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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Additive manufacturing (AM) has enabled the production of complex geometries such as conformal lattices, topology optimized shapes, and 
organic structures. These complex geometric shapes must sometimes meet functional requirements, including (1) following specific curves or 
surfaces and (2) being bounded by specific surfaces. Mechanisms such as Theoretical Supplemental Surfaces (TSS) have been proposed for 
tolerancing of such geometric shapes, though challenges remain with inspection and validation requirements. A Theoretical Supplemental 
Geometry (TSG, including curves – TSC, surfaces – TSS and volumes – TSV) concept is introduced. To address these measurement and 
verification challenges, Derived Supplemental Surfaces (DSS) are introduced. The verification of a TSS specification using 3D scanning and 
DSS is demonstrated on a lattice surface using Chebyshev and Least Squares fitting. 
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1. Introduction 

Additive manufacturing (AM) has opened avenues for 
manufacturing one-of-a-kind, highly complex organic 
geometries. These geometries can be designed using a variety 
of techniques including topology optimization, conformal 
lattice, bio mimicry, point-cloud editing, refinement and other 
traditional and emerging computational geometric techniques. 

 To benefit from the technological advantages underscored 
by new AM design tools, representation and specification 
schemes are rapidly being investigated [1–6]. The focus of this 
research is on the tolerancing and verification of lattice-based 
geometries across a defined surface and volume. 

1.1. Lattices 

Lattices generally aid in reducing the ratio of weight to 
function (e.g. strength to weight ratio) for AM parts. Once 
greatly subject to manufacturing constraints, the freedoms 
offered by AM are allowing lattices to be seamlessly 
incorporated into the manufacturing of a part. Researches 

continue to investigate new ways to design [7,8] and leverage 
[9–14] lattices in AM.  Analysis software for lattice-based 
designs are available [15–18] to test designs against intended 
functionality. Lattices are most often represented as STL 
triangulations, voxels [7,19], and mathematical functions. 
 

 

Figure 1: Examples of different unit cells (top row) and lattices (bottom row). 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2018) 000–000 

  
   www.elsevier.com/locate/procedia 
  

 

 

2212-8271 © 2018 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the 15th CIRP Conference on Computer Aided Tolerancing - CIRP CAT 2018. 

15th CIRP Conference on Computer Aided Tolerancing – CIRP CAT 2018 

Tolerancing and Verification of Additive Manufactured Lattice with 
Supplemental Surfaces 

 Gaurav Ameta, Jason Fox and Paul Witherell  
100 Bureau Dr., NIST, Gaithersburg, 20899 

* Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000. E-mail address: gaurav.ameta@nist.gov 

Abstract 

Additive manufacturing (AM) has enabled the production of complex geometries such as conformal lattices, topology optimized shapes, and 
organic structures. These complex geometric shapes must sometimes meet functional requirements, including (1) following specific curves or 
surfaces and (2) being bounded by specific surfaces. Mechanisms such as Theoretical Supplemental Surfaces (TSS) have been proposed for 
tolerancing of such geometric shapes, though challenges remain with inspection and validation requirements. A Theoretical Supplemental 
Geometry (TSG, including curves – TSC, surfaces – TSS and volumes – TSV) concept is introduced. To address these measurement and 
verification challenges, Derived Supplemental Surfaces (DSS) are introduced. The verification of a TSS specification using 3D scanning and 
DSS is demonstrated on a lattice surface using Chebyshev and Least Squares fitting. 
© 2018 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the 15th CIRP Conference on Computer Aided Tolerancing - CIRP CAT 2018. 

 Keywords: Tolerancing Challenges; Additive Manufacturing; Lattices 

 
 
1. Introduction 

Additive manufacturing (AM) has opened avenues for 
manufacturing one-of-a-kind, highly complex organic 
geometries. These geometries can be designed using a variety 
of techniques including topology optimization, conformal 
lattice, bio mimicry, point-cloud editing, refinement and other 
traditional and emerging computational geometric techniques. 

 To benefit from the technological advantages underscored 
by new AM design tools, representation and specification 
schemes are rapidly being investigated [1–6]. The focus of this 
research is on the tolerancing and verification of lattice-based 
geometries across a defined surface and volume. 

1.1. Lattices 

Lattices generally aid in reducing the ratio of weight to 
function (e.g. strength to weight ratio) for AM parts. Once 
greatly subject to manufacturing constraints, the freedoms 
offered by AM are allowing lattices to be seamlessly 
incorporated into the manufacturing of a part. Researches 

continue to investigate new ways to design [7,8] and leverage 
[9–14] lattices in AM.  Analysis software for lattice-based 
designs are available [15–18] to test designs against intended 
functionality. Lattices are most often represented as STL 
triangulations, voxels [7,19], and mathematical functions. 
 

 

Figure 1: Examples of different unit cells (top row) and lattices (bottom row). 



70 Gaurav Ameta  et al. / Procedia CIRP 75 (2018) 69–74
 G. Ameta, P. Witherell and J. Fox / Procedia CIRP 00 (2018) 000–000  3 

 

Figure 4: A curve as an extension of TSS that passes through the centroid of 
each unit cell and a plane as a TSS passing through the centroid of the first 
layer of unit cells in a lattice. 

(Figure 3). As a group, these may be referred to as Theoretical 
Supplemental Geometry (TSG).  

In application, tolerancing with a TSS is similar to 
tolerancing an axis of a hole. The axis does not physically exist 
but is inferred from the hole surface. Similarly, the TSS does 
not exist physically, but is inferred using geometric elements 
from the lattice. Therefore, the specification of geometric 
variation via TSS, and subsequent inspection, remains a 
challenge.  
 

3. Verification of a TSS through a Derived Supplemental 
Surface (DSS)  

While the TSS provides a means for controlling a surface of 
complex structures such as lattice structures, its definition is 
restricted to the virtual modeling space. Once a geometry is 
manufactured into a part, the virtual elements become a 
physical reality. Though the surface profile remains 
supplemental, the surface can now be derived from the physical 
manifestation of the part.  We will call this measured profile a 
Derived Supplemental Surface, or DSS. 

When calculating the DSS, the selection of both the 
measurement method and the control algorithm are integral to 
determining conformance. The measuring technique chosen 
will influence the selection of surface points on the physical 
part, a critical detail when deriving a supplemental surface from 
non-continuous surfaces. The control algorithm used to 
calculate the DSS will dictate the observed profiles. Different 
algorithms will use the measured points differently when fitting 
a surface.   It is important to understand the different tradeoffs 
when deriving a DSS. 

The ability to accurately measure a DSS is very much 
dependent on the resolution of the measuring equipment 
relative to the size of the lattice structures.  In AM, and 
particularly with the most common metal machines, part sizes 
remain relatively small (e.g., 300mm x 300mm x 300mm).  
Thus, traditional (tactile and optical) verification is mostly 
suitable for external surface measurements, though lattice-
based complex structures and internal features pose unique 
challenges.  

The need for Non Destructive Evaluation (NDE) techniques 
in AM [26,27] has led to a multitude of measurement 
techniques to be researched on AM parts.  For instance, X-ray 
Computed Tomography (XCT) and neutron imaging 
techniques are being employed to verify the sub-surface quality 
of parts in AM [28]. While XCT and other techniques are 
available for verification in AM, the intricate complexities of 
lattice based structures pose challenges.  Full verification of the 
lattice may create challenges related to how raw data is 
processed, the amount of data to be processed, and the type and 
scale of verifications (size, form, orientation, position, etc.) to 
be conducted. When selecting a measurement technique, it is 
important to understand the context of the measurements and 
the limitations of the measurement equipment.  

Once data points are obtained, how these points are 
processed will greatly influence how the results are interpreted.  
A point cloud is representative of a measured lattice surface, 
where the shape of the cloud may vary depending on the type 
of unit lattice.  This shape variance creates challenges in the 
selection of fitting techniques, and requires alternatives to be 
considered before deciding on an optimal.  As an example of 
algorithms affecting outcomes of verification, flatness is 
discussed here.  

Two common techniques used in obtaining flatness are 
Chebyshev’s fitting algorithm and the least squares algorithm.  
In this example, after filtering and trimming a point cloud, the 
point cloud is run through least square’s and Chebyshev’s 
fitting algorithm for flatness. Least squares flatness is 
computed using standard error minimization for fitting a plane 
on the point cloud, while Chebyshev’s flatness is computed 
using min-max algorithm. The min-max algorithm computes 
the minimum of the maximum distances between the convex 
hull points and convex hull planes of the given point cloud. The 
least square’s plane orientation and evaluated flatness zone is 
weighs the distribution of points based on the points’ positions. 
The Chebyshev’s plane orientation and evaluated flatness zone 
is based on global minimum for flatness zone value, thus 
attaining a different fit.  

To showcase the use of TSS and DSS, and investigate the 
implications of different fitting algorithms, the next section 
presents a case study of specifying tolerances on a TSS from a 
lattice, followed by manufacturing the lattice and then 
inspecting the lattice to evaluate a DSS. 

4. Case Study 

In this case study, a logo part with diamond lattice (as shown 
in Figure 5(a)) is utilized. The thickness of each lattice strut is 
0.42 mm and the dimensions of each unit cell are 2 mm X 2 
mm X 2 mm. The dimensions of the entire part are 3.5 cm X 
1.2 cm X 1.2 cm. A planar TSS lying on 9 flat lattice areas 
(colored red in Figure 5 (b)) is toleranced with a profile 
tolerance (without datum) by value 0.12  mm as per [23]. The 
part was built on an EOS M270* laser powder bed fusion  
 
* Certain commercial entities, equipment, or materials may be identified in this 
document in order to describe an experimental procedure or concept 
adequately. Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor is it 
intended to imply that the entities, materials, or equipment are necessarily the 
best available for the purpose. 
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1.2. Lattice at Meso and Macro scales 

Lattices can be generally defined as a collection of repetitive 
geometric elements within an arbitrary area or volume (called a 
unit cell). These cells may form both two-dimensional and 
three-dimensional patterns to create lattice structures. Figure 1 
shows several unit cells (in the top row) and lattice structures 
(in the bottom row) formed from the unit cells. We will refer to 
lattice structures that are not directly subject to part level 
requirements (e.g.  geometric boundaries) as lattice structure at 
the meso-scale.  

Incorporating lattice structures at meso-scales supports the 
creation of heterogenous volumes composed of both lattice and 
solid.  Lattices can be used to fill a given volume in multiple 
ways, including variations such as: (a) trimmed with uniform 
thickness, (b) trimmed with non-uniform thickness and (c) 
conformal (Figure 2). Variations in unit cell types and in unit 
cell materials (Figure 2d) across different regions of a part are 
possible. Lattices can be unstructured (no distinct patterns but 
with basic cylindrical unit cells) and built using computational 
techniques, such as topology optimization, Voronoi diagrams, 
and Delaunay triangulations. When the volume of lattices is 
such that it must directly conform to part-specific requirements, 
we consider this lattice structure to be at the “macro-scale”. 

When discussing lattice structure in the context of 
geometric dimensioning and tolerancing (GD&T), lattices that 
are incorporated into geometric elements that directly meet 
functional needs are of particular interest. Figure 3 shows a part 
where lattice-based geometry is used as elastic compression 
bars. Given the absence of a continuous surface, these bars have 
lattices that lie within (not trimmed by) an a surface (shown 
with orange lines) of the bars. The focus of this paper will be 
on such lattices that must follow such supplemental curves or 
surfaces or are confined within supplemental volumes.  
 
 
 

 
(a)    (b) 

 
(c)    (d) 

Figure 2: Four cases of simple unit cell filling a region in a part. (a) simple 
lattice, (b) non-uniform thickness lattice, (c) conformal lattice and (d) 
conformal lattice with multi- material. 

 

Figure 3: Lattice enclosed within an supplemental surface serving functional 
need for the part.  

2. Tolerancing in AM  

For the purpose of this discussion, we assume some process 
stability, as AM technology and specific machine-based 
process capability studies have been conducted for more than a 
decade. To discuss the tolerancing of lattices, we focus on 
mechanisms for communicating and measuring how well a 
manufactured part should and does fit to a specification. In 
surveying general tolerancing methods for use in AM [19–22], 
researchers have noted that traditional tolerancing techniques 
are not capable of addressing all tolerancing issues in AM parts. 
Among the many issues, lattice based structures pose critical 
challenges to both communication and verification of part 
geometry.  

Challenges in tolerancing lattices arise from the multi-scale 
scaffolding often seen in their geometry.  Elements that exist at 
meso-levels inform macro-level geometries. Tolerancing 
lattices at meso-level elements for a uniform thickness trimmed 
lattice would include (a) size tolerance for strut thickness and 
unit cell dimensions, (b) form tolerances for strut shape and 
unit cell shape, (c) orientation tolerances for individual strut 
and unit cell, and (d) position tolerance for unit cells and the 
lattice as a pattern. Furthermore, the trimming volume would 
also have size, form, orientation, and positional tolerances. The 
tolerancing of lattices has been restricted to relatively trivial 
mechanisms, such as tolerancing for minimum lattice strut 
thickness across multiple lattices. For non-uniform thickness 
lattices, conformal lattices, and unstructured lattices, it would 
be highly infeasible to utilize the techniques available in 
traditional tolerancing. 

To address lattice tolerancing challenges at the macro-
level, the ASME Y14.46 [23] standard introduces the concept 
of Theoretical Supplemental Surface (TSS), used with 
annotation “THEORETICAL SUPPLEMENTAL SURF”. 
This supplemental surface can be toleranced using tolerancing 
tools available from ASME Y14.5 [24] or ISO 1101-2017 [25]. 
The surface is obtained and specified relative to a model 
geometry, thus the term “theoretical.” When applied, the TSS 
supplemental geometry is able to specify the control of form, 
size, orientation, or location of a collection of geometric 
elements or lattices. The concept of TSS may be further 
extended to curves, Theoretical Supplemental Curve (TSC) and 
volumes, Theoretical Supplemental Volume (TSV), as needed  
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* Certain commercial entities, equipment, or materials may be identified in this 
document in order to describe an experimental procedure or concept 
adequately. Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor is it 
intended to imply that the entities, materials, or equipment are necessarily the 
best available for the purpose. 
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thickness across multiple lattices. For non-uniform thickness 
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be highly infeasible to utilize the techniques available in 
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level, the ASME Y14.46 [23] standard introduces the concept 
of Theoretical Supplemental Surface (TSS), used with 
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The surface is obtained and specified relative to a model 
geometry, thus the term “theoretical.” When applied, the TSS 
supplemental geometry is able to specify the control of form, 
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volumes, Theoretical Supplemental Volume (TSV), as needed  
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in conformance to the specification if the Chebyshev’s fitting 
algorithm is used. The flatness will be non- conforming to the 
specification if Least Square’s fitting is used.   

The results show that only the Chebyshev’s fitting of point 
cloud from laser confocal falls within the specified tolerance of 
0.12, while the least squares algorithms result in DSS 
calculations that do not meet the specification. 

The case study results raise interesting questions about the 
“best” way to verify a TSS using a DSS.  The methods used 
each returned different results, one in conformance and other 
not.  It is clear that both the points used and the method selected 
impact the final outcome. Of course, the best algorithm choice 
depends on the design intent of the lattice to be toleranced, and 
the implications of falling outside a tolerance zone. Through 
this case study, it is evident that tools to specify and verify 
variations of TSS and DSS are incomplete and that further 
research is required. 

5. Conclusion and Discussion 

This paper introduced the concept of Derived Supplemental 
Surfaces and presented a case study for verification of 
tolerances specified on “Theoretical Supplemental Surface” 
(TSS) as proposed in ASME Y14.46 standard.  Generalizations 
of TSS as geometry (Theoretical Supplemental Geometry – 
TSG) and specializations into curves (Theoretical 
Supplemental Curves – TSC) and (Theoretical Supplemental 
Volumes – TSV) are proposed. A plane was chosen as a TSS 
for a diamond lattice with a flatness tolerance (profile without 
datum on a plane) specification. The lattice is produced on an 
EOS M270 machine and a point cloud is obtained using 
measurements from a laser-confocal microscope. The point 
cloud is then used to infer a “Derived Supplemental Surface”, 
the physical counterpart of a TSS. It was demonstrated that the 
choice of algorithms and related filtering of point cloud affects 
the resultant conformance to specification. 
 With the latest ISO 1101-2017 standard [25], the choice of 
filtering and algorithm for fitting can be specified with the 
tolerance specifications. Filtering choices include Gaussian, 
Spline, Complex, Opening Ball, Disc, Fourier, Hull, etc. 
Algorithm choices include Chebyshev (and its variants), Least 
Squares (and its variants), tangent feature, derived feature, etc. 
In the case study, two algorithm choices from ISO 1101 were 
compared – Chebyshev’s and Least Squares. The Least Squares 
utilized parameter “T” for reporting peak to valley distance for 
flatness. Based on the discontinuous nature of point cloud from 
lattices, these two choices did not meet the requirements of 
verifying TSS by identifying appropriate DSS. In studying 
form (flatness), the case study results indicate that the “best” 
algorithm for obtaining flatness of a lattice may be one that 
does not yet exist. For instance, if not all points of each flat 
region are required to be within the tolerance zone for TSS, 
then the Chebyshev’s and Least Square’s algorithms need to be 
modified based on the requirement of how many or what points 
are to be within the tolerance zone.  

The case study uses either top 60% or top 30% of measured 
points in calculating each DSS.  Table 1 shows that the points 
selected influence the outcome of the fit.  In this particular 
scenario, the top 30% point cloud and Chebyshev’s algorithm 
have the best flatness. The correct selection of points is left 
undetermined, and is in need of further investigation based on 
relevant design intent. 

A visual inspection of the individual point clouds of the 9 
flat regions (Figure 7(a)) reveals that (i) some regions have 
most of the points with high z values, (ii) some regions have 
most of the points with low z values and (iii) some regions have 
z values distributed all over the z range. It is not evident from 
the specifications suggested for TSS in [23], whether all (some 
fraction) of the lattice points in the model used to define DSS 
should lie within the evaluated tolerance zone of the point cloud 
or not. This is specifically highlighted here because the lateral 
dimensions of the planes (in each flat region of lattice) is less 
than 10 times the z height difference among the points in the 
point cloud of individual “flat” regions. This situation is further 
exacerbated by the fact that the low z value filtering and 
boundary filtering begins to interfere in the accuracy of the 
fitting. Furthermore, the flat region shown in the lattice are 
dependent on the type of unit cell, position, orientation, size of 
lattice, and orientation of TSS. Moreover, in many conformal 
lattices, such flat regions may not exist at all. 

Future work will introduce registration techniques [29–31] 
into the DSS placement.  Bringing datum into consideration, 
which will introduce new verification constraints, perhaps 
influencing the measurement technique and algorithm selected. 
Such a verification would require first, to verify all datum from 
the specifications and then, to register the part’s point cloud 
location and orientation relative to the datum. This registration 
would be followed by point cloud processing for verification of 
form, orientation, and location, in the specific order, using 
predefined algorithms. These new requirements will only add 
to current issues with tolerancing and verification of lattices as 
a whole, including a general lack of (a) tools to accurately 
specify designer’s intent on a TSS and (b) research in the 
subsequent verification of a TSS. 
 
Disclaimer  
No approval or endorsement of any commercial product by 
NIST is intended or implied. Certain commercial equipment, 
instruments or materials are identified in this report to facilitate 
better understanding. Such identification does not imply 
recommendations or endorsement by NIST nor does it imply 
the materials or equipment identified are necessarily the best 
available for the purpose. 
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Figure 5: (a) Part for the case study with TSS highlighted and toleranced. (b) 
The planar areas of 9 lattice regions within the TSS plane toleranced in (a). 

 
machine using default settings, as defined by the manufacturer. 
The finished part is shown in Figure 6. 

To simplify the TSS verification procedure in Section 5 we 
apply a profile tolerance without datum. Such a profile 
tolerance only requires form of the feature (in this case flatness) 
to be verified. The simplification advantage of using form 
(flatness) is that form (flatness) is independent of the 
orientation and the location of the TSS. Alternatively, if 
desired, a profile tolerance with datum may be used in 
conjunction with basic dimensions. Profile tolerance with 
datum would require the TSS form, orientation, and location all 
to be verified.  

To take measurements in this case study, we use a laser 
confocal microscope to measure the part. This system was 
chosen for the initial study because of the high spatial 
resolution when compared to available XCT methods. 
Although, laser confocal microscope data may have noise, the 
data obtained is denser and is devoid of any mechanical 
filtering that may be imposed by stylus geometry in contact 
based inspection methods. Measurements were performed 
using a 10x objective and 0.5x tube lens, which resulted in a  

 

Figure 6: Final produced part with lattice on EOS M270. 

Table 1: Flatness values computed using various techniques on the point 
cloud of the 9 lattice regions from Figure 5(b). 

Flatness ( mm) Chebyshev 
fit 

Least 
Squares fit 

Laser Confocal 0.1160 0.1215 
Top 60% each 0.0507 0.0521 
Top 30% each 0.0489 0.0504 
 

point spacing of 1.25 μm per pixel. The measured data was then 
filtered using the commercially available ConfoMap software 
to remove outliers. Before applying a flatness algorithm, the 
filtered dataset was again trimmed based on surface derivation 
needs.  This trimming included removing some points that were 
measured outside of the zones of interest.  The height map of 
the point cloud obtained after further height clipping is depicted 
in Figure 7(a).  The DSS was fit to this data set.  

The fitted DSS planes using Chebyshev’s (blue) and Least 
squares (green) are displayed against the model TSS (red) in 
Figure 7(b). With only form (flatness) currently being 
considered, for demonstration the TSS is shown here as a 
horizontal plane passing through the mean of the point cloud. 
It does not indicate the location or orientation with respect to 
any Datum. It can be observed that the Chebyshev DSS is 
closer to the TSS than the Least Square’s DSS.  

The fitted tolerance zones for the plane (flatness) using 
Chebyshev’s and Least Square’s fittings are shown in Figure 7 
(c) in blue and green, respectively. The values of flatness using 
the two algorithms are 0.1160 mm and 0.1215 mm as shown in 
Table 1. Therefore, the flatness of the manufactured lattice is  

 
(a) Height map of the point cloud of the 9 flat regions depicted in Figure 5(b).  

 
(b) Two DSS (Blue – Chebyshev’s; Green – Lease Squares) computed using 
different algorithms from the same point cloud for TSS (Red). 

 
(c) Chebyshev and least squares flatness zones of the point cloud.. The z-axis 
is exaggerated.  

Figure 7: Point cloud and fitting based on different algorithms. 
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in conformance to the specification if the Chebyshev’s fitting 
algorithm is used. The flatness will be non- conforming to the 
specification if Least Square’s fitting is used.   

The results show that only the Chebyshev’s fitting of point 
cloud from laser confocal falls within the specified tolerance of 
0.12, while the least squares algorithms result in DSS 
calculations that do not meet the specification. 

The case study results raise interesting questions about the 
“best” way to verify a TSS using a DSS.  The methods used 
each returned different results, one in conformance and other 
not.  It is clear that both the points used and the method selected 
impact the final outcome. Of course, the best algorithm choice 
depends on the design intent of the lattice to be toleranced, and 
the implications of falling outside a tolerance zone. Through 
this case study, it is evident that tools to specify and verify 
variations of TSS and DSS are incomplete and that further 
research is required. 

5. Conclusion and Discussion 

This paper introduced the concept of Derived Supplemental 
Surfaces and presented a case study for verification of 
tolerances specified on “Theoretical Supplemental Surface” 
(TSS) as proposed in ASME Y14.46 standard.  Generalizations 
of TSS as geometry (Theoretical Supplemental Geometry – 
TSG) and specializations into curves (Theoretical 
Supplemental Curves – TSC) and (Theoretical Supplemental 
Volumes – TSV) are proposed. A plane was chosen as a TSS 
for a diamond lattice with a flatness tolerance (profile without 
datum on a plane) specification. The lattice is produced on an 
EOS M270 machine and a point cloud is obtained using 
measurements from a laser-confocal microscope. The point 
cloud is then used to infer a “Derived Supplemental Surface”, 
the physical counterpart of a TSS. It was demonstrated that the 
choice of algorithms and related filtering of point cloud affects 
the resultant conformance to specification. 
 With the latest ISO 1101-2017 standard [25], the choice of 
filtering and algorithm for fitting can be specified with the 
tolerance specifications. Filtering choices include Gaussian, 
Spline, Complex, Opening Ball, Disc, Fourier, Hull, etc. 
Algorithm choices include Chebyshev (and its variants), Least 
Squares (and its variants), tangent feature, derived feature, etc. 
In the case study, two algorithm choices from ISO 1101 were 
compared – Chebyshev’s and Least Squares. The Least Squares 
utilized parameter “T” for reporting peak to valley distance for 
flatness. Based on the discontinuous nature of point cloud from 
lattices, these two choices did not meet the requirements of 
verifying TSS by identifying appropriate DSS. In studying 
form (flatness), the case study results indicate that the “best” 
algorithm for obtaining flatness of a lattice may be one that 
does not yet exist. For instance, if not all points of each flat 
region are required to be within the tolerance zone for TSS, 
then the Chebyshev’s and Least Square’s algorithms need to be 
modified based on the requirement of how many or what points 
are to be within the tolerance zone.  

The case study uses either top 60% or top 30% of measured 
points in calculating each DSS.  Table 1 shows that the points 
selected influence the outcome of the fit.  In this particular 
scenario, the top 30% point cloud and Chebyshev’s algorithm 
have the best flatness. The correct selection of points is left 
undetermined, and is in need of further investigation based on 
relevant design intent. 

A visual inspection of the individual point clouds of the 9 
flat regions (Figure 7(a)) reveals that (i) some regions have 
most of the points with high z values, (ii) some regions have 
most of the points with low z values and (iii) some regions have 
z values distributed all over the z range. It is not evident from 
the specifications suggested for TSS in [23], whether all (some 
fraction) of the lattice points in the model used to define DSS 
should lie within the evaluated tolerance zone of the point cloud 
or not. This is specifically highlighted here because the lateral 
dimensions of the planes (in each flat region of lattice) is less 
than 10 times the z height difference among the points in the 
point cloud of individual “flat” regions. This situation is further 
exacerbated by the fact that the low z value filtering and 
boundary filtering begins to interfere in the accuracy of the 
fitting. Furthermore, the flat region shown in the lattice are 
dependent on the type of unit cell, position, orientation, size of 
lattice, and orientation of TSS. Moreover, in many conformal 
lattices, such flat regions may not exist at all. 

Future work will introduce registration techniques [29–31] 
into the DSS placement.  Bringing datum into consideration, 
which will introduce new verification constraints, perhaps 
influencing the measurement technique and algorithm selected. 
Such a verification would require first, to verify all datum from 
the specifications and then, to register the part’s point cloud 
location and orientation relative to the datum. This registration 
would be followed by point cloud processing for verification of 
form, orientation, and location, in the specific order, using 
predefined algorithms. These new requirements will only add 
to current issues with tolerancing and verification of lattices as 
a whole, including a general lack of (a) tools to accurately 
specify designer’s intent on a TSS and (b) research in the 
subsequent verification of a TSS. 
 
Disclaimer  
No approval or endorsement of any commercial product by 
NIST is intended or implied. Certain commercial equipment, 
instruments or materials are identified in this report to facilitate 
better understanding. Such identification does not imply 
recommendations or endorsement by NIST nor does it imply 
the materials or equipment identified are necessarily the best 
available for the purpose. 
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machine using default settings, as defined by the manufacturer. 
The finished part is shown in Figure 6. 

To simplify the TSS verification procedure in Section 5 we 
apply a profile tolerance without datum. Such a profile 
tolerance only requires form of the feature (in this case flatness) 
to be verified. The simplification advantage of using form 
(flatness) is that form (flatness) is independent of the 
orientation and the location of the TSS. Alternatively, if 
desired, a profile tolerance with datum may be used in 
conjunction with basic dimensions. Profile tolerance with 
datum would require the TSS form, orientation, and location all 
to be verified.  

To take measurements in this case study, we use a laser 
confocal microscope to measure the part. This system was 
chosen for the initial study because of the high spatial 
resolution when compared to available XCT methods. 
Although, laser confocal microscope data may have noise, the 
data obtained is denser and is devoid of any mechanical 
filtering that may be imposed by stylus geometry in contact 
based inspection methods. Measurements were performed 
using a 10x objective and 0.5x tube lens, which resulted in a  

 

Figure 6: Final produced part with lattice on EOS M270. 

Table 1: Flatness values computed using various techniques on the point 
cloud of the 9 lattice regions from Figure 5(b). 

Flatness ( mm) Chebyshev 
fit 

Least 
Squares fit 

Laser Confocal 0.1160 0.1215 
Top 60% each 0.0507 0.0521 
Top 30% each 0.0489 0.0504 
 

point spacing of 1.25 μm per pixel. The measured data was then 
filtered using the commercially available ConfoMap software 
to remove outliers. Before applying a flatness algorithm, the 
filtered dataset was again trimmed based on surface derivation 
needs.  This trimming included removing some points that were 
measured outside of the zones of interest.  The height map of 
the point cloud obtained after further height clipping is depicted 
in Figure 7(a).  The DSS was fit to this data set.  

The fitted DSS planes using Chebyshev’s (blue) and Least 
squares (green) are displayed against the model TSS (red) in 
Figure 7(b). With only form (flatness) currently being 
considered, for demonstration the TSS is shown here as a 
horizontal plane passing through the mean of the point cloud. 
It does not indicate the location or orientation with respect to 
any Datum. It can be observed that the Chebyshev DSS is 
closer to the TSS than the Least Square’s DSS.  

The fitted tolerance zones for the plane (flatness) using 
Chebyshev’s and Least Square’s fittings are shown in Figure 7 
(c) in blue and green, respectively. The values of flatness using 
the two algorithms are 0.1160 mm and 0.1215 mm as shown in 
Table 1. Therefore, the flatness of the manufactured lattice is  

 
(a) Height map of the point cloud of the 9 flat regions depicted in Figure 5(b).  

 
(b) Two DSS (Blue – Chebyshev’s; Green – Lease Squares) computed using 
different algorithms from the same point cloud for TSS (Red). 

 
(c) Chebyshev and least squares flatness zones of the point cloud.. The z-axis 
is exaggerated.  

Figure 7: Point cloud and fitting based on different algorithms. 
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