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Abstract—Correlations between measurement records, e.g. fre-
quencies or time records, are an important consideration in
the uncertainty analysis of high-frequency electronic systems. To
study the importance of preserving correlations, we introduce a
method to scramble the correlations of a correlated uncertainty
analysis and develop a software tool to do this as part of the
NIST Microwave Uncertainty Framework. We then compare the
results of a correlated uncertainty analysis and the corresponding
scrambled analysis in estimating the uncertainty in the Error-
Vector-Magnitude of a modulated signal. This comparison shows
that preserving these correlations is critical to accurately assess-
ing system performance and uncertainty.

Index Terms—measurement uncertainty, Monte Carlo meth-
ods, digital modulation, error-vector-magnitude.

I. INTRODUCTION

Uncertainty analysis is an essential element in designing
and deploying microwave and millimeter-wave electronic sys-
tems. At high frequencies, as electronic components become
less ideal, correlations between records of system response
can become significant. These correlations can occur across
frequencies, time points or, for modulated signals, symbols.
Correlated uncertainty analyses can incorporate physical errors
and accurately estimate the resulting effects on the system.
This is apparent in frequency or time records as these data are
transformed between the frequency and time domains where,
for example, a frequency domain signal with an oscillatory
correlated uncertainty profile may correspond to a pulse-like
uncertainty profile in the time domain [1].

Error-Vector-Magnitude (EVM) is a common figure of merit
for evaluating the accuracy of digitally modulated signals
[2]. Recently, [3] a covariance-based correlated uncertainty
analysis was performed for modulated signals from a precision
source at 44 GHz using the NIST Microwave Uncertainty
Framework (MUF) [4] to determine the uncertainty in EVM.

We develop a technique and software tool to allow us
to test the effect of preserving correlated uncertainties and
show, in a simple example, how scrambling these correlations,
while preserving the variances but not the covariances, can
substantially modify the results of uncertainty analyses.

II. CORRELATED UNCERTAINTIES

Covariance-based uncertainty analyses as outlined in [1] and
implemented in the MUF [4], are capable of propagating un-
certainties through complex transformations while preserving
correlations. These correlations can be attributed to systematic
errors in underlying physical components or from a distribu-
tion of realized measurements. For example, if we measure
the length of a line in a calibration standard the error in the

measurement will induce a correlated uncertainty profile in all
corrected measurements that use this standard. In addition to
accurately estimating the overall uncertainty, these correlations
constrain the realization of deviations from a nominal value.
In order to test the importance of preserving correlations, we
developed a method to scramble these correlations, modifying
the covariances while preserving the variances.

A. Sensitivity Analysis

A sensitivity analysis of a measurement can be defined as
a collection of deviations from a nominal value, with each
deviation attributed to a unique mechanism. Following the
notation in [1], we can write the covariance matrix provided
by a sensitivity analysis as ΣSA = (Jσ)(Jσ)T , where Jσ
is a K × N matrix where the N columns are defined as
sensitivity analysis vectors {Sn}Nn=1 of multivariate dimension
K. Here the nth mechanism is perturbed by its standard
uncertainty, transformations are applied (e.g., transforming
between the time and frequency domains), and the resulting
deviation from the nominal value of the measurement defines
Sn = (S1,n, S2,n, . . . , SK,n)

T .
To change the covariances but preserve the variances of

the sensitivity analysis, we “scramble” the correlations of the
sensitivity analysis vectors by resampling these vectors at each
multivariate component (i.e. permuting the columns of each
row of Jσ) and multiply by a randomly chosen ±1 to create a
new collection of sensitivity analysis vectors {SCB

n }Nn=1. Thus
at each multivariate index, i = 1, . . . ,K,

SCB
i,n = γi,nSi,ñi,n , (1)

where each ñi = {ñi,n}Nn=1 is an index set drawn randomly
without replacement from the original set of n = 1, . . . , N
and γi,n is randomly drawn from the set {−1, 1}. The γi,n
terms are added as the sensitivity analysis assumes symmetric
distributions and produces identical results in either case.

B. Monte Carlo Analysis

A Monte Carlo uncertainty analysis consists of a sample
of Monte Carlo replicates {Mq}Qq=1, where each Mq =
(M1,q,M2,q, . . . ,MK,q)

T corresponds to a realization of all
of the underlying error mechanisms propagated through the
required transformations. An innate feature of this type of
uncertainty analysis is that each of the Monte Carlo replicates
has preserved the correlation with the underlying mechanisms
through these transformations. The mean of the Monte Carlo
sample M· represents a physically realistic estimate of the
expected value of the measurement while the distribution
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Fig. 1: EVM uncertainty analysis results (following [3]) using (a) a model for an ideal cable (b) the actual cable measurement
with correlated uncertainties and (c) the actual cable with a scrambled uncertainty analysis. The mean of the Monte Carlo
sample goes from 1.56% and 1.62% in the correlated analyses to 6.59% in the scrambled analysis. Statistics from these plots
are shown in Table I.

of the sample about the mean defines a coverage interval
corresponding to the likelihood that a value falls in this range.
Additionally, the standard deviation of the distribution can be
used as an estimate of the standard uncertainty [5].

To modify the covariances but preserve the variances, we
obtain a new Monte Carlo sample {MCB

q }Qq=1 by resampling
at each multivariate component, i = 1, . . . ,K,

MCB
i,q = Mi,q̃i,q , (2)

where each q̃i = {q̃i,q}Qq=1 is drawn randomly without
replacement from the original set of q = 1, . . . , Q as above.

C. Conservation of Variance

Equations (1) and (2) show how to scramble correlations
across a multivariate sensitivity analysis and Monte Carlo
sample. We now show that these resampled distributions
preserve variances as calculated from the original distribution.

For multivariate component i, the variance corresponding
to the sensitivity analysis, i.e., the ith diagonal entry of
the covariance matrix ΣSA, can be written

∑N
n=1 S

2
i,n. The

variance corresponding to the scrambled sensitivity analysis
vectors can be shown to be identical to those of the original
analysis as

N∑
n=1

(
SCB
i,n

)2
=

N∑
n=1

γ2i,nS
2
i,ñi,n

=

N∑
n=1

S2
i,n.

This relationship also holds for the two Monte Carlo samples
where we obtain the same variances in the distribution about
the mean (M·).

Note that although the resampled distribution preserves vari-
ance, transforming the data (say from the frequency domain
to the time domain) may lead to a change in the variance
between the two distributions.

D. MUF “Correlation Buster”

The above methodology for scrambling correlations has
been introduced as a tool, the “Correlation Buster”, in the
NIST MUF to facilitate investigations into the importance
of preserving correlations in uncertainty analyses. The MUF
represents measurements with uncertainty as a collection of
the nominal value, sensitivity analysis vectors, and Monte
Carlo replicates. This collection can be used to define a new
measurement with the same overall uncertainty but with sig-
nificantly different correlations by resampling the sensitivity
analysis vectors and Monte Carlos replicates, as in (1) and (2).

III. CORRELATED UNCERTAINTIES IN EVM

EVM is an important metric for characterizing the accuracy
of a received modulated-signal waveform transmitted and
received in a nonideal system [2]. EVM is calculated by com-
paring the relative difference between a received demodulated
waveform and the symbols of the corresponding modulation
scheme.
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Fig. 2: Monte Carlo analysis of phase uncertainty corresponding to (a) the correlated MUF uncertainty analysis and (b) the
scrambled uncertainty analysis using the Correlation Buster. The mean of the Monte Carlo sample M·, the range within the
standard deviation of the sample σ̂MC, and the 95% confidence interval of the sample is shown. We see that the frequency-
dependent uncertainties are nearly identical and the standard uncertainty in phase is approximately five degrees.

TABLE I: EVM statistics for the MUF analysis (MUF) and the
scrambled analysis using the Correlation Buster (CB) using an
ideal through (Ideal) or a cable measurement with uncertainty
(Cable). We show the nominal value, the mean of the Monte
Carlo sample M·, the standard uncertainty as calculated by
the sensitivity analysis σ̂SA and the standard deviation of the
Monte Carlo sample σ̂MC.

Nominal M· σ̂SA σ̂MC

MUF - Ideal 1.26 1.56 .103 .178

MUF - Cable 1.26 1.62 .104 .191

CB - Cable 1.26 6.59 .283 .910

One of the first components of any EVM algorithm is
to time shift the received signal to determine the optimal
sampling times. The time-shifted, demodulated, and sampled
signal creates an I/Q trajectory on a constellation diagram.
EVM is the normalized sum of the squared distance between
ideal symbols and the received I/Q samples.

Several studies have investigated methods for estimating
uncertainty in EVM measurements [6], [7] and the IEEE
P1765 standards development working group is developing a
recommended practice for estimating the uncertainty of EVM
in modulated signals for wireless communications. Recently,
[3] performed a covariance-based correlated uncertainty anal-
ysis using the MUF of a 1-GSymbol/sec, 64-state quadrature-
amplitude-modulated (64-QAM) signal at 44 GHz including
errors in the source and the receiver. The uncertainty analysis
also included a characterization of the cable connecting the
source and receiver under multiple bends.

In Figure 1(a) and (b) we reproduce the results of [3]
modeling the cable with an ideal cable and with the actual
cable including correlated uncertainties, respectively. We see
the nominal EVM for both cases is 1.26%, while the mean of
the Monte Carlo sample is 1.56% for the ideal case and 1.62%
when including the cable and its uncertainties. Next, we ap-
plied the NIST Correlation Buster to scramble the correlations
of the uncertainty analysis of (b) before converting to time
domain, aligning the signals and calculating the EVM. The
results of this scrambled analysis are shown in Fig. 1(c) and
all of these results are tabulated in Table I. In the scrambled
analysis we see a dramatic increase in EVM for the Monte
Carlo sample which has a mean of 6.59%. Additionally, we see
large increases in both the standard uncertainty, as calculated
by the sensitivity analysis, and the standard deviation of the
Monte Carlo sample.

IV. DISCUSSION

As shown in Fig. 1, scrambling the correlations has a
significant effect on the EVM of the entire Monte Carlo
sample. To analyze a potential cause for this, we look at
the uncertainty of the scattering parameters of the cable due
to bending. Figure 2(a), shows the Monte Carlo uncertainty
analysis of the phase of the S21 transmission coefficient of
the cable averaged over ten different bending states as in [3]
where we see a standard deviation of about five degrees. The
uncertainty in phase of S21 of this cable after running the
Correlation Buster is shown in Fig. 2(b) where we see an
almost identical uncertainty at each frequency. However, the
underlying uncertainties have a different covariance structure.
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Fig. 3: A typical Monte Carlo replicate for the transmission (S21) of the cable for (a) the original MUF uncertainty analysis
and (b) the MUF uncertainty analysis where the correlations have been scrambled using the Correlation Buster. We see that a
linearly correlated trend in the original MUF analysis is resampled to provide a quasi-random phase variation by the Correlation
Buster.

Although the total uncertainty is preserved, the cross-
frequency correlations are modified by the Correlation Buster.
We plot a representative Monte Carlo replicate from both
the MUF correlated analysis and the scrambled analysis in
Figs. 3(a) and (b) respectively. Here we see a linear trend
as a function of frequency in the Monte Carlo replicate from
the original analysis, while the replicate from the scrambled
analysis has random phase errors. The linear frequency domain
trend in Fig. 3(a) corresponds to a time offset in the time
domain. The time shift of the signal in the EVM algorithm
corrects for such a time offset. However, the distortion caused
by the random phase errors in the scrambled analysis is not
corrected.

This shows that the uncertainty analysis which preserves
cross-frequency correlations can constrain the uncertainties so
that the effect of time offsets can be corrected. Prescribing
an a priori uncertainty bound without such constraints can
introduce unphysical distortion and either underestimate (as is
the case here) or overestimate the measured performance and
uncertainty of a system.

V. CONCLUSION

We have highlighted the importance of preserving correla-
tions in the uncertainty analysis of microwave and millimeter-
wave systems. We used the NIST MUF to reproduce the
covariance-based correlated uncertainty analysis of a modu-
lated signal as in [3]. We introduced a method which scrambles
correlations while preserving overall uncertainty and intro-
duced a tool in the MUF to create scrambled analyses.

We showed that the original correlated phase uncertainty in
the transmission of a coaxial cable due to cable bending led

to a time offset which is typically corrected by time shifting
in an EVM algorithm. However, scrambling these correlations
led to distortion of the signal which was not corrected and
significantly increased EVM and the associated uncertainty.

This analysis presented a clear example of why tracking
correlated uncertainties is important and how correlated un-
certainty analysis can significantly impact measures of system
performance and uncertainty.
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