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Abstract
We study the phase-space representation of dynamics of bosons in the semiclassical regime
where the occupation number of the modes is large. To this end, we employ the van Vleck-
Gutzwiller propagator to obtain an approximation for the Green’s function of the Wigner
distribution. The semiclassical analysis incorporates interference of classical paths and reduces to
the truncated Wigner approximation (TWA) when the interference is ignored. Furthermore, we
identify the Ehrenfest time after which the TWA fails. As a case study, we consider a single-
mode quantum nonlinear oscillator, which displays collapse and revival of observables. We
analytically show that the interference of classical paths leads to revivals, an effect that is not
reproduced by the TWA or a perturbative analysis.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The crucial difference between quantum mechanics and a
statistical theory based on classical mechanics is the method
of computing the transition probability between an initial and
a final state [1]. In the classical theory, the transition prob-
ability is the sum over probabilities of the paths connecting
the two states. In contrast, in quantum mechanics, the trans-
ition probability is obtained by first summing the amplitudes
of all the connecting paths and then squaring the sum. This
procedure leads to interference, a feature absent in the clas-
sical theory. An archetypal example of interference is a
double-slit experiment in which a beam of particles after

passing through two slits forms an oscillating intensity pattern
on a screen [1].

The aforementioned difference between the theories can
be systematically studied in the semiclassical regime (where
the typical action ?ÿ, the reduced Planck’s constant). In this
regime, a probability amplitude can be approximated by the
contributions from a subset of all connecting paths: the
classical paths [2, 3]. (This is the case with the textbook
treatment of the double-slit experiment.) Crucially, within this
semiclassical approximation, the transition probability retains
interference of paths, albeit classical ones. The role of clas-
sical trajectories in quantum dynamics was first elucidated by
van Vleck [4]. Later, Gutzwiller extended the van Vleck
propagator by including Maslov indices and used it to derive
his trace formula [5]. The role of classical paths in quantum
mechanics has been extensively studied; for example, in
scattering [6], localization [7, 8], quantum kicked rotor [9],
level statistics [10, 11], quantum work [12], the Helium atom
[13], quantum transport [14–17], and quantum revivals
[18, 19].
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In this paper, we study a semiclassical approximation of
the phase-space dynamics of interacting bosons in the
Wigner–Weyl representation. In this representation, the uni-
tary evolution of an initial quantum state in the Hilbert space
is equivalent to the evolution of an initial Wigner distribution
in phase space in accordance to the Moyal’s equation
[20–22]. The reduction of the state space from a high-
dimensional Hilbert space to a lower-dimensional phase space
makes the phase-space picture particularly useful for imple-
menting approximations of quantum dynamics. An approx-
imation that is usually made is a mean-field approach. In this
case, the distribution is approximated at all times by a delta
function whose location is determined by the classical
Hamilton’s equations. The Gross–Pitaevskii equation and its
discrete versions fall under this category.

An improvement over the mean-field description is the
truncated Wigner approximation (TWA) [23–25], where the
initial distribution is extended and is the Wigner transform of
a quantum state. The subsequent dynamics of the Wigner
distribution is still classical. Equivalently, the Moyal’s
equation is replaced by the classical Liouville’s equation. In
the literature, the TWA is sometimes called a semiclassical
method even though it lacks interference effects. Quantum
corrections to the TWA for interacting bosons were studied
by Polkovnikov [26, 27] using a perturbation theory with the
TWA as its zeroth-order approximation. In particular, a
nonlinear oscillator was studied whose quantum dynamics
exhibits collapse and revival of coherences. The perturbative
analysis describes the initial collapse, with increasing accur-
acy with the order of the perturbation parameter. It fails to
describe revivals in the system because the analysis still lacks
interference of classical paths.

We perform a semiclassical analysis of a general Bose
system in phase space that incorporates interference of clas-
sical paths and makes the comparison with the TWA trans-
parent. In particular, our analysis identifies the Ehrenfest time
associated with the TWA as the time when the interference of
classical paths becomes important. As a case study, we
investigate the nonlinear oscillator and show that the semi-
classical dynamics leads to revivals. Recently, others have
also applied semiclassical methods to bosons. For example,
these methods have been applied to coherent backscattering
[28] and autocorrelation functions [29] in the Bose–Hubbard
model. In addition, the semiclassical Herman-Kluck propa-
gator has been used to study boson dynamics [30, 31].

The remainder of the paper is organized as follows. First,
we define the phase space of a bosonic system and the
Green’s function of a Wigner distribution in sections 2 and 3,
respectively. A semiclassical approximation of this Green’s
function is obtained in section 4 and compared with other
approximations in the literature [32, 33]. In section 4.1, we
find that our semiclassical formalism reduces to the TWA
when the interference terms are ignored. Next, we discuss
Ehrenfest times associated with the TWA and semiclassical
approximation in section 4.2. Subsequently, we apply our
formalism to analytically study of a nonlinear oscillator in
section 5 and conclude in section 6.

2. Phase-space formulation of a bosonic system

A bosonic system with a finite number of modes can be
described in terms of annihilation and creation operators ajˆ
and ajˆ†, respectively, with =j d1, ..., , where d is the
number of modes. For example, the modes could be the sites
of a Bose–Hubbard model or spin components of a single-
mode Bose–Einstein condensate. The operators satisfy
the commutation relations d=a a,j k jk[ ]† , where δjk is the
Kronecker delta function. To construct the phase space, we
first define the quadrature operators = +x a a2j j jˆ ( ˆ ˆ )† and

= - -p i a a2j j jˆ ( ˆ ˆ )† satisfying the canonical commuta-
tion relations d= x p i,j k jk[ ˆ ˆ ] . The eigenstates of xjˆ satisfy

ñ = ñx xx xj jˆ ∣ ∣ for all j ä {1, L, d }, with ‘position’
= x x xx , , ..., d1 2( ). Similarly, the eigenstates of pĵ satisfy
ñ = ñp pp pj jˆ ∣ ∣ , with ‘momentum’ = p p pp , , ..., d1 2( ). The

eigenstates form a complete basis with dá ¢ ñ = - ¢x x x x ,∣ ( )
dá ¢ ñ = - ¢p p p p∣ ( ) and ò òñá = ñá =d dx x x p p p 1∣ ∣ ∣ ∣ ,

where d z( ) is a Dirac delta function and the integrals are over
d. We construct a phase space by imposing {xi, pj }=δij,
where .,.{ } is the Poisson bracket. We will refer to =r x p,( )
as a phase-space point. In other words, the eigenvalues of the
quadrature operators are the cartesian coordinates of the phase
space. Note that, the number and phase of a bosonic mode are
the polar coordinates in this phase space. Thus, by introdu-
cing quadrature operators, we have mapped the kinematics of
a many-body boson system with d modes to that of a single
particle in d-dimensional position or configuration space.

The Wigner transform [22, 34] maps an operator ̂, a
function of ajˆ and ajˆ† or xjˆ and pĵ, to its Weyl symbol in the
phase space. In fact

ò= + - -  d er q x q x q , 1ip q1

2

1

2
( ) ∣ ˆ ∣ ( )·

where =r x p p q, ,( ) · is the dot product between p and q,
and the integral is over the configuration space Î q d. In
particular, the Wigner distribution W tr,( ) at time t is the
Weyl symbol of the density operator r tˆ ( ), up to a factor of

p1 2 d( ) , i.e.

òp
r= + - -


W t d t er q x q x q,

1

2
,

2

d
ip q1

2

1

2
( )

( )
∣ ˆ ( )∣

( )

·

These definitions imply that ò =d W tr r, 1( ) . In the
Schrödinger picture, the evolution of the Wigner distribution
is governed by the quantum Liouville equation [22]. The
expectation value of an operator ̂ at a time t is

òrá ñ º =  t t d W tr r rTr , , 3ˆ ( ) [ ˆ ( ) ˆ ] ( ) ( ) ( )

where the integrals are over the phase space  d2 . Equiva-
lently, in the Heisenberg picture

òrá ñ º =  t t d W tr r rTr , , 40
ˆ ( ) [ ˆ ˆ ( )] ( ) ( ) ( )

where W r0 ( ) is the initial Wigner distribution.
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3. Green’s function of the Wigner distribution

The Green’s function G tr r, ,f i( ) of the Wigner distribution in
the Schrödinger picture is defined by [21, 33, 35–37]

ò=W t d G t Wr r r r r, , , , 0 , 5f i f i i( ) ( ) ( ) ( )

for t 0 with = =r x p r x p, , ,f f f i i i( ) ( ) and =G r r, , 0f i( )
d -r rf i( ). In a seminal paper on quantum dynamics in phase
space, Moyal called G tr r, ,f i( ) the ‘temporal transformation
function’ [21]. He derived an expression for G tr r, ,f i( ) in
terms of Feynman propagators. We give a short and direct
derivation.

The time evolution of the density operator is r =tˆ ( )
rU t U t0

ˆ ( ) ˆ ˆ ( )† , where U tˆ ( ) and r0ˆ are the unitary time-evol-
ution and the initial density operator, respectively. We insert

ò ñá =dy y y 11 1 1∣ ∣ and ò ñá =dy y y 12 2 2∣ ∣ , with y1 and y2 in
configuration space, into equation (2) and find

òp

r

= +

´ á ñ - -





W t d d d K t

K t e

r q y y x q y

y y x q y

,
1

2
, ,

, , , 6

f d f

f
ip q

1 2
1

2 1

1 0 2
1

2 2
f*

( )
( )

( )
( )

∣ ˆ ∣ ( )·

where = á ñK t U tx x x x, ,f i f i( ) ∣ ˆ ( )∣ is the Feynman propa-
gator in the configuration space. Next, we express the initial
condition rá ñy y1 0 2∣ ˆ ∣ in terms of the initial Wigner distribution.
To this end, we multiply equation (2), evaluated at t=0 and
=r ri, by ¢eip qi· and integrate over pi to find

ò r= + ¢ - ¢¢ d e Wp r x q x q, 0 . 7i
i

i i i
p q 1

2 0
1

2
i ( ) ∣ ˆ ∣ ( )·

We substitute this expression in equation (6) and identify
= + ¢y x qi1

1

2
and = - ¢y x qi2

1

2
. From the definition of

Green’s function in equation (5) we find

òp
= ¢ + + ¢

´ - - ¢ - - ¢





G t d d K t

K t e

r r q q x q x q

x q x q

, ,
1

2
, ,

, , .

8

f i d f i

f i
i p q p q

1

2

1

2

1

2

1

2
f i*

( )
( )

( )
( )

( )

[ · · ]

Thus, the exact Green’s function of the Wigner distribution
involves the product of two Feynman propagators in config-
uration space. We expect that this product will have inter-
ference terms.

4. Semiclassical approximation of the Green’s
function

A semiclassical approximation of the Green’s function
G tr r, ,f i( ) was obtained using the Weyl transform of the van
Vleck-Gutzwiller propagator by [32, 33]. This approach
incorporates the ‘quantum spread’ of a classical path, which
appears as sub-Planckian oscillations in the Green’s function
(whose phase space area< ) about classical paths. Here, we
derive a coarse-grained approximation that ignores this
quantum spreading but, importantly, keeps the interference of
the classical paths. Our approximation reduces to the classical
propagation, the TWA, for any Hamiltonian when we ignore
interference.

A quantum system is said to be in the semiclassical
regime when the typical action (in units of ÿ) that appears in
the path integral description of the Feynman propagator is
much greater than one. For bosonic modes, this regime cor-
responds to large occupation numbers. In fact, the semi-
classical approximation of the propagator, also known as the
van Vleck-Gutzwiller propagator, is [2, 5, 38, 39]

å p
=

m p-


 K t

e

i
t ex x x x, ,

2
, , ,

9

f i
b

i

d
b

f i
iS tx x

SC

2

2
, ,

b
b

f i( )
( )

( )

( )

( )

where the sum is over all classical paths, indexed by b, that
start from position xi and reach xf in time t. The action

ò t t t t=S t d L d dx x x x, , ,b
f i

t b b
0 cl cl( ) [ ( ) ( ) ], where L is the

system Lagrangian and txb
cl( ) is the position as a function of

time τ of the bth classical path with =x x0b
icl( ) and =txb

cl( )
xf . Finally, mb is the Maslov index and = tx x, ,b

f i( )
¶ ¶ ¶S tx x x xdet , ,b

f i f i
2∣ [ ( ) ( )]∣ is the absolute value of the

determinant of a d×d matrix.
The number of classical paths contributing to K tx x, ,f iSC( )

can be found by studying the dynamics of the initial Lagrangian
manifold i, the hyperplane =x xi. Classical evolution of
each point ofi yields a final manifoldf . Figure 1 shows
i andf for a two-dimensional example. The final manifold
folds at singular positions xf on f where the number of
momenta pf onf as a function of xf changes. Parts of the
manifold f between these singular regions are ‘branches’.
The example in figure 1 has the three such branches. Crucially,
the final momentum tp x x, ,f f i( ), which, in general, is a mul-
tivalued function of xf at fixed xi and t, is unique on each
branch. Therefore, classical paths connecting xi and xf can be
indexed by the branches that intersect the manifold =x xf . It is
these branches which contribute to the van Vleck-Gutzwiller
propagator in equation (9). For example, for the position xf

Figure 1. Classical dynamics of a manifold in a two-dimensional
phase space x p,( ). An initial manifoldi, the line =x xi shown in
black, evolves into the manifoldf , the curve shown in blue, at
time t. For example, points A B C, , , and D oni are mapped to
¢ ¢ ¢A B C, , and ¢D onf , respectively. The classical path connecting

C and ¢C is also shown. The manifoldf has three branches I, II
and III separated by caustics ¢B and ¢C . The line =x xf intersects
f thrice; therefore, three paths start oni and reach position xf at
time t.

3
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shown in figure 1 has three paths that contribute to the
propagator.

Substitution of van Vleck-Gutzwiller propagator in
equation (8) yields the semiclassical approximation to the
Green’s function

ò
å

å

p
= ¢

´ + + ¢

´

´ - - ¢

´

m p

m p

- - ¢

+ + ¢ -

¢

¢

- - - ¢ +¢ ¢













G t d d e

t

e

t

e

r r q q

x q x q

x q x q

, ,
1

2

2, 2,

2, 2,

. 10

f i d
i

b

b
f i

iS t i

b

b
f i

iS t i

p q p q

x q x q

x q x q

SC 2

2, 2, 2

2, 2, 2

f i

b
f i

b

b
f i

b

( )
( )

( )

( )

( )

[ · · ]

( )

( )

The expression is cumbersome for our analytical study. To
proceed, we assume that in equation (10) only the contribu-
tions from small regions Q and ¢Q around =q 0 and ¢ =q 0,
respectively, are important; and, secondly, the Taylor
expansion of the action

+ + ¢ » + -
¢

S t S tx q x q x x
p q p q

, , , ,
2 2

,

11

b
f i

b
f i

f
b

i
b

1

2

1

2( ) ( )
· ·

( )

up to linear terms is sufficient in these regions. Here,
= -¶ ¶S tp x x x, ,i

b b
f i i( )/ and = ¶ ¶S tp x x x, ,f

b b
f i f( )/ , res-

pectively, are the initial and final momenta of the classical
path along which the action is computed (see appendix A for
a derivation). We further assume that the extent of the small
regions Q and ¢Q in each direction in position space is much
greater than  . (Note that from section 2, both position and
momentum have the same units as  .) Furthermore, we

approximate   ¢ tx q x q, ,b
f i

1

2

1

2( ) by  tx x, ,b
f i( ).

Substituting these approximations for Sb and b in
equation (10) and interchanging the sum and the integral, we
find

ò ò

åp
=

´

´ ¢

m m p

¢

¢

- - -

¢

- - - + - - ¢

¢ ¢

¢ ¢


 



 

12

G t t t

e

d d e

r r x x x x

q q

, ,
1

2
, , , ,

.

f i d
b b

b
f i

b
f i

i S t S t i

Q Q

i i

x x x x

p p p q p p p q

2
,

, , , , 2

2 2 2 2

b
f i

b
f i

b b

f f
b

f
b

i i
b

i
b

( )

( )
( )

( ) ( )

[ ( ) ( )] ( )

( )· ( )·

Implicit in the existence of Q is the assumption that xf is away
from the position of any caustics, where two branches meet.
The example in figure 1 has two caustics.

The integration over q and ¢q yields functions of pf and

pi localized around = + ¢p p pi i
b

i
b1

2
( ) and = + ¢p p pf f

b
f
b1

2
( ),

whose characteristic widths in momentum space are much
less than  . (For ‘rectangular’ regions Q and ¢Q we obtain
multidimensional sinc functions.) Typically, observables are
smooth functions in phase space, i.e. they vary slowly on the
scale of  . Moreover, initial states of interest are classical
states (coherent states) whose width is of the order of  .
(We do not consider initial Wigner distributions with fine sub-
Planck structures.) Then we can approximate the localized

functions by δ-functions to find

å

d d

»

´ - + - +

m m p

¢

¢ - - -

¢ ¢

¢ ¢
  G t er r

p p p p p p

, ,

, 13

f i
b b

b b i S S i

f f
b

f
b

i i
b

i
b

SC
,

2

1

2

1

2

b b b b( )

( ) ( ) ( )

( ) ( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
where, for clarity, we suppress the dependence of S ,b b, etc
on x x,i f and t. This is the main result of this paper and relates
the Green’s function of the Wigner distribution to a double
sum over classical paths connecting positions xi and xf in
time t. Note that our expression of the Green’s function can
lead to final Wigner distributions that are much broader than
the initial distribution.

4.1. The TWA

In the TWA, the Wigner distribution is propagated classically,
i.e. it obeys the Liouville’s equation. The Green’s function
according to the Liouville’s equation is

d d= - -G t t tr r x x r p p r, , ; ; , 14f i f i f iTWA cl cl( ) [ ( )] [ ( )] ( )

where t tx r p r; , ;i icl cl[ ( ) ( )] is the classical path starting
from =r x p,i i i( ).

We now show that the ‘diagonal’ part of the double sum
in equation (13), i.e. when = ¢b b , is equal to GTWA. To this
end, we change the independent variables tx p, ,i i( ) of
equation (14) to tx x, ,f i( ) and find

å
d

d=
-

-
¶

¶ =

G tr r
p p

p p, ,

det

,

15

f i
b

i i
b

t
f f

b

x r
p p p

TWA

; i

i
i i

b

cl

( )
( )

( )

( )

( )
⎡
⎣⎢

⎤
⎦⎥

where the sum is over all roots pi
b (enumerated by b) of

equation =tx x p x; ,i i fcl( ) , and = tp p x p; ,f
b

i i
b

cl( )4. We have

suppressed the dependence of pi
b and p f

b on tx x, ,f i( ). Next,
we apply the inverse function theorem, which states that the
matrix inverse of a Jacobian is the Jacobian of the inverse
mapping, to find

= -
¶

¶ ¶¶
¶ =

=

S tx x

x x
1

det

det
, ,

, 16
t

b
f i

f ix r
p p p

x x;

2

i

i
i i

b

f f
bcl

( )
( )

( )
⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

where we used that = -¶ ¶S tp x x x, ,i
b b

f i i( ) . Substituting
the expression in equation (15), we arrive at

å d d= - -G t tr r x x p p p p, , , , ,

17

f i
b

b
f i f f

b
i i

b
TWA( ) ( ) ( ) ( )

( )

which is the diagonal part of equation (13). Thus, the TWA
ignores interference of classical paths [29]. For the special

4 The equation is the multidimensional version of the formula d -z y( ( )
d= å - ¢z y y z yi i i0) ( ) ∣ ( )∣, where the sum is over the roots yi of the equation

=z y z0( ) and ¢z y( ) is the derivative of z with respect to y.
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cases of the harmonic oscillator and free particle, the TWA
matches with the quantum motion because only a single path
contributes to the sum in equation (13) and, hence, there are
no interference terms As a corollary, the TWA is a good
approximation up to times where there is only a single tra-
jectory contributing to the Green’s function.

4.2. Ehrenfest times

An Ehrenfest time is the time scale when an approximation to
the quantum motion deviates appreciably from exact evol-
ution [40, 41]. In fact, there is a hierarchy of Ehrenfest times
based on the approximations to the quantum dynamics
[42, 43]. For the mean-field approximation, the Ehrenfest time
tMF is the time scale when an initially localized Wigner dis-
tribution becomes distorted and stretched due to nonlinear
(not necessarily chaotic) classical dynamics. From section 4.1,
we find that the Ehrenfest time tTWA associated with the TWA
occurs when the interference of classical paths becomes
important consistent with the observations made in [29]. This
time scale is greater than tMF because interference of paths
occurs when the Wigner distribution becomes so distorted that
it fills up the accessible phase space. From the quantum
Liouville equation perspective, tTWA is the time scale when
the ÿ-dependent quantum terms lead to significant deviation
of the quantum evolution of the Wigner distribution from the
classical evolution [44]. Finally, there is tSC, the Ehrenfest
time for the breakdown of semiclassical approximation based
on van Vleck-Gutzwiller propagator, which is greater than
tTWA. Numerical studies have shown that the breakdown
occurs when diffraction becomes important [45, 46].

5. Case study: a nonlinear oscillator

We consider a single-mode nonlinear oscillator whose
quantum Hamiltonian is

=H
U

a a aa
2

, 18NOˆ ˆ ˆ ˆ ˆ ( )† †

where U is the interaction strength and a aˆ ( ˆ )† is the annihi-
lation (creation) operator of the associated bosonic mode. As
the number operator a aˆ ˆ† commutes with HNO, the energy
eigenstates are ñn∣ with eigen-energies = -E Un n 1 2n ( ) ,
where n is the occupation number of the mode. Decomposing
an arbitrary initial state y ñ = å ñ=

¥ c nn n0 0∣ ∣ and noting that
-n n 1 2( ) is an integer, we can immediately see that the

time-evolved state y ñt∣ ( ) periodically revives, i.e. y ñ =t∣ ( )
y ñ0∣ when t is an integer multiple of the period p= t U2rev .

The nonlinear oscillator has been studied in experiments
with a BEC in a deep optical lattice with negligible tunneling
[47] and with photons using Kerr nonlinearity [48]. In these
experiments, the initial state is well-described by a coherent
state, y añ = å ña-

=
¥e n nn

n
0

2
0

2∣ ! ∣∣ ∣ , where α, in general, is
a complex number and a = N2∣ ∣ is the average number of
atoms or photons. Using interference, the collapse and revival
of the absolute value of the expectation value of â and a
generalized Husimi function, respectively, were measured in

these experiments. We find that the expectation value of â
evolves as

y y aá ñ = á ñ = a -- 
a t t a t e . 19e 1iUt2ˆ ( ) ( )∣ ˆ∣ ( ) ( )∣ ∣ ( )

Its absolute value is shown in figure 2. At short times Ut/
ÿ=1

aá ñ » a a- - a t e , 20U t iU t22 2 2 2 2ˆ ( ) ( )∣ ∣ ( ) ∣ ∣

whose decay in time is Gaussian with time constant
 U N( ). The collapse time tcol is a few times this time
constant, as shown in figure 2, and is much smaller trev for
large N.

In the experiments with a BEC in an optical lattice, three-
body effects proportional to a a3 3( ˆ ) ˆ† change the nature of the
collapse and revival in an interesting manner [49–51].
Semiclassical analysis of bosons in optical lattices with small
but finite tunneling has been performed in [29] and the
semiclassical results agree well with the complicated quantum
collapse and revivals of the autocorrelation function for t 
trev.

Figure 2. Collapse and revival in a nonlinear oscillator. Panels (a)
and (b) show á ña t∣ ( ) ∣ and á ña tln∣ ( ) ∣, respectively, as a function of
time t for an initial coherent state whose mean atom number is four.
Exact quantum dynamics (labeled Q) displays collapse and revival
of á ña t∣ ( ) ∣ with collapse and revival times tcol and trev, respectively.
The mean-field solution, labeled MF, is time independent. The TWA
result, equation (24), closely replicates the first collapse but shows
no revival and deviates appreciably from the quantum dynamics after
a time tTWA. On the other hand, the semiclassical approximation
(labeled SC), equation (27), agrees well with the quantum evolution
for all times. In panel (a) the semiclassical and quantum curves are
indistinguishable.
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5.1. Dynamics according to the TWA

Next, we study the time dynamics of á ña tˆ ( ) within the TWA.
First, we need to write down the classical Hamiltonian
corresponding to HNO

ˆ 5. It is

= +



U

x p
8

21NO 2
2 2 2( ) ( )

with classical equations of motion

r r=
¶
¶

= = -
¶
¶

= -
 

 dx

dt p

U
p

dp

dt x

U
x

2
,

2
,

22

NO
2

2 NO
2

2

( )

where ρ2=x2+p2. Hence, classical paths lie on circles in
phase space centered around the origin (x, p)=(0, 0). Their
oscillation frequencies are ω=Uρ2/(2ÿ2). The system is
integrable as the phase space is two-dimensional and energy
is conserved. The angle of the action-angle coordinates is the
polar angle j measured in clockwise direction of motion and
evolves as j w j= +t t i( ) , where ji is the initial angle.
Using the definition w = ¶ ¶ INO , we find that the action
coordinate I=ρ2/2. Hence, ρ is a constant of motion.

For concreteness, let the initial coherent state y ñ0∣ , with
occupation number N 1 , be centered along the p-axis, i.e.
a = i N . Its Wigner distribution

p
= - + -


 W x p e,

1
, 23x p N

0
22 2( ) ( )[ ( ) ]

is centered at = x p N, 0, 2( ) ( ) and width O( ). Next,
we calculate á ña t TWAˆ ( ) , the expectation value of â within the
TWA. Instead of using the Green’s function GTWA of
equation (14), it is more convenient to work in the Heisenberg
picture. In this picture, the Wigner–Weyl transform of
the operator a tˆ ( ) is r= + = j-a t x t ip t i e2 i t( ) [ ( ) ( )] ( )

2 with j p pÎ - ,( ] and j = 0 along the p-axis. Then
using equation (4) and writing W x p,0 ( ) in polar coordinates,
we find

ò òr r j
r

r já ñ =
p

p
j

¥

-

-


a t d d

i
e W

2
, . 24i

i t
iTWA

0
0ˆ ( ) ( ) ( )( )

For N 1 , it is sufficient to expand the exponent ofW x p,0 ( )
to second order in ρ and j around the location of the max-
imum of the Wigner distribution, i.e.

r j
p

» r j- - -


  W e,

1
. 25i

N N
0

2 2 i
2 2( ) ( )[( ) ]

Substituting this expression and w r= U 22 ( ) in
equation (24), we derive

á ñ » - - a t i N e , 26U Nt iUNt
TWA

22 2ˆ ( ) ( )( )

which matches the initial collapse of the coherent state in
equation (20), but has no revival. A comparison of
equation (26) with the exact quantum result of equation (19)
for the absolute value of á ña tˆ ( ) is shown in figure 2. The
difference between the initial collapses according to exact

quantum dynamics and the TWA is small and is only evident
in the log plot of figure 2(b). This difference was calculated
using a perturbative analysis in [26]. The perturbative ana-
lysis, however, lacks the interference of classical paths;
hence, it does not explain the revival at trev and subsequent
collapses and revivals. Figure 2 also shows the mean-field
value á ña t MF∣ ˆ ( ) ∣, which is a t∣ ( )∣ along the single circular tra-
jectory starting from = x p N, 0, 2( ) ( ). Thus, á ñ =a t MF∣ ˆ ( ) ∣

N is a constant.
The classical phenomenon of phase-space mixing

explains the collapse of á ña tˆ ( ) [52]. For an integrable system,
the coarse-grained long-time Wigner distribution is uniformly
distributed in the angle coordinates of the action-angle vari-
ables. For the nonlinear oscillator, µ ja t ei t( ) ( ) and its
expectation value goes to zero as the Wigner distribution
mixes in the angle j. Furthermore, within the TWA, the
coarsened Wigner distribution reaches a steady state; hence,
there is no revival. This latter observation indicates that
quantum interference reverses phase-space mixing and
revives the quantum state. The role of interference in quantum
revivals has been studied for a particle in quartic and infinite-
square-well potentials in [18, 19]. In the next section, we find
that applying the semiclassical formalism, indeed, leads to
revivals in our bosonic system.

5.2. Dynamics according to the semiclassical approximation

The calculation of á ña t SCˆ ( ) according to the semiclassical
approximation is lengthy and has been relegated to appen-
dices B and C. We first calculate the action in terms of the
polar angles and winding number of classical paths around
the origin in appendix B. We carry out the remainder the
calculation in appendix C. Here, we list the main steps:

1. The time evolution of an observable with Weyl symbol
 x p,( ) in the Schrödinger picture is given by
equation (3). We replace G r r t, ,f i( ) by G r r t, ,f iSC( )
as given in equation (13) and carry out the integrals
over pi and pf to arrive at equation (C2).

2. The classical equations of motion are simplest in the
action-angle coordinates. Therefore, we convert the
integrals over x x,i f and the double sum over ¢b b, in
equation (C2) into integrals over the initial and final
angles ji and jf , respectively, and a double sum over
winding numbers of classical paths around the origin.
We also express the observable, G r r t, ,f iSC( ), and the
initial Wigner distribution in terms of ji, jf and
winding numbers.

3. Next, we note that the classical motion in the phase
space is restricted in an annulus of radius N2
and width of O(1). Then, j» x p N, 2 sin ,( ) (

jN2 cos ;) in particular, » j-a x p i N e, i( ) . We
make similar approximations for the determinants
 x x t, ,b

f i( ). The initial Wigner distribution, however,
varies sharply with ρ and requires a more careful
approximation. We then solve the remaining integrals.

5 We use = + -a a x p 2 1 22 2ˆ ˆ ( ˆ ˆ ) ( )† to find that = ´H U 8NOˆ
+ - + + x p x p4 32 2 2 2 2 2[( ˆ ˆ ) ( ˆ ˆ ) ]. We then replace x p,ˆ ˆ by their

classical limits to obtain NO, and ignore the second and third terms in the
semiclassical limit N ? 1.
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Finally, we find

åá ñ = p

=-¥

¥
- - - a t i N e e , 27

v

iUNt v Ut N
SC

2 22ˆ ( ) ( )( )

where v is difference of the winding number of the interfering
paths. This expression corresponds to a train of localized
Gaussians and is invariant under the transformation  +t t
p U2 and  -v v 1; hence, is periodic with time period

p= t U2rev . Figure 2 shows that á ña t SCˆ ( ) agrees with the
exact quantum average y yá ñt a t( )∣ ˆ∣ ( ) for all times. Interest-
ingly, the Wigner distribution, which is initially localized,
delocalizes and spreads over the accessible phase space by
collapse time tcol. It then intermittently forms regular patterns
and returns to the initial distribution at =t trev. Experiments
with photons have observed these patterns [48]. (Instead of
the Wigner distribution, the Husimi distribution was mea-
sured.) The patterns are also apparent in the expectation
values á ña tnˆ ( ) for >n 1, which can be calculated using our
semiclassical method.

Finally, we discuss the Ehrenfest times of the nonlinear
oscillator for initial coherent states. From figure 2(a), we see
that the mean-field prediction deviates from the quantum
evolution well before the collapse time tcol, i.e. t < tMF col. In
contrast, the deviation of the TWA from quantum evolution
(ignoring exponentially small differences) occurs abruptly
after a finite time τTWA=trev−tcol before the first revival of
á ña tˆ ( ) . The interference of classical paths starts at tinter when
the Wigner distribution fills up the annular accessible phase
space, i.e. when paths starting from the initial localized dis-
tribution with winding numbers zero and one terminate in the
same small region of phase space. We can estimate τinter by
noting that for a coherent state the distribution of classical
frequencies ω has a mean UN and width wD = U N .
Therefore, t p w~ D2inter is of the order of tcol and, hence, is
much smaller than tTWA. In other words, it takes time for the
interference of paths to affect á ña tˆ ( ) appreciably. In fact, at
tTWA the number of interfering classical paths is of the order
of N . On the other hand, the Ehrenfest time τSC is infinite
for the nonlinear oscillator.

The Ehrenfest time tTWA depends on the observable
under consideration. For example, for á ña t2ˆ ( ) the collapse and
revival times are trev/2 and tcol/2, respectively, and the TWA
fails after -t t 2rev col( ) . Nevertheless, tTWA is still greater
than tinter for all observables (that are polynomials in a and a†

with a degree smaller than N). We also expect the delay in
effects of interference and the dependence of tTWA on the
observable to hold true for generic integrable systems (where
the dynamics is away from singularities like a saddle point of
the classical Hamiltonian). In contrast, in a chaotic system
and for motion near a saddle point of an integrable system, the
Ehrenfest time t t~TWA inter [52–54].

6. Conclusion and outlook

In conclusion, we presented a semiclassical theory of phase-
space dynamics of bosons. We derived a semiclassical
approximation, equation (10), to the exact Green’s function

of the Wigner distribution. Crucially, the approximation
preserves the quantum interference of classical trajectories.
In fact, we have shown that the formalism reduces to the
TWA when the interference terms are ignored. Hence, the
Ehrenfest time associated with the breakdown of the TWA
occurs when interference of classical paths becomes
important. As a case study, we examined a single-mode
nonlinear oscillator whose exact quantum dynamics exhi-
bits collapse and revival. We investigated the dynamics of
an observable of this oscillator using the TWA and our
semiclassical formalism. Within TWA, the expectation
value of an observable collapses due to phase mixing, and
there is no revival. The semiclassical approximation, how-
ever, reproduces revivals and accurately matches the exact
quantum dynamics for all times.

Finally, we comment on the long-time validity of our
semiclassical approximation. For the nonlinear oscillator, the
semiclassical approach is valid for all times6. We expect this
to be true for generic integrable systems as they can be
quantized by the Einstein–Brillouin–Keller method [55]. The
situation, however, is not straightforward for chaotic systems.
For example, the semiclassical evolution (based on the van
Vleck-Gutzwiller propagator) of an initial wavefunction
defined on a Lagrangian manifold, whose Wigner distribution
is not localized, breaks down after a time of the order of the
Ehrenfest time associated with interference of classical paths
[35, 56]. For localized initial Wigner distributions, however,
numerical studies and heuristic arguments have shown that
the van Vleck-Gutzwiller propagator works for rather longer
times [45, 46, 57] and only breaks down due to diffraction.
The validity of our semiclassical approach for chaotic systems
will require further study.

Appendix A. Derivatives of action

We evaluate the partial derivatives of the action S tx x, ,b
f i( )

with respect to the initial and final positions. The action
satisfies the Hamilton–Jacobi equation and, in principle, its
derivatives are well known [58, 59]. Here, we give a derivation
for the sake of completeness. For notational simplicity, we
assume that the configuration space is one-dimensional; gen-
eralization to higher dimensions is straightforward. Consider a
classical path t tx p,b b

cl cl[ ( ) ( )], which starts from the phase-space

point x p,i i
b( ) and ends at x p,f f

b( ). Next, consider another

classical path whose position in time, t d t+x xb b
cl cl( ) ( ), is

infinitesimally close to tx b
cl ( ) such that d = Dx x0b

icl ( ) and
d =x t 0b

cl ( ) . Then the change in the action is

ò

ò

t d t d t

d t d t

D =
¶
¶

+
¶
¶

=
¶
¶

+
¶
¶

-
¶
¶

S d
L

x
x

L

x
x

L

x
x dt

L

x

d

dt

L

x
x ,

b
t

b b

b
t t

b

0 cl
cl

cl
cl

cl
cl

0
0 cl cl

cl

( )
˙

˙ ( )

˙
( )

˙
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

6 The time evolution of observables that are polynomial in a and a† can be
obtained by a generalization of the analysis in the appendix.
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where t=x dx dcl cl˙ and we have suppressed the arguments of
L. Now, the second term vanishes because tx b

cl ( ) satisfies the
Euler–Lagrange equations of motion. Using the fact that
= ¶ ¶p L x x x,( ˙) ˙, we have D = - DS p xb

i
b

i or

¶

¶
= -

S x x t

x
p

, ,
. A1

b
f i

i
i
b( )

( )

Similarly, we can prove that

¶

¶
=

S x x t

x
p

, ,
. A2

b
f i

f
f
b( )

( )

Appendix B. Action of the nonlinear oscillator

We compute the action S x x t, ,b
f i( ) of the nonlinear oscillator

described in section 5. The action depends on the index b,
which we have not yet quantified. A natural guess is the
winding number w of a circular path around the phase-space
origin. The winding number is a nonnegative integer as the
motion in phase space is unidirectional. For a given
x x w t, , ,f i( ), however, more than one classical path can exist.
For example, two such paths are shown in figure B1. In
contrast, a given j j w t, , ,f i( ), where ji and jf are the
initial and final angles, respectively, uniquely determines a
classical path. The reason is that the oscillation frequency is
specified by

w
j j p p

=
- + w

t

mod 2 2
B1

f i( )
( )

and, hence, uniquely determines the radius r w=  U2
(see section 5.1) of the classical path.

It is convenient to define the action j j =t, ,w
f i( )S

j j j jS x w t x w t t, , , , , , , ,b
f f i i f i[ ( ) ( ) ], indexed by the wind-

ing number w of path b and

òj j t
t

= - t d p
dx

d
, , , B2w

f i

t

0
cl

cl
NO( ) ( )

⎡
⎣⎢

⎤
⎦⎥S

whereNO is given by equation (21) and we have suppressed
the arguments j j w t, , ,f i( ). Substituting t r j t=x sincl ( ) ( )
and t r j t=p coscl ( ) ( ), we find

òj j t wr j t
r

= -t d
U

, , cos
8

,w
f i

t

0

2 2
4

( ) ( )
⎛
⎝⎜

⎞
⎠⎟S

where we used r t j t w= =d d d d0, and have set = 1.
The integration over τ yields

j j
j j p p

j j p p j j

=
- +

´ - + + -

t
w

Ut

w

, ,
mod 2 2

2

mod 2 2 sin 2 sin 2 .

B3

w
f i

f i

f i f i

( )
[( ) ]

[( ) ( ) ( )]
( )

S

Appendix C. Calculation of 〈baðt Þ〉

We calculate the expectation value of a tˆ ( ) within the semi-
classical approximation and follow the outline presented in
section 5.2.

1. The semiclassical evolution of the expectation value of
an observable of the nonlinear oscillator ̂ with Weyl
symbol  x p,( ) is

òá ñ = t dr dr r G r r t W r, , . C1i f f f i iSC SC 0
ˆ ( ) ( ) ( ) ( ) ( )

Substituting G r r t, ,f iSC( ) from equation (10) and
integrating over the momenta pi and pf, we find

ò åá ñ =
+

´
+

m m p

¢

¢

¢
¢ - - -¢ ¢

 

 

C2

t dx dx x
p p

W x
p p

e

,
2

,
2

,

i f
b b

f
f
b

f
b

i
i
b

i
b

b b iS iS i

SC
,

0
2b b b b

( )

ˆ ( )

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where we suppress the dependence of p S, ,i
b b b, etc

on x x t, ,f i( ) and set = 1. The range of integration is
-¥ ¥,( ) for both xi and xf.

2. The action has a simpler form in terms of the angles
(see equation (B3)). Hence, we proceed to change the
integration variables in equation (C2) to the angle

Figure B1. Classical paths of a nonlinear oscillator in phase space
x p,( ) starting from a Wigner distribution initially localized in region
Ω0 shown by the solid blue circle. Polar coordinates r j,( ), with
angle j measured from the p-axis in a clockwise direction, are also
shown. The region Ω0 is centered at r j = N, 2 , 0( ) ( ) and has a
width of O(1). Trajectories starting from Ω0 lie within the gray
annulus. Two paths with traversal time t and winding number zero
that start from x=0 and end at =x xf are shown.
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coordinates. To this end, we first introduce a set of
initial and final positions ¢xi and ¢xf , respectively, and
write a symmetric expression

ò

å

¢ ¢ ¢ ¢

¢ ¢ ¢

¢ ¢ ¢

¢ ¢

d dá ñ = - -

´
+ +

´
+ +

´

´ m m p

¢

¢

¢

¢

- ¢ ¢ - - ¢ ¢¢ ¢





 

C3

t dx dx dx dx x x x x

x x p x x t p x x t

W
x x p x x t p x x t

x x t x x t

e

2
,

, , , ,

2

2
,

, , , ,

2

, , , ,

,

i f i f i i f f

b b

f f f
b

f i f
b

f i

i i i
b

f i i
b

f i

b
f i

b
f i

iS x x t iS x x t i x x t x x t

SC

,

0

, , , , , , , , 2b
f i

b
f i

b
f i

b
f i ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) [ ( ) ( )]

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

where the explicit dependence of the quantities is shown
to avoid any confusion. The two sets of paths indexed
by b and ¢b now have different boundary conditions
x x t, ,f i( ) and ¢ ¢x x t, ,f i( ), respectively, enabling us to
interchange the sum over b and integrals over ¢xi and ¢xf .
The next step is to change the integration measure in
terms of one for the angles. This step is carried out in
appendix C.1 and we find

ò ò òå å j j=
p

p

p

p

= - -

C4

dx dx d d J... det ... ,i f
b w w

w

f i
min

max

( )

( ) ∣ ∣ ( )

where ...( ) is a function of x x b t, , ,f i( ) and the Jacobian
matrix j j= ¶ ¶J x x, ,i

w
f
w

i f( ) ( ) with j j=x x w t, , ,i
w

i f i( )
and j j=x x w t, , ,f

w
f f i( ). The nonnegative integers

wmin and wmax are minimum and maximum winding
numbers, respectively, of trajectories starting from
region Ω0, as shown in figure B1. An equation
analogous to equation (C4) holds for measures of ¢xi

and ¢xf . Substitution of these measure changes in
equation (C3) yields
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j j
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d d
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D D S S

where the arguments of quantities with superscript w
and ¢w are j j t, ,i f( ) and j j¢ ¢ t, ,i f( ), respectively.
Moreover, we have introduced j j =t, ,w

f i( )D

 x x t, ,b
f
w

i
w( ) and j j t, ,w

f i( )S is given by
equation (B3).

3. We explicitly write all quantities appearing in
equation (C5) in terms of j j w t, , ,f i( ). We do so by

noting that the relevant classical motion is restricted
in an annulus of width O(1) around r = N2 (see
figure B1). In the annulus, we approximate the radius
by its mean N2 , i.e. j» »x N p2 sin ,i

w
i i

w

jN2 sin i, etc which leads to

j j
j j

¶

¶
»

x x
Ndet

,

,
2 cos cos C6

i
w

f
w

i f
i f
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⎡
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⎦
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and

j j
j j

»t
UNt

, ,
1

2 cos cos
, C7w

f i
i f

( )
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( )D

etc. Moreover, as the initial Wigner distribution is
localized around angle j = 0, d d j- » -¢x xi

w
i
w

f( ) (
j j¢ N2 cos .f f) ( ) The other delta function becomes

d
d j j d j j p

j
- »

- ¢ + + ¢ -
¢x x

N2 cos
. C8f

w
f
w f f f f

f

( )
( ) ( )

( )

The two contributions reflect the fact that a line at fixed
value of xf intersects the thin annulus in two regions,
whose respective angles are approximated by the angle
of the intersection with the circle of radius r = N2 .

Substituting these approximations into equation (C5) and
integrating over j¢i and j¢f , we find

òå j já ñ =

´ m m p

¢=

- - -¢ ¢
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e
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w w w

w

i f

i i i
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( )( )S S

where we suppress the arguments of  and W0, and neglect
the contribution from the second term in equation (C8). This
term leads to a highly oscillating integrand whose integral is
small. The arguments of quantities in the integrand with either
superscript w or ¢w are now j j,f i and t.

Next, we note that x p,( ) is a slowly varying function of
x p, and within the annulus + +¢ ¢ x x p p,f

w
f
w

f
w

f
w1

2

1

2
( ) ( )⎡⎣ ⎤⎦

≈ j j N N2 sin , 2 cosf f( ). In particular

+ + » j¢ ¢ -a x x p p i N e
1

2
,

1

2
. C10f

w
f
w

f
w

f
w i f( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥

We cannot make a similar approximation for the initial
Wigner distribution, i.e. replace rw and r ¢w by N2 , because
the distribution varies sharply around r = N2 . Instead, we
write

r j j j j p p

j j p p

=
- +

» +
- +

-
C11

t

N

w

UNt

w

UNt

, ,

2

mod 2 2

1
1

2

mod 2 2
1 ,

w
f i f i

f i

1 2

( )

( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where we used the relation r w= U2 (see section 5.1),
equation (B1) and performed a Taylor expansion around
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r =N2 1w . We substitute ρ in the initial Wigner dis-
tribution of equation (25) by the Taylor approximation for
r r+ ¢ 2w w( ) , to find

p

+ +

» j j p p j

¢ ¢

- - + + ¢ - -

W
x x p p

e

2
,

2

1
. C12

i
w

i
w

i
w

i
w

w w UNt U Nt N

0

mod 2 2 2f i i
2 2 2 2 ( )[( ) ( ) ]

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Also, from equation (B3), we have

p
j j p p- = - ¢ - + + ¢¢

C13
Ut

w w w w
2

mod 2 .w w
f i

( )

( )[( ) ( )]S S

Finally, the Maslov index, which is the number of turning
points of a classical path, increases by two for every winding.
Therefore

m m- = - ¢¢ w w2 . C14w w ( ) ( )

After substituting = x p a x p, ,( ) ( ), equations (C10),
(C12)–(C14) in equation (C9), we find

ò òåp
j já ñ =

´
´

p

p

p

p

j p j j p p

j p j j p p

¢= - -

- - - ¢ - - + + ¢ -

- - ¢ - + + ¢

a t
i N

Ut
d d

e e

e e .

C15

w w w

w

i f

i i w w w w UNt U Nt

N i w w w w Ut

SC
,

mod 2 2

2 2 mod 2

f f i

i f i

min

max

2 2 2

2

( )

( )

( ) [( ) ( ) ] ( )

( )[( ) ( )] ( )

Next, we extend the limits on w and ¢w to ¥0,[ ) and write
the sums over w and ¢w in terms of = + ¢u w w and
= - ¢v w w . We combine the sum over u and the integral

over jf by defining j j p p= - +y umod 2f i( ) , whose

range is ¥0,[ ). We realize that =j p j- - - ¢ - +e ei i w w i yf i( ) ( ) and
the integrand is separable in ji and y. After evaluating the
integrals, we arrive at

åá ñ = p

=-¥

¥
- - - -a t i N e e e

v

iUNt v Ut N N
SC

2 2 1 82( ) ( ) ( )

which becomes equation (27) of the main text for large N.

C.1. Derivation of equation C4

Here, we derive equation (C4). We restrict our attention to
paths that start from the phase-space region Ω0, in which the
initial Wigner distribution is concentrated. Figure B1 shows
the region Ω0 for the nonlinear oscillator. The paths starting
within Ω0 lie on the annulus shown in the figure. Now, the
winding number of a circular path at a fixed traversal time is a
stepwise increasing function of the radius. Let the (time-
dependent) winding numbers of paths that lie on the inner and
outer circles of the annulus be wmin and wmax, respectively,
with w wmin max. For a given winding number, there can be
two paths that start from Ω0 with position xi and reach posi-
tion xf in time t. Figure B1 shows a pair of such paths with
winding number zero and xi=0. Moreover, the paths end in
the upper ( >p 0) and lower ( p 0) halves of the phase

space. Therefore, we can interchange the integrals over
boundary conditions and sum over paths to find

ò ò

ò

å å

å

=

+

=

=

dx dx dx dx

dx dx

... ...

... , C16

i f
b w w

w

i f

w w

w

i f

, upper

, lower

min

max

min

max

( ) ( )

( ) ( )

where the labels ‘upper’ and ‘lower’ indicate paths that end in
the corresponding half of phase space.

In each half of the phase space, the final angle is uniquely
determined given x x w t, , ,f i( ). Therefore, we can transform
the integrals over xi and xf in equation (C16) to one over
angles and combine the ‘upper’ and ‘lower’ contributions to
arrive at equation (C4). ,
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