯ 𝑥𝑁]𝑇 ,   (18) 

where 𝑥𝑛 = 𝐴0𝑒𝑗𝑤0(𝑡−(𝑁−n)𝑇𝑠)+𝜑0 + ∑ 𝐴𝑖𝑒
𝑗𝑤𝑖(𝑡−(𝑁−n)𝑇𝑠)+𝜑𝑖𝐾−1

𝑖=1  

+𝑛(𝑡 − (𝑁 − n)𝑇𝑠), 𝑖 =  0, 1, … … and 𝑇𝑠  is the sampling 

interval. The autocorrelation matrix 𝑿  of the  𝑁 -dimensional 

power signal vector 𝒙 can be derived as 

𝑿 ≜ 𝑬{𝒙𝒙𝐻} = ∑ 𝐴𝑖
2𝒘𝑖𝒘𝑖

𝐻𝐾−1
𝑖=0 + 𝜎2𝑰𝑵 = 𝑾𝑨𝑾𝐻 + 𝜎2𝑰𝑵, 

(19) 

where we have 𝒘𝑖 = [𝑒−𝑗𝑤𝑖(𝑁−1)𝑇𝑠  ⋯ ⋯ 𝑒−𝑗𝑤𝑖𝑇𝑠  1]𝑇 , 𝑾 ≜
[𝒘0 𝒘1  ⋯ ⋯ 𝒘𝐾−1], 𝑨 ≜ diag[𝐴0

2 𝐴1
2  ⋯ ⋯ 𝐴𝐾−1

2]  and 𝑰𝑵 

denotes the 𝑁 × 𝑁 -dimensional identity matrix. Please note 

that Eq. (19) is obtained based on the assumption that the 𝑁-

dimensional vector {𝒘𝑖}𝑖=0
𝐾−1 of the fundamental frequency and 

harmonic components are independent of each other.  

The eigen-decomposition of the power signal’s 

autocorrelation matrix 𝑿 is given by 

𝑿 = 𝑼𝜦𝑼𝐻 = 𝑼𝑠𝜦𝑠𝑼𝑠
𝐻 + 𝜎2𝑼𝑛𝑼𝑛

𝐻 =

[𝑼𝑠 𝑼𝑛] [
𝜦𝑠 𝟎
𝟎 𝜦𝑛

] [
𝑼𝑠

𝐻

𝑼𝑛
𝐻],   (20) 

where we have 𝑼 = [𝑼𝑠 𝑼𝑛] and 𝜦 = diag[𝜦𝑠  𝜦𝑛]. In Eq. 

(20), 𝜦𝑠 = diag[𝜆1, 𝜆2, ⋯ , 𝜆𝐾]  and 𝑼𝑠 = [𝒖1 𝒖2 ⋯ 𝒖𝐾] 
contain the largest 𝐾 eigenvalues of the autocorrelation matrix 

𝑿  stored in descending order and the corresponding 
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orthonormal eigenvectors. Matrix 𝑼𝑛 =
[𝒖𝐾+1 𝒖𝐾+2 ⋯ 𝒖𝑁] consists of the (𝑁 − 𝐾) orthonormal 

eigenvectors corresponding to the smallest eigenvalues 𝜎2  in 

𝜦𝑛. The range space of 𝑼𝑠 is referred to as the signal space, 

while its orthogonal complement, the noise space, is spanned 

by 𝑼𝑛 . Eq. (20) physically states that the power signal’s 

autocorrelation matrix 𝑿  may be diagonalized by a unitary 

matrix 𝑼, resulting in a diagonal matrix 𝜦, where the entries are 

the eigenvalues of 𝑿. Furthermore, the unitary matrix 𝑼 that is 

used to diagonalize 𝑿 has constituting columns an orthonormal 

set of eigenvectors of 𝑿. 

In ROOT-MUSIC methods [39], an auxiliary vector is 

constructed as: 

𝒘 = [𝑒−𝑗𝑤(𝑁−1)𝑇𝑠  ⋯ ⋯ 𝑒−𝑗𝑤𝑇𝑠 1]𝑇 =

[𝑧−(𝑁−1)  ⋯ ⋯ 𝑧−1 1]𝑇,  (21) 

where 𝑧 = 𝑒𝑗𝑤𝑇𝑠. This auxiliary vector 𝒘 is then projected onto 

noise space 𝑼𝑛 to form the following equation:  

𝒘𝐻𝑼𝑛𝑼𝑛
𝐻𝒘 = 0 .   (22) 

The root of Eq. (22) can be used to estimate fundamental 

frequency and harmonic components denoted by 𝑓0 , 𝑓1 , ⋯ , 

𝑓𝐾−1 . Specifically, the ROOT-MUSIC method defines the 

spectrum by using an inverse distance measure, which is given 

by 

𝑆𝑚𝑢𝑠𝑖𝑐(𝒘) =
1

𝒘𝐻𝑼n𝑼𝑛
𝐻𝒘

=
1

∑ |𝒘𝐻𝒖𝑖|
2𝑁

𝑖=𝐾+1

 ,    (23) 

where, 𝒖𝑖  (𝑖 = 𝐾 + 1, … , 𝑁) is the eigenvector of noise space 

𝑼𝑛. As mentioned earlier, eigenvectors of the signal subspace 

corresponding to the fundamental signal and harmonic 

components are orthogonal to the noise subspace. Therefore, 

this spectrum displays sharp peaks at frequencies of the 

fundamental and harmonic components. In other words, the 

roots of 𝑆𝑚𝑢𝑠𝑖𝑐(𝒘) lying on the unit circle correspond to the 𝐾 

harmonic components and the remaining 𝑁 − 𝐾 roots will fall 

inside the unit circle (and also at inverse complex conjugate 

positions outside the circle) [39]. 

After pinpointing frequencies of the fundamental and 

harmonic components, we can then calculate their power by 

using the following equation: 

𝒖𝒊
𝑯𝑿𝒖𝒊 = 𝒖𝒊

𝑯𝑼𝒔𝜦𝒔𝑼𝒔
𝑯𝒖𝒊 + 𝜎𝟐𝒖𝒊

𝑯𝑼𝒏𝑼𝒏
𝑯𝒖𝒊 = 𝜆𝑖, 𝑖 =

 1, 2, … , 𝐾.    (24) 

Substituting 𝑿 = ∑ 𝐴𝑖
𝟐𝒘𝒊𝒘𝒊

𝑯𝐾−𝟏
𝑖=𝟎 + 𝜎2𝑰𝑵 , we obtain the 

power of each component: 𝐴𝑖
2, 𝑖 =  1, 2, … , 𝐾. 

Since calculating the roots of 𝑆𝑚𝑢𝑠𝑖𝑐(𝒘) is a much simpler 

operation and has much lower complexity than the eigenvalue 

decomposition [40], the computational complexity of the 

ROOT-MUSIC method is mainly decided by the 

implementation of eigenvalue decomposition, which is in the 

order of 𝑂(𝑁3). This complexity is too high and hence, not 

practical to run in a recursive mode. The result in Fig. 9 shows 

that 𝑁 should be at least 100 to get a reliable estimation.  

IV.  SUBSPACE TRACKING ALGORITHMS 

In order to reduce the complexity, subspace tracking 

algorithms [36, 37] have been proposed to recursively update 

the subspace on a sample-by-sample fashion, which aims at 

directly tracking the components of the eigenvalue 

decomposition, rather than carrying out the eigenvalue 

decomposition for each block (window) of the power signal 

samples. The Projection Approximation Subspace Tracking 

(PASTd) algorithm [36, 37] is one of such low-complexity 

tracking algorithms. It provides almost guaranteed global 

convergence to the true eigenvectors and eigenvalues of the 

signal. It has a low computational complexity in the order of 

𝑂(𝑁𝐾), where 𝑁 is the dimension of the received signal vector 

and 𝐾  is the number of eigencomponents. Based on the 

estimated eigenvalues, the rank of the signal subspace can be 

estimated adaptively by using the Akaike Information Criterion 

(AIC) or Minimum Description Length (MDL) criterion [38], 

which directly gives the number of harmonic components 

involved. 

TABLE I: Procedure of the PASTd algorithm 
Updating the eigenvalues and eigenvectors of signal space 𝜆𝑖, 𝒖𝒊  

Updating noise variance 𝜎𝟐 and matrix 𝑪 = 𝑼𝑛𝑼𝑛
𝐻 

Give 𝜆𝑖(0), 𝒖𝒊(0), and 𝜎𝟐(0) a suitable value;   

For  𝑙 =  1, 2, …  Do 

    𝒙1(𝑙) = 𝒙(𝑙); 

    For  𝑖 =  1, 2, … , 𝐾  Do 

           𝑦𝑖(𝑙) = 𝒖𝑖
𝐻(𝑙 − 1)𝒙𝑖(𝑙); projection operation 

           𝜆𝑖(𝑙) = 𝛽𝜆𝑖(𝑙 − 1) + |𝑦𝑖(𝑙)|2; updating eigenvalue  

           𝒖𝒊(𝑙) = 𝒖𝒊(𝑙 − 1) +
[𝒙𝑖(𝑙)−𝒖𝒊(𝑙−1)𝑦𝑖(𝑙)]𝑦𝑖

∗(𝑙)

𝜆𝑖(𝑙)
; 

           𝒙𝑖+1(𝑙) = 𝒙𝑖(𝑙) − 𝒖𝒊(𝑙)𝑦𝑖(𝑙); 
     END 

     𝜎𝟐(𝑙) = 𝛽𝜎𝟐(𝑙 − 1) +
‖𝒙𝐾+1(𝑙)‖2

𝑁−𝐾
; updating noise variance 

     𝑪(𝑙) =
𝑿−𝑼𝑠𝜦𝑠𝑼𝑠

𝐻

𝜎𝟐(𝑙)
=

𝒙(𝑙)𝒙𝐻(𝑙)−𝑼𝑠𝜦𝑠𝑼𝑠
𝐻

𝜎𝟐(𝑙)
; 

     Identify the fundamental frequency and harmonic components 

𝑓0(𝑙), 𝑓1(𝑙), ⋯, 𝑓𝐾−1(𝑙) by calculating the roots of Eq. (23); 

     Derive the corresponding powers 𝐴𝑖
𝟐(𝑙) through Eq. (24).  

 

The operation procedure of The PASTd algorithm is shown 

in Table I, where 𝒙(𝑙) is the 𝑙th power signal sample vector in 

the 𝑁 -dimension, while 𝜆𝑖(𝑙)  and 𝒖𝒊(𝑙)  represent the 𝑖 th 

eigenvalue and 𝑖 th eigenvector at the 𝑙 th time instant, and 

finally, 𝜎𝟐(𝑙) is the noise variance at the 𝑙th time instant. Based 

on the so-called deflation technique [37], the PASTd algorithm 

sequentially estimates principal components such as 

eigenvalues and eigenvectors of the signal subspace. More 

specifically, the most dominant eigenvector is first updated (see 

Table I.) and then the projection of the current signal sample 

vector 𝒙(𝑙) onto this eigenvector is removed from 𝒙(𝑙) itself. 

Now the second most dominant eigenvector becomes the most 

dominant in the updated signal sample vector, which can be 

extracted in the same way as before. This procedure is applied 

repeatedly, until all desired eigen components have been 

estimated. After updating eigenvalues and eigenvectors of 

signal subspace, the noise variance 𝜎𝟐(𝑙)  will be updated 

followed by identification of the fundamental frequency and 

harmonic components 𝑓0(𝑙), 𝑓1(𝑙), ⋯ , 𝑓𝐾−1(𝑙), as well as the 

corresponding powers 𝐴𝑖
𝟐(𝑙) . The parameter 0 < 𝛽 ≤ 1  is 

used to down-weight the previous data, for the sake of tracking 

the statistical variation of the observed data when working in a 

nonstationary environment.  

However, as mentioned earlier, the PASTd algorithm 

sequentially estimates the harmonic components by employing 

the iterative deflation technique of [38]. This mechanism will 

accumulate round-off estimation errors and lead to poor 

estimates of the low-power components’ eigenvalues and 

eigenvectors. Furthermore, the use of an inverse distance 

measurement to identify the frequencies of harmonic 
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components involves inversion of the signal subspace’s 

eigenvalues. Consequently, this exacerbates the effect of 

estimation errors for low-power components, resulting in a 

degraded performance. 

 
Figure 3: The convergence rate of frequency and amplitude estimation of the 

proposed tracking algorithm of [41]. 

 
Figure 4: The frequency estimation performance of the proposed algorithm 

with different step parameters of 𝜇̅2. 

V.  INTEGRATED SPECTRUM ESTIMATION AND TRACKING 

ALGORITHM  

In order to achieve a reliable performance while 

maintaining low complexity, our final approach is based on a 

combination of the subspace-based ROOT MUSIC method and 

a low-complexity tracking algorithm. Specifically, in the initial 

stage, the subspace-based ROOT MUSIC method is employed 

to pinpoint the harmonic components and their corresponding 

power. This information is then used by our proposed tracking 

algorithm to estimate the harmonic components in recursive 

mode. In the case of severe disturbance or voltage instability (e. 

g. new harmonics emerge and/or some harmonics cease), 

estimation of the fundamental frequency will display a 

significant fluctuation. Under this condition, the subspace-

based ROOT MUSIC method will be invoked to re-locate the 

harmonic components. In this way, the computational 

complexity of this new algorithm is mainly decided by that of 

the proposed tracking algorithm, which is in the order of 𝑂(𝐾).   

As mentioned before, although the tracking algorithm of 

[41] can track voltage amplitude and detect voltage sag faster 

than traditional methods, it cannot track frequency quickly 

enough [43]. Overcoming such a disadvantage has been the 

main push of the proposed tracking algorithm. As shown in Fig. 

3, where a power signal without harmonics is investigated, the 

estimation of the amplitude converges at around 0.04 seconds, 

while the estimation of the frequency converges at around 0.09 

                                                           
1 Certain commercial equipment, instruments, or materials are identified in 

this paper to foster understanding. Such identification does not imply 

recommendation or endorsement by the National Institute of Standards and 

seconds. Although step parameters 𝜇2 and 𝜇3 can be adjusted to 

increase convergence speed, they can impact the estimation 

accuracy [41]. Fig. 4 shows the performances of the proposed 

algorithm employing different step parameter 𝑠 𝜇̅2 , namely 

40,000 and 80,000, where other step parameters remain the 

same. Obviously, increasing step parameter 𝜇̅2 from 40,000 to 

80,000 can further degrade performance. Suitable step 

parameters 𝜇2  and 𝜇3  should be used to achieve a trade-off 

between the convergence speed and accuracy. More 

importantly, without any prior knowledge of harmonics, the 

algorithm cannot track harmonics, which could also affect the 

estimation accuracy of the fundamental frequency. 

 
Figure 5: Flowchart of the proposed integrated spectrum estimation and 

tracking algorithm. 

Therefore, the subspace-based ROOT MUSIC method can 

play a crucial role for firstly identifying the frequency and 

power of each harmonic component, as shown in Fig. 5. Our 

tacking algorithm can then utilize this information to estimate 

the fundamental frequency, as well as all other spectral 

components in recursive mode. Furthermore, to dynamically 

track the spectral components, the subspace-based ROOT 

MUSIC method is invoked to update the presence of any new 

set of harmonic components. Such invocation is triggered as 

soon as a change in the fundamental frequency estimate is 

detected (exceeding a pre-defined threshold). 

VI.  PERFORMANCE EVALUATION 

Our proposed spectrum tracking algorithm is examined in 

the presence of harmonics, inter-harmonics, sub-harmonics, 

and noise. A software-based grid network modelling using the 

Electro Magnetic Transients Program (EMTP)1 software tool is 

employed to generate the power signal. EMTP [45, 46] can 

provide almost all power system components, such as power 

plant, transformer, non-linear loads, and different types of 

faults. Therefore, we are able to generate power signals 

Technology, nor does it imply that the materials or equipment identified are 
necessarily the best available for the purpose. 
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containing different sets of harmonics corrupted by added white 

Gaussian noise. The IEEE 34-bus distribution model is used to 

generate the power signal. The sampling rate of the power 

signals is 5000 Hz. We run a series of experiments that include 

evaluating our low complexity fast tracking algorithm with and 

without the deployment of various forms of sub-space spectrum 

analysis schemes. The sub-space schemes include recursive 

root music and Projection Approximation Subspace Tracking 

(PASTd) (without being used in combination with the tracking 

algorithm), as well as complexity one-time sub-spaced root 

music, which is used in combination with the tracking 

algorithm.  

In the first set of experiments we evaluate the tracking 

scheme by assuming that only rough frequency information of 

the fundamental signal and harmonics (not their amplitudes) are 

available. For a 60 Hz power signal with 10 % of the 3rd 

harmonic, Fig.6 shows significant performance improvement 

with the proposed tacking algorithm compared with the method 

used in [41]. Such superiority is the result of estimating the 

fundamental frequency and the 3rd harmonic frequency 

separately, where each can then be recursively subtracted from 

the input signal (see Fig. 1). In these experiments we use 

different step parameters; for example, 𝜇1 = 100, 𝜇2 = 10000 

and 𝜇3=0.02 for the fundamental frequency, while 𝜇̅1 = 100, 

𝜇̅2 = 40000 and 𝜇̅3 = 0.02 for estimating the third harmonic. 

In a similar experiment (see Fig. 7) the power signal not only 

contains 3rd harmonic (30 %), but also 5th harmonic (5 %), 35 

Hz sub-harmonic (20 %), and 130 Hz inter-harmonic (10 %). 

Fig. 7 verifies the ability of the proposed algorithm to track 

multiple signals, including inter-harmonics and sub-harmonics.  

However, the convergence rate is low, since only rough 

frequency information (without any information about their 

amplitudes) has been made available.  

In order to attain complete information about the 

harmonics, the subspace-based root music method described 

earlier is applied to the same power signal as in Fig. 7. Fig. 8 

shows the new results which indicate that the subspace-based 

root music method can provide all the harmonic frequency 

components and their amplitudes. Nonetheless, as can be 

observed from Fig. 8 (b), for a window size of 𝑁 = 100, the 

subspace-based root music method lacks estimation accuracies 

for components with low amplitudes. For the fundamental 

signal, for instance, Fig. 9 shows that a larger window size (e.g.,  

𝑁 > 100) can enhance estimation accuracy [40]. However, 

taking into consideration the computation complexity of the 

sub-space-based root music method, (in the order of 𝑂(𝑁3)), 

the algorithm is not practical to run in a recursive mode. As a 

result, the PASTd algorithm is then employed to track spectrum 

components with a lower complexity in the order of 𝑂(𝑁𝐾). 

However, because of the employed iterative deflation technique 

and inverse distance measurement, the PASTd algorithm is not 

able to provide an accurate estimation [38]. Fig. 10 illustrates 

the results of the tracking algorithm with or without the one-

time sub-spaced Root Music, as well as the PASTd algorithm. 

Without a loss of generality, only the frequency tracking 

performance of the fundamental signal and the sub-harmonic 

are displayed in this figure.  Based on one-time subspace-based 

root music spectrum mapping, the proposed integrated 

spectrum estimation and tracking approach achieves the best 

performance. This demonstrates that such a combination is 

capable of accurately tracking all the harmonic components 

(phase, frequency and amplitude) with low complexity and a 

fast convergence rate. 

 
Figure 6: Frequency tracking performance of the proposed algorithm and the 
tracking algorithm of [41]. 

 
                                              (a) 

 
                                                          (b) 

Figure 7: Frequency and amplitude tracking performance of the proposed 
algorithm 

 
                                                 (a) 

 
                                                         (b) 

Figure 8: The frequency and amplitude tracking performance of the subspace-

based recursive root music method where the window size is n=100. 
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Figure 9: The subspace-based recursive root music method with different 
sample-by-sample sliding window size: N. 

 
Figure 10: Frequency tracking performance of the PASTd algorithm, the 

proposed tracking algorithm and the integrated spectrum estimation and 
tracking algorithm.  

 
 

 
Figure 11: Performance of the integrated sub-space spectrum estimation and 

tracking algorithm in the scenario of power disturbance.  

In Fig. 11 the integrated spectrum detection and tracking 

algorithm is examined using a power signal in a situation when 

a disturbance occurs at time, 𝑡 = 5 s. In this scenario, a 60 Hz 

power signal containing a 3rd harmonic (30 %), a 5th harmonic 

(5 %), and a 35 Hz sub-harmonic (30 %) is impacted by a 

disturbance causing the harmonic components to change from 

30 % to 20 % of the 3rd harmonic, 5 % to 8 % of the 5th 

harmonic, and from 35 Hz (30 %) to 40 Hz (20 %) sub-

harmonic. It can be seen from Fig. 11 that a disturbance 

occurring at 𝑡 = 5s causes a fluctuation in the estimation of the 

fundamental signal, which results in activating the one-time 

subspace-based root music in order to provide fresh estimates 

of the spectral comments. Fig. 11 verifies that integration of the 

sub-space spectrum estimation and tracking algorithm is 

capable of reliably tracking the fundamental signal, as well as 

harmonics, inter-harmonics and sub-harmonics, even in the 

case of a sudden disturbance. 

In Fig. 12 we investigate the proposed tracking algorithm 

in the presence of a very high frequency harmonic component, 

such as 12,000 Hz. As shown in Fig. 12, the algorithm is still 

capable of tracking very high frequency components despite 

using a sub-Nyquist sampling rate of 5,000 Hz. In Fig. 13, a 60 

Hz power signal corrupted by a 30 % of 3rd harmonic, a 0.5 % 

of 5th harmonic and a 20 % of 50 Hz sub-harmonic is 

considered. Without loss of generality, only the frequency 

tracking performance of the fundamental signal and the sub-

harmonic are displayed in this figure. Two different sets of 

initial values are used to examine the performance of the 

proposed integrated scheme. In the first set, an initial value of 

50 Hz is set for the fundamental signal, while an initial value of 

40 Hz is considered for the sub-harmonic. In the second set, an 

initial value of 60 Hz is used for the fundamental signal, while 

an initial value of 50 Hz is set for the sub-harmonic. Fig. 13 

demonstrates that the proposed algorithm can still track the 

spectrum components, although more offshoot initial values 

can impact the convergence rate. 

 

 
Figure 12: The performance of the integrated spectrum estimation and tracking 

algorithm in the presence of a harmonic at 12000 Hz.  
 

 
Figure 13: The frequency tracking performance of the proposed algorithm with 
difference initial value. 
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Figure 14: The fundamental frequency tracking performance of the proposed 

algorithm in the presence of different noises. 

 
Figure 15: Frequency tracking performance of the proposed tracking algorithm 

and the standard DFT algorithm, where SNR is 27 dB. 

 
Figure 16: The amplitude tracking performance of the proposed algorithm in 
the presence of regular and damped 3rd harmonic. 

 
Figure 17: The fundamental frequency tracking performance of the tracking 

algorithm [41], the cascaded units [41, 42] and the proposed tracking algorithm. 

 

In our next experiment we investigate the impact of different 

types of noise on the performance of the proposed algorithm in 

the presence of the same harmonic components as in our 

previous experiment (see Fig 13). Five different types of noises: 

pink, white (AWGN), brown, purple and blue noises are 

considered. In each case, the Signal to Noise Ratio (SNR) is set 

at 27dB. The results are presented in Fig. 14. For the sake of 

simplicity, only the frequency tracking performance of the 

fundamental signal (60 Hz) are displayed in this figure. As can 

be observed, the proposed algorithm is highly robust to 

different types of noise. In addition, thermal noise is also 

considered but not included in this figure due to its marginal 

effect on the performance.  

We also compare the performance of our two tier algorithm 

with the standard DFT scheme using the same distorted power 

signal. As shown in Fig. 15, the proposed tracking algorithm 

demonstrates a significant advantage over the standard DFT 

algorithm in the presence of harmonics and noise distortions.  

In Fig. 16, the proposed algorithm is used to track a 60 Hz 

power signal in the presence of a damped 3rd harmonic with 

decaying amplitude: 0.3𝑒−𝑡. It can be seen from this figure that 

the proposed algorithm is capable of not only accurately 

tracking the diluted fundamental frequency, but also the 3rd 

damped harmonic.  

Further experiments were carried out to compare the 

proposed tracking algorithm with the method of cascading units 

proposed in [41, 42]. In these experiments we use a 60 Hz 

power signal in the presence of a regular 3rd harmonic with an 

amplitude of 0.3. The results, which are shown in Fig. 17, show 

the versatility of our proposed method. Again, such superiority 

is the result of estimating the fundamental frequency and the 3rd 

harmonic component separately, where each can then be 

recursively subtracted from the input signal (see Fig. 1). 

VII.   CONCLUSION 

With increasing harmonic distortion in the power system, 

real-time monitoring and analysis of harmonic variations has 

become a challenging issue. In this paper we investigate 

harmonic, inter-harmonic and sub-harmonic estimation and 

tracking for real-time power grid monitoring. We have 

demonstrated that an integrated spectrum estimation and 

tracking algorithm can provide a fast and reliable performance 

while maintaining low complexity. A one-time ROOT MUSIC 

spectrum estimation is first employed to detect the presence of 

any harmonic, inter-harmonic and sub-harmonic components in 

the power signal. This information is then utilized to accurately 

track all detected spectral components. The simulation results 

demonstrate the robustness of the proposed combined spectrum 

estimation and tracking algorithm under dynamic conditions. 
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