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ABSTRACT 
Errors and uncertainties in finite element method (FEM) 

computing can come from the following eight sources, the first 

four being FEM-method-specific, and the second four, model-

specific: (1) Computing platform such as ABAQUS, ANSYS, 

COMSOL, LS-DYNA, etc.; (2) choice of element types in 

designing a mesh; (3) choice of mean element density or 

degrees of freedom (d.o.f.) in the same mesh design; (4) choice 

of a percent relative error (PRE) or the Rate of PRE per d.o.f. 

on a log-log plot to assure solution convergence; (5) uncertainty 

in geometric parameters of the model; (6) uncertainty in 

physical and material property parameters of the model; (7) 

uncertainty in loading parameters of the model, and (8) 

uncertainty in the choice of the model.  By considering every 

FEM solution as the result of a numerical experiment for a fixed 

model, a purely mathematical problem, i.e., solution 

verification, can be addressed by first quantifying the errors and 

uncertainties due to the first four of the eight sources listed 

above, and then developing numerical algorithms and easy-to-

use metrics to assess the solution accuracy of all candidate 

solutions.  In this paper, we present a new approach to FEM 

verification by applying three mathematical methods and 

formulating three metrics for solution accuracy assessment.  

The three methods are: (1) A 4-parameter logistic function to 

find an asymptotic solution of FEM simulations; (2) the 

nonlinear least squares method in combination with the logistic 

function to find an estimate of the 95 % confidence bounds of 

the asymptotic solution; and (3) the definition of the Jacobian 

of a single finite element in order to compute the Jacobians of 

all elements in a FEM mesh.  Using those three methods, we 

develop numerical tools to estimate (a) the uncertainty of a 

FEM solution at one billion d.o.f., (b) the gain in the rate of PRE 

per d.o.f. as the asymptotic solution approaches very large 

d.o.f.'s, and (c) the estimated mean of the Jacobian distribution 

(mJ) of a given mesh design.  Those three quantities are shown 

to be useful metrics to assess the accuracy of candidate 

solutions in order to arrive at a so-called "best" estimate with 

uncertainty quantification.  Our results include calibration of 

those three metrics using problems of known analytical 
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solutions and the application of the metrics to sample problems, 

of which no theoretical solution is known to exist.  
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Disclaimer:   Certain commercial equipment, materials, or 

software are identified in this paper in order to specify the 

computational procedure adequately.  Such identification is not 

intended to imply endorsement by NIST, nor to imply that the 

equipment, materials, or software identified are necessarily the 

best available for the purpose 

 

 

1.   INTRODUCTION 
Since 1991, five international conferences on numerical 

simulation of 3-D sheet forming processes (NUMISHEET) 

have taken place at two- or three-year intervals (Switzerland, 

1991, Japan, 1993, United States, 1996, France, 1999, and 

Korea, 2002). 

The concept of "virtual manufacturing" had taken hold 

among participants of those conferences, as noted by the editors 

of the proceedings of the 2002 conference in its foreword [1] 

that "the numerical method plays a key role in simulation of 

sheet metal forming processes for design innovation through 

virtual manufacturing." 

Since metrology had always played a key role in traditional 

manufacturing, a need for "virtual metrology" arose in the then 

new field of "virtual manufacturing."  After the 1996 

NUMISHEET Conference held in the United States, a 

benchmark committee was formed to launch an inter-laboratory 

experimental and numerical simulation project costing around 

$9 Million with the U.S. National Institute of Standards and 

Technology (NIST) contributing $4.3 Million through its 

Advanced Technology Program.  Results of that project was 

presented at the 2002 NUMISHEET Conference held in Korea 

[1] .  Three benchmark test problems were selected with two 

materials specified for the first two test problems and one 

material for the third.  Details of the project are shown below: 

 

Test Problem                 Experimental    Simulation 

 

A. Deep drawing of a cylindrical cup.     7 teams        14 teams 

B. Unconstrained cylindrical bending.  4 teams       17 teams 

C. Forming of a front bender.         1 team         10 teams 

Of the three benchmark test problems, Test B had the 

largest number of participating teams in simulation, so we 

choose a specific case of Test B (1.0-mm thick 6111-T4 

aluminum sheets) for presentation in this paper as an example 

to motivate a need to develop finite element analysis (FEA) 

accuracy assessment metrics (AAMs). 

In Figs. 1 and 2, we show a graphical representation of the 

test problem together with a list of 4 experimental teams, BE-1 

through BE-4, and 17 simulation teams, BS-1 through BS-17.  

In Fig. 3, we show a graphical comparison of the simulation 

results of 15 teams vs. the experimental result of one team (BE-

1), with the computational environment data for each 

simulation team listed in Fig. 4. 

A closer look at Figs. 3 and 4 led us to conclude that the 

NUMISHEET/NIST project was inadequately conceived by 

asking each team to make only one FEA run with different  

mesh design and computational environment such that it was 

impossible to conduct a proper inter-laboratory comparison 

analysis, nor an uncertainty analysis in the absence of a 

statistical design of experiments.  No requirement was specified 

for each team to conduct a verification study of the simulation 

result, a step that has now received attention in the literature 

(see, e.g., [2] - [7]).  In short, the project failed to contribute 

significant advances to the accuracy assessment of FEA. 

It is well known (see, e.g., Ref. [2]) that errors and 

uncertainties in FEA computing can come from the following 

eight sources, the first four being FEA-method-specific, and the 

second four, model-specific: (1) Computing platform such as 

ABAQUS, ANSYS, COMSOL, LS-DYNA, MPACT [8-12], 

etc.; (2) choice of element types in designing a mesh; (3) choice 

of mean element density or degrees of freedom (d.o.f.) in the 

same mesh design; (4) choice of a percent relative error (PRE) 

or the Rate of PRE per d.o.f. on a log-log plot to assure solution 

convergence; (5) uncertainty in geometric parameters of the 

model; (6) uncertainty in physical and material property 

parameters of the model; (7) uncertainty in loading parameters 

of the model, and (8) uncertainty in the choice of the model.  By 

considering every FEM solution as the result of a numerical 

experiment for a fixed model, a purely mathematical problem, 

i.e., solution verification, can be addressed by first quantifying 

the errors and uncertainties due to the first four of the eight 

sources listed above, and then developing numerical algorithms 

and metrics to assess the solution accuracy of all candidate 

solutions. 

In Sections 2 and 3, we present a method to obtain the 

asymptotic solution using a sequence of FEA candidate 

solutions, as well as an estimate of the solution uncertainty as 

AAM-1.  In Sections 4 and 5, we formulate two more metrics, 

AAM-2 and AAM-3.  In Section 6, we calibrate the usefulness 

of all three metrics using four problems of known exact 

solutions.  In Sections 7 and 8, we present application to two 

problems, of which no solutions are known to exist.  A 

discussion of the significance of our method, metrics, and 

results appear in Section 9, and some concluding remarks in 

Section 10.  A lsit of referneces is given in Section 11. 
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2.   A NONLINEAR LEAST SQUARES LOGISTIC FIT 
A logistic function [13], named after Pierre Francois 

Verhulst [14] for his use in a study of population growth, is a 

flat-S curve with two horizontal asymptotes.  It is commonly 

represented by the following 4-parameter equation:  

 

        f( x )  =  y1  -   

 

                L*{ exp(-k*(x–a)) / ( 1+exp(-k*(x–a))) },              (1) 

 

where  y1  is the upper right asymptote with x approaching 

infinity,  L  =  y1 – y0  with  y0  equal to the lower left asymptote 

with  x  going left to the negative infinity,  k  is the flat-S shape 

steepness coefficient, and  a ,  the x-value of the flat-S curve 

midpoint (sometimes denoted by  x0 ). 

To visualize this 4-parameter function, let us simplify it by 

assigning  y0  =  0 ,  and  y1  =  1 .   Eq. (1) thus becomes a 2-

parameter logistic function with two sample plots given in Fig. 

5.  The parameter  L  is, therefore, a scale factor for the 

difference between the lower and the upper asymptotes. 

Given a sequence of  N ( Nmin = 5) FEA candidate single-

valued solutions of increasing mesh density, or, degrees of 

freedom (d.o.f.), and assuming that the candidates are 

monotonically increasing, we can use a 4-parameter logistic 

function, given by Eq. (1), to conduct a nonlinear least squares 

fit of the  N  data [15, 16] and obtain an asymptotic solution,  

y1  , at very large d.o.f. with a 95 % confidence band.   

In Fig. 6, we show an example of finding the maximum 

Mises stress in a wrench using 10 candidate solutions of FEA 

COMSOL runs [10] and a nonlinear least squares logistic 

function fit [17]. 

It is interesting to note that when we used the coarsest mesh, 

the candidate solution was about  320 MPa.  As we increased 

the mesh density or d.o.f., the stress rose monotonically.  When 

we completed a 17-candidate FEA run with d.o.f. reaching 6 

million, the solution levelled off to 369.72 MPa, about 15 % 

higher than the initial candidate.  When we applied the 

nonlinear least squares logistic function fit with  N  =  10, the 

asymptotic solution was 369.1 MPa, which differed from 

369.72 by only 0.2 %.  More interestingly, the fit yielded an 

estimate of uncertainty at a billion d.o.f with 95 % confidence  

equal to 1.92 %, which is a new result of tremendous 

importance to FEA accuracy assessment. 

For decreasing candidate FEA solutions, Eq. (1) becomes  

 

        f( x )  =  y1  +  

 

                L*{ exp(-k*(x–a)) / ( 1+exp(-k*(x–a))) },              (2) 

 

In some FEA problems, we deal with quantities that are known 

to be either zero or positive-definite (e.g., a Mises stress).  Eqs. 

(1) and (2) can be further simplified with  y0  =  0  and  y1  =  L.  

Thus, Eq. (1) becomes a 3-parameter function as follows: 

 

                  f( x )  =  y1 / ( 1 + exp ( - k * (x–a) ) ).                 (3) 

3.   ACCURACY ASSESSMENT METRIC (AAM) NO. 1 
The nonlinear logistic model of the  N  ( N > 4 )  candidate 

solutions of a specific FEA computational code with increasing 

mesh density (or, d.o.f.) produces not only an asymptotic 

solution at infinite d.o.f., but also a 95 % confidence band, with 

which one can estimate a quantity to be called the "FEA 

Solution Uncertainty," or, simply, "Uncertainty" at an 

arbitrarily large d.o.f.  

In Figs. 7 and 8, we illustrate this Uncertainty concept with 

an example that we published in a 2008 paper [7] for estimating 

the first resonance bending frequency of a cantilever beam in 

an atomic force microscope.  The beam dimensions were 232 

m long, 34 m wide, and 7 m thick.  The material is assumed 

to be isotropic (polycrystal silicon) and elastic with a Young's 

modulus of 169,158 MPa, and density of 2.329 E-9 ton/cu. mm.  

Based on the classical theory of elastic simple beams [18, 

p.338], the first resonance frequency for bending is 179.03 kHz. 

In Fig. 7, we show that a 5-candidate-ABAQUS-Hex-08-

solution fit yielded an asymptotic solution equal to 180.69 kHz, 

which differs from the exact solution by 0.93 %.  In Fig. 8, 

which is an enlarged view of the asymptotic solution near 

infinite d.o.f., we show the 95 % confidence band with a 

specific upper and lower bound at one billion d.o.f. equal to 

180.72 and 180.66 kHz, respectively.   

For the purpose of this paper, we define "Uncertainty" to 

be the difference between the upper bound and the asymptotic 

solution at one billion d.o.f., which in our example happened to 

be  180.72  -  180.69  =  0.03 kHz.  Using our fit algorithm, we 

can deliver an asymptotic solution with uncertainty in the form 

of    180.69  +/-  0.03  kHz , which unfortunately is still off the 

mark as compared with the exact solution.  Nevertheless, this 

definition provides a plausible candidate as a metric for FEA 

accuracy assessment, and we shall find out in Section 6 whether 

it is a useful metric to be known as AAM-1, or simply, M-1. 

 

 

4.   ACCURACY ASSESSMENT METRIC (AAM) NO. 2 
In Fig. 9, we illustrate a definition of a second metric to be 

known as AAM-2, or simply, M-2, by returning to the problem 

of fitting 10 candidate COMSOL solutions of finding the 

maximum Mises stress in a wrench as shown in Fig. 6.  We are 

now interested in the convergence behavior (in blue color) of 

the 10 candidate solutions at about 100,000 d.o.f. versus that of 

the asymptotic solution (in red) near 100 million d.o.f. 

Let  u1(xx1), u2(xx2), u3(xx3),  u4(xx4),  u5(xx5)  be the five 

candidate FEA solutions of increasing d.o.f.'s,  X1, X2, X3, X4, 

X5, with  xx1 = Log10 X1,  xx2 =Log10 X2, xx3 = Log10 X3, xx4 = 

Log10 X4, xx5 = Log10 X5.  For  i = 2, 3, 4, 5, we define the i-th 

"Percent Relative Error," or,  PREi ,  as follows: 

 

PREi (xxi )  =  abs { 100 * [ ui (xxi ) - ui-1 ] / ui-1 }           (4)  

 

Let  LPREi  = Log10 (PREi ), plot  LPREi  vs.  xxi  on a log-log 

paper, as shown in Fig. 9 in blue color, and use a linear least 
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squares fit to obtrain a straight line with a slope,  c0 , that 

represents the convergence behavior of the 5 candidate solution 

We now need the model-predicted asymptotic solution to 

deliver a similar slope, c1, representing the convergence 

behavior of the model near 100 million d.o.f. using a definition 

for a series of  PREi  identical to that of Eq. (4).   Ideally, c1 

should be close to zero.  Let us now define a metric equal to the 

difference between  c1  and  c0, and call it a "Gain,"  g = c1 - c0, 

with  g  defined as the metric AAM-2, or simply, M-2. 

 

 

5.   ACCURACY ASSESSMENT METRIC (AAM) NO. 3 
Both AAM-1 and AAM-2 are a posteriori metrics in the 

sense that they are estimated after a computer simulation such 

as an FEA run is completed.  Given a finite element mesh 

design, with a fixed choice of mesh density, element type(s), 

and geometric configuration, it is tempting to ask if an a apriori 

metric exists first to assess the mesh "quality" and then, perhaps, 

the accuracy of a subsequent FEA run. 

The answer lies in a close examination of a classical FEA 

concept known as the determinant of the Jacobian matrix, or 

simply, the Jacobian [2].  Using a FEA pre-processor named 

TrueGrid [19], Rainsberger, Fong and Marcal wrote a paper 

[20], in which a metric, AAM-3, or simply, M-3, was defined 

as a pair of numbers representing the mean,  mJ,  and standard 

deviation,  sdJ,  of a distribution of Jacobian's at every node in 

a finite element mesh. 

For this paper, we will only sketch the concept of a 

Jacobian without defining the metric, AAM-3.  Each element is 

defined by a set of ordered nodes with coordinates  pi = ( xi, yi, 

zi ) for  i  between  1  and  m, where  m  is the number of nodes 

in the element.  Associated with each node is a scalar shape 

function,  Ni (  ).  For each node,  pi , we define the 

Jacobian matrix,  J , as follows: 

 

 
 

 

(5) 

 

 

 

 

The determinant of the matrix,  J , is called the Jacobian,  J , 

which needs to be evaluated at every node of a finite element 

mesh.  The set of all such Jacobian's forms a distribution with 

its mean value,  mJ , and standard deviation,  sdJ , which can be 

estimated for any finite element mesh using a macro written in 

TrueGrid [19].  For this paper, we will define the third metric, 

AAM-3, or simply, M-3, as the quantity,  mJ . 

In Fig. 10, we illustrate the use of a TrueGrid [19] macro 

to find the distribution of Jacobian's in a specific mesh design. 

A graphical display of the distribution of the Jacobian's is given 

in the right of the figure, with the mean of the Jacobian,  mJ , 

given in the top box as  4.011077E+00. 

6.   FOUR BENCHMARKS FOR CALIBATING AAM'S 
We are now ready to calibrate the three metrics,  AAM-1, 

-2, and -3, using four FEA benchmark problems, each of which 

has a known exact solution.  In Fig. 11, we show the FEA 

(ABAQUS) solutions of a resonance frequency problem [18] 

with six mesh designs of different mean aspect ratios (MAR).  

All three metrics correlate exceedingly well with the solution 

accuracy of the six meshes using a single platform.   

In Fig. 12, we show the FEA (COMSOL) solutions of a 

wrench max. Mises stress problem [10, 17] with four teams of 

6, 7, 8, and 9 candidate solutions.  Again AAM-1 and -2 

correlate exceedingly well.  We expect AAM-3 to pass the test 

as well even though no computation was done for lack of time.  

For a single platform, we observe that AAM-1 (uncertainty) 

performs well because the complication due to platform was 

absent.  AAM-1 (uncertainty) is not expected to work as an 

accuracy assessment metric when it comes to a multi-platform 

competition.  In Fig. 13, we return to the resonance frequency 

problem using four platforms, namely ABAQUS, COMSOL, 

LSDYNA, and MPACT, and obtain an interesting result that 

only AAM-2 (Gain in slope of Log10(PRE) vs. Log10(d.o.f.) plot) 

works as a viable accuracy assessment metric. 

In Fig. 14, we confirmed the above new result that only 

AAM-2 works for a multi-platform competition by introducing 

the classical cantilever max. stress problem with two FEA 

platforms, ABAQUS and MPACT. 

 

 

7.   APPLICATION EXAMPLE FOR SINGLE PLATFORM 
We now apply the new FEA accuracy assessment 

methodology to problems of which no exact solution exists.  

Our first example is for a single platform (ABAQUS) 2D FEA 

problem for a holed composite laminate strength test.  In Fig. 

15, we show that both AAM-1 and -2 work well in being able 

to pick a winner without hesitation [21]. 

 

 

8.   APPLICATION EXAMPLE FOR MULTI-PLATFORM 
Our next application is to work on a classical barrel vault 

max. displacement problem using two platforms, namely 

ABAQUS and MPACT.  As shown in Fig. 16, the AAM-2 

(Gain in slope) works quite well, and the AAM-1 (uncertainty) 

performs rather weakly.  It is, however, encouraging that AAM-

2 works in all cases tested so far. 

 

 

9.   DISCUSSION 
The introduction of a new method for finding an 

asymptotic FEA solution with confidence bounds and 

uncertainty quantification is innovative in advancing the state 

of the art and science of computational modeling.  The 

subsequent formulation, calibration, and testing of three FEA 

accuracy assessment metrics is significant in adding a new tool 

to the toolbox of FEA verification. 
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10.   CONCLUDING REMARKS 
Finite element method (FEM) and the mathematics of the 

verification and validation (V & V) of its computational results 

have been of interest to engineers and scientists since the 1960s.  

Difficulties in modeling "correctly" and computing 

"accurately" for large-scale practical problems involving 

complex geometry and uncertainty in governing equations and 

physical parameters have created a need to develop efficient 

methods and subsequently recommended practices of FEM V 

& V.  The availability of many commercial FEM codes that are 

increasingly user-friendly has complicated the problem of 

answering the fundamental question, “is the FEM result correct, 

and what are its confidence bounds?“  By considering every 

FEM solution as the result of a numerical experiment and by 

using a combination of three mathematical and computational 

methods, we have developed in this paper a new approach to 

the V & V of FEM. 
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Fig. 1.   List of 4 teams, BE-01, through BE-04, who agreed to participate in an Inter-Laboratory Experimental Benchmark Test 

(Numisheet/NIST 2002) for the unconstraind cylindrical bending of 1.0-mm-thick sheets of aluminum and high-strength steel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.   List of 17 teams, BS-01 through BS-17, who agreed to participate in an Inter-Laboratory Numerical Simulation 

Benchmark Exercise (Numisheet/NIST 2002) for the unconstrained cylindrical bending of 1.0-mm-thick Al & Steel Sheets. 
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Fig. 3.   Simulated force vs. displacement results of (a) Teams BS-01, -02, -04, -05, -06, (b) Teams BS-07, -08, -09, -10, -12, 

and (c) Teams BS-13 through BS-17, vs. that of a typical experimental team (BE-01, Korea) for the benchmark test problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.   A summary table of the computational environment data for each of the 17 simulation teams, who agreed to 

participate in Numisheet/NIST and contributed their results as shown in Fig. 3. *Teams BS-03 and BS-11 had no results.
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Fig. 5.   A graphical plot of a 3-parameter logistic function with two values of the location parameter,  a  (after [17]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.   A nonlinear least squares logistic Fit of 10 candidate FEA solutions for finding max. stress in a wrench [17]. 
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Fig. 7.   A nonlinear least squares logistic fit of 5 candidate FEA solutions for finding a resonance frequency [7, 17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.   An enlarged view of the asymptotic solution of a resonance frequency problem presented in Fig. 7. 
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Fig. 9.   Convergence behavior of 5 candidate FEA solutions before and after a nonlinear least squares fit [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.   An example of computing the Jacobian distribution of a finite element mesh using a TrueGrid macro [19, 20]. 

 

 

 

mJ = 4.01, 
sdJ = 1.71. 
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Fig. 11.   Accuracy assessment of 6 FEA solutions using AAM-1, AAM-2, and AAM-3 for a resonance frequency problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.   Accuracy assessment of 4 FEA solutions using AAM-1 and AAM-2 for a wrench stress problem. 
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Fig. 13.   Accuracy assessment of a cantilever resonance frequency solution by 4 FEA platforms using metric AAM-2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.   Accuracy assessment of a cantilever static loading max. stress solution by 2 FEA platforms using metric AAM-2. 
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Fig. 15.   Accuracy assessment of a holed composite laminate strength test with 4 FEA meshes using metrics AAM-1, -2 [21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16.   Accuracy assessment of a barrel vault max. displacement solution by two FEA platforms using AAM-1 and -2. 
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