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Abstract
We show that it is possible to construct a preparation non-contextual ontological 
model that does not exhibit ‘transformation contextuality’ for single qubits 
in the stabilizer subtheory. In particular, we consider the ‘blowtorch’ map 
and show that it does not exhibit transformation contextuality under the 
Grassmann Wigner–Weyl–Moyal (WWM) qubit formalism. Furthermore, the 
transformation in this formalism can be fully expressed at order �0, where 
it satisfies all of Kolmogorov’s axioms of classical probability theory, and 
so does not qualify as a candidate quantum phenomenon. In particular, we 
find that the Grassmann WWM formalism at order �0 corresponds to an 
ontological model governed by an additional set of constraints arising from 
the relations defining the Grassmann algebra. Due to this additional set of 
constraints, the allowed probability distributions in this model do not form 
a single convex set when expressed in terms of disjoint ontic states and so 
cannot be mapped to models whose states form a single convex set over 
disjoint ontic states. However, expressing the Grassmann WWM ontological 
model in terms of non-disjoint ontic states corresponding to the monomials 
of the Grassmann algebra results in a single convex set. We further show that 
a recent result by Lillystone et al that proves a broad class of preparation and 
measurement non-contextual ontological models must exhibit transformation 
contextuality lacks the generality to include the ontological model considered 
here; Lillystone et al’s result is appropriately limited to ontological models 
whose states produce a single convex set when expressed in terms of disjoint 
ontic states. Therefore, we prove that for the qubit stabilizer subtheory to be 
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captured by a preparation, transformation and measurement non-contextual 
ontological theory, it must be expressed in terms of non-disjoint ontic states, 
unlike the case for the odd-dimensional single-qudit stabilizer subtheory.

Keywords: Wigner–Weyl–Moyal, ontological, non-disjoint, Grassmann, 
contextuality

(Some figures may appear in colour only in the online journal)

1. Introduction

There has been much interest recently in the study of contextuality by those pursuing the 
classical simulation of near-term quantum computation. This is because of its central role in 
the extension of many efficiently simulatable systems to quantum universality. Contextuality 
has been shown to be the salient ingredient introduced in the magic state injection of Clifford 
circuits [1, 2], measurement-based quantum computation [3, 4], and the T gate extension of 
the Clifford gateset [5–9].

Contextuality can be present in the operational forms of preparation contextuality, trans-
formation contextuality and measurement contextuality [10]. Measurement contextuality is 
perhaps the oldest and best-known form of contextuality, and is the inability to pre-assign out-
comes to a set of observables without prior knowledge of the ‘context’ that they will be taken 
in [10–13]. In general, contextuality is believed to be a non-classical property of quantum 
mechanics and has been shown to require higher than order �0 terms in the Wigner–Weyl–
Moyal (WWM) representation of the observables [8, 9, 14]. It is most frequently described 
in the ontological models formalism, wherein measurement contextuality is responsible for 
multiple possible outcomes in an ontological model (defined in the next section) where a sin-
gle outcome is expected [10].

One of the simplest quantum subtheories is the single-qubit stabilizer subtheory, which has 
long been thought to be completely non-contextual [9, 15, 16]. However, recently, Lillystone 
et al proved that for a single qubit, a broad class of ontological models that are preparation and 
measurement non-contextual still exhibit transformation contextuality under the ‘blowtorch’ 
map [17]. Such a result contradicts the association of the presence of contextuality with the 
presence of non-classical properties.

In this paper we relate the Grassmann WWM formalism at order �0 to an ontological 
model—a preparation and measurement non-contextual ψ-epistemic ontological model for a 
single qubit—and perform Lillystone et al’s calculations. We find that the Grassmann WWM 
ontological model does not exhibit transformation contextuality under the ‘blowtorch’ map or 
any other map consisting of convex combination of one-qubit stabilizer states.

This suggests that there must be some aspect of the Grassmann WWM ontological model 
that is neither captured by Lillystone et al’s proof nor by many prior ontological models stud-
ied in the literature. We find that at order �0 the ontological model described by the Grassmann 
WWM formalism differs from these others in that it must be defined over non-disjoint ontic 
states to form a single convex set of probability distributions associated with the single-qubit 
stabilizer subtheory. We find that such an ontological model possesses unique properties that 
are not captured by restricting study to ontological models defined only over disjoint ontic 
states, as in past studies [10, 15, 18]. The ontological model corresponding to the Grassmann 
WWM formalism appears to be an example of a novel subclass of ontological models that 
seem to have been overlooked in the literature.
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We show that despite its novelty, the Grassmann WWM ontological model still corresponds 
to a fully valid classical probability theory as it satisfies all of the (Kolmogorov’s) axioms that 
define a classical probability theory. Therefore, the introduction of such an ontological model 
with ontic states based on Grassmann variables does not ‘hide’ contextuality or quantumness 
within its framework, as such an effort would have to, by definition, violate at least one of 
Kolmogorov’s axioms.

We begin with a review of the results of Lillystone et al [17] in section 2 where we also 
introduce transformation contextuality in ontological models with disjoint ontic states. In sec-
tion 3 we introduce the Grassmann WWM formalism and demonstrate that it does not exhibit 
transformation contextuality at order �0. In section 4 we introduce a simple ontological model 
over non-disjoint states and show how re-expressing it over disjoint ontic states produces more 
than one convex subset. This motivates why such ontological models cannot be represented 
by models with disjoint states. We then demonstrate in section 5 that the Grassmann WWM 
formalism is such an ontological model with non-disjoint states and establish more of its prop-
erties in section 6. We prove that it is inequivalent to Lillystone et al’s representative disjoint 
eight-state model in section 7. We conclude in section 8.

2. Review

We define ontological models according to [19]: an ontological model is defined by a measur-
able space Λ of possible physical states, with an associated σ-algebra Σ, and sets of measures 
or measurable functions PA : Σ → [0, 1] are used to represent preparations, transformations 
and measurements in the ontological model. Λ is called the ontic space and elements λ ∈ Λ 
are called ontic states.

An ontological model is a classical probability theory and so must satisfy Kolmogorov’s 
three axioms:

 1.  non-negativity: P(λ) ∈ R and P(λ) � 0 ∀λ ∈ Λ,
 2.  P(Λ) = 1,
 3.  σ-additivitiy: P(∪iλi) =

∑
i P(λi) if {λi} are disjoint (i.e. correspond to mutually exclu-

sive events).

From these axioms follow [20]: for any two subsets A, B ∈ Λ,

 4.  probability of an empty set: P(∅) = 0,
 5.  the sum rule: P(A ∪ B) = P(A) + P(B)− P(A ∩ B), and,
 6.  monotonicity: if B ⊂ A, then P(A) � P(B) and P(A \ B) = P(A)− P(B).

A and B are disjoint if P(A ∩ B) = ∅ and non-disjoint otherwise. It should be noted that 
ontological models can be defined over both disjoint and non-disjoint ontic states and some 
past work has been careful to include both cases [19]. Non-disjoint ontological models are 
often treated as a ‘coarse-graining’ of a disjoint ontological model. We will show that in some 
cases, they must be treated in terms of non-disjoint states in order that their states form a single 
convex set.

Furthermore, we can distinguish between two different types of ontological models. From 
Harrigan et al [21]:

Definition 1. An ontological model is ψ-ontic if for any pair of preparation procedures, Pψ 
and Pφ, associated with distinct quantum states Ψ and φ, we have p(λ|Pψ) p(λ|Pφ) = 0 for 
all λ.
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Definition 2. If an ontological model fails to be ψ-ontic, then it is said to be ψ-epistemic.

ψ-ontic and ψ-epistemic ontological models are both also called ‘hidden variable theories’. 
Colloquially, ψ-ontic ontological models can be thought of as hidden variable theories where 
the ‘hidden’ variables are not really hidden (because distinct wavefunctions correspond to 
distinct subsets of Λ) while ψ-epistemic models are models with truly hidden variables.

Lillystone et al introduce an eight-state ontological model for one qubit [17], originally 
developed in [15], which consists of an ontic space Λ = {±1}3 that can be indexed by 
λ = (x, y, z) ∈ Λ1 for x, y , z ∈ ±1—the eigenvalues of the Pauli matrices X̂ , Ŷ  and Ẑ , respec-
tively. This model is preparation and measurement non-contextual [15]. Ontic states evolve 
under the maps corresponding to X̂ , Ŷ  and Ẑ  as

ΓX : (x, y, z) → (x,−y,−z), (1)

ΓY : (x, y, z) → (−x, y,−z), (2)

and

ΓZ : (x, y, z) → (−x,−y, z), (3)

respectively. They evolve under the Hadamard gate H as

ΓH : (x, y, z) → (z,−y, x). (4)

Since x, y , and z are each in {±1}, these maps are not continuous; they are permutations on 
{±1}3 defined by equations (1)–(4).

Lillystone et al then consider evolution of an input state ρ  under the two operationally 
equivalent implementations of the following map:

T1(ρ) =
1
4
(ρ+ XρX + YρY + ZρZ), (5)

and

T2(ρ) = HT1(ρ)H. (6)

T1(ρ) = T2(ρ) = I/2 and so this is often called the ‘blowtorch’ map since it is akin to ‘taking 
a blowtorch’ to the state ρ  and heating it up to become the maximally mixed state (a Gibbs 
distribution at infinite temperature) [22]. Though T1(ρ) = T2(ρ) = I/2, the authors point out 
that under their eight-state model these two transformations are non-equivalent as they pro-
duce different outcomes and thus illustrate ‘transformation contextuality’. Specifically,

(x, y, z)
→
T1

1
4
[(x, y, z) + (x,−y,−z)

+(−x, y,−z) + (−x,−y, z)] .
 

(7)

Thus T1 maps ontic states with even (odd) sign parity to ontic states with even (odd) sign par-
ity. On the other hand

(x, y, z)
→
T2

1
4
[(−x,−y,−z) + (−x, y, z)

+(x,−y, z) + (x, y,−z)] .
 

(8)

T2 maps ontic states with even (odd) sign parity to ontic states with odd (even) sign parity. 
These two sets of four points are different and therefore the two maps can produce different 
probability distributions, as shown in figure 1.

As a result, this model produces different probability distributions over the ontic states 
depending on whether T1 or T2 is taken. However, since both maps result in the same result—the 
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maximally mixed state—the resultant probability distribution should be the same. Thus, the 
eight-state model exhibits transformation contextuality. Lillystone et al then prove that every 
one-qubit non-preparation contextual ontological model can be mapped to the eight-state 
model and so all such models exhibit transformation contextuality. This includes both ψ-epis-
temic and ψ-ontic ontological models. We examine their proof carefully in section 7.

3. The blowtorch map in the Grassmann WWM formalism

The qubit Wigner–Weyl–Moyal (WWM) formalism was originally introduced by Berezin [23] 
and fully developed in [9]. The Grassmann model at O(�0) provides a classical Hamiltonian 
system that yields spin-1

2 under canonical quantization. It makes use of ξp, ξq and ξr , three real 
generators of a Grassmann algebra G3 which obey the anticommutation relation:

ξjξk + ξkξj ≡ {ξj, ξk} = 0, for j, k ∈ { p, q, r}. (9)

Any element g ∈ G3 may be represented as a finite sum of homogeneous monomials of the 
Grassmann elements and g is called a Weyl symbol.

In an effort to examine the T1 and T2 maps in this qubit WWM hidden variable theory, we 
consider the Weyl symbol of a single qubit pure state ρ̂:

ρ =
1
2
(1 + αiξrξq + βiξpξq + γiξpξr) , (10)

where α2 + β2 + γ2 = 1, for α, β, γ ∈ R. The i’s make the Weyl symbol ρ  real, under a 
generalized conjugation operation [9].

Transformations Îρ̂Î, X̂ρ̂X̂ , Ŷρ̂Ŷ , Ẑρ̂Ẑ , and Ĥρ̂Ĥ  are all Clifford transformations and so 
can be captured in the Wigner–Weyl–Moyal formalism at order �0 by solving the following 
classical equations of motion:

d
dt
ξk = {H, ξk}P.B = iH

�∂

∂ξk
 (11)

where the right derivative 
�∂

∂ξk
 is as defined in [9], HI  =  1, HX = −iξrξq, HY = −iξpξq , 

HZ = −iξpξr , for t = π/2 and HĤ = − i√
2
(ξrξq + ξpξr) for t = π. For � > 0, these equations of 

motion are deformed to the Weyl algebra [9] for non-Clifford unitaries. They are then described 
by a Weyl bracket instead of a Poisson bracket and the Grassmann elements become the usual 

Figure 1. The eight-state ontic space from [17] showing the simplices of the even- 
(dark grey) and odd- (light grey) parity ontic states. T1 maps ontic states in a tetrahedron 
to another ontic state in the same color tetrahedron. T2 maps ontic states between the 
two tetrahedral regions even though it is operationally equivalent.
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Pauli matrices in quantum mechanics. However, since this is unnecessary for Clifford trans-
formations, we will not need to explore this regime.

Clifford transformations take stabilizer states to stabilizer states. Solving the equations of 
motion for transformations I, X, Y, Z, and H, can be written in the same way as the (x, y, z) 
transformations in [17] by using three-tuples (x, y, z) ∈ Λ2 for x, y , z ∈ {±ξp,±ξq ± ξr}:

(ξp, ξq, ξr) →
I
(ξp, ξq, ξr), (12)

(ξp, ξq, ξr) →
X

(ξp,−ξq,−ξr), (13)

(ξp, ξq, ξr) →
Y
(−ξp, ξq,−ξr), (14)

(ξp, ξq, ξr) →
Z
(−ξp,−ξq, ξr), (15)

and

(ξp, ξq, ξr) →
H

(ξq, ξp,−ξr). (16)

Substituting in the maps given by equations (12)–(16), we find that Îρ̂Î, X̂ρ̂X̂ , Ŷρ̂Ŷ , Ẑρ̂Ẑ , 
and Ĥρ̂Ĥ  are

ρI =
1
2
(1 + αiξrξq + βiξpξq + γiξpξr) . (17)

ρX =
1
2
(1 + αiξrξq − βiξpξq − γiξpξr) . (18)

ρY =
1
2
(1 − αiξrξq + βiξpξq − γiξpξr) , (19)

ρZ =
1
2
(1 − αiξrξq − βiξpξq + γiξpξr) , (20)

and

ρH =
1
2
(1 + γiξrξq − βiξpξq + αiξpξr) , (21)

respectively.
Thus, we see that under the T1 transformation,

ρ →
T1

1
4

[
1
2
(1 + αiξrξq + βiξpξq + γiξpξr)

+
1
2
(1 + αiξrξq − βiξpξq − γiξpξr)

+
1
2
(1 − αiξrξq + βiξpξq − γiξpξr)

+
1
2
(1 − αiξrξq − βiξpξq + γiξpξr)

]

=
1
4
(ρI + ρX + ρY + ρZ)

=
1
2

.
 

(22)

L Kocia and P Love J. Phys. A: Math. Theor. 52 (2019) 095303
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This is the Weyl symbol for Î/2. The simplification of the convex combination above is 
accomplished by the Weyl algebra of G3. Such a simplification is not possible under {±1}3, 
which lacks such algebraic operations.

On the other hand, acting on this evolution with the Hadamard gate to effect transformation 
T2 produces:

ρ →
T2

1
4

[
1
2
(1 + γiξrξq − βiξpξq + αiξpξr)

+
1
2
(1 + γiξrξq + βiξpξq − αiξpξr)

+
1
2
(1 − γiξrξq − βiξpξq − αiξpξr)

+
1
2
(1 − γiξrξq + βiξpξq + αiξpξr)

]

=
1
4
(ρH + ρHXH + ρHYH + ρHZH)

=
1
2

.
 

(23)

Again, this is the Weyl symbol for Î/2. Both of these results are obtained without quantizing 
the Weyl symbols and so this result is possible all while working at order �0.

This result raises an interesting question when compared to the result obtained using 
Lillystone et al’s eight-state ontological model: since the WWM formalism is able to obtain 
the maximally mixed state at order �0 regardless of whether map T1 or T2 is taken, does 
this suggest that there exists an analogous classical probability theory (a preparation non-
contextual ontological model) that similarly does not depend on whether transformation T1 
or T2 is taken? If so, how can this be reconciled with Lillystone et al’s proof that every such 
ontological model can be mapped to their eight-state ontological model, which does exhibit 
dependence on whether T1 or T2 is taken? 

We investigate these questions in the following sections by first defining a simple three-state 
ontological model example in section 4, which introduces the key element that the eight-state 
ontological model does not possess: non-disjoint ontic states. This then leads us to develop a 
larger ontological model equivalent to the Grassmann WWM formalism in sections 5 and 6.

4. Example of a simple ontological model with non-disjoint ontic states

The eight-state model is an example of an ontological model with disjoint ontic states. This 
means that for any two ontic states A and B, P(A ∪ B) = P(A) + P(B). By contradistinction, 
non-disjoint ontic states have non-zero overlaps (A ∩ B �= ∅) and so satisfy the classical rela-
tion: P(A ∩ B) = P(A) + P(B)− P(A ∪ B). This can be derived directly from Kolmogorov’s 
three axioms as we noted in section 2.

Here we introduce a simple example of a classical probability theory that is defined over 
only three ontic states, two of which are non-disjoint due to an additional set of relations that 
satisfies Kolmogorov’s axioms. Within this simple model, we show how re-expressing the 
ontic states in terms of only disjoint states does not produce a convex set of probability distri-
butions due to this additional set of constraints.

L Kocia and P Love J. Phys. A: Math. Theor. 52 (2019) 095303
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Consider a probability space with three elements, Λ = {A, B, C}. We wish to deal with a 
proper classical probability space, and so must satisfy all of Kolmogorov’s axioms given in 
section 2.

We specify additional constraints on our probability space that we will show are compat-
ible with these axioms:

P(C) = 1, (24)

P(A) + P(B) = 1, (25)

P(A ∪ B) = max{P(A), P(B)}, (26)

and

P(A ∩ B) = min{P(A), P(B)}. (27)

These additional constraints impose that our ontic states A and B are disjoint.
Axiom 1 is satisfied since Λ = C  and P(C) = 1 and axiom 2 can be imposed.
Axiom 3 is satisfied since A and B are not disjoint and so satisfy the sum rule:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B). (28)

Since P(C) = 1, all probability distributions only cover a part of our ontic space. We show 
three example probability distributions in figure 2 that satisfy the additional constraints given 
by equations (24)–(27).

It is of course perfectly acceptable to split up our ontic space into four ‘finer’ disjoint ontic 
states [15, 17, 18], which we label W, X, Y and Z as in figure 3.

However, while with the ‘coarse-grained’ non-disjoint states (A, B and C) the probability 
distributions form a single convex set, with the ‘atomic’ or ‘finer’ disjoint states (W, X, Y and 
Z), the additional set of constraints splits this convex set into more than one subset.

To see this, note that for the probability space labelled by the disjoint ontic states W, X, Y, 
and Z, incorporating the additional system of equations given by equations (24)–(27) produces:

P(W) + P(X) + P(Y) + P(Z) = 1, (29)

P(W) + P(X) + 2P(Y) = 1, (30)

P(W) + P(X) + P(Y) = max{P(W) + P(Y), P(X) + P(Y)}, (31)

P(Y) = min{P(W) + P(Y), P(X) + P(Y)}, (32)

respectively.
Allowed probability distributions are points in the three-simplex defined by equation (31) 

that also satisfy equations (29), (30) and (32). There are only two cases of solutions:

 1.  P(W) = 0,
 2.  P(X) = 0.

Let the tuple (w, x, y, z) ∈ Λ3 refer to the probability on W, X, Y, and Z, respectively. In cases 1 
and 2 we can choose α ≡ P(W) or α ≡ P(X) respectively, and define a one-parameter family 
of probability distributions (w, x, y, z):

1. (α, 0,
1
2
(1 − α),

1
2
(1 − α)), (33)

L Kocia and P Love J. Phys. A: Math. Theor. 52 (2019) 095303
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2. (0,α,
1
2
(1 − α),

1
2
(1 − α)), (34)

respectively, for 0 � α � 1. α = 0 corresponds to the only probability distribution that lies in 
both cases and is the one indicated by figure 2(c). These two cases correspond to two convex 
subsets of the original single convex set.

Convex combination of probability distributions from these two convex sets do not satisfy 
the constraints given by equations (29)–(32) (unless α = 0). For instance, consider the convex 
combination of the probability distributions in figures 2(a) and (b) corresponding to the fol-
lowing tuples in Λ3:

1
2

(
1, 0, 0, 0

)
+

1
2

(
0, 1, 0, 0

)
. (35)

For the probability space labelled by disjoint ontic states W, X, Y, and Z, since the two terms 
in the convex combination given by equation (35) correspond to two different cases (1 and 
2) with α �= 0, it follows that their result cannot satisfy equations (29)–(32). The only way to 
obtain a convex combination is to convert the disjoint ontic states W, X, Y, and Z, back into 
the non-disjoint ontic states A, B and C, perform the convex combination that satisfies the old 
equations (24)–(27), and then convert back to the disjoint ontic states.

Doing so, we can find that the convex combination given by equation (35), when converted to 
be in terms of non-disjoint states A and B, produces P(A = W ∪ Y) = P(B = X ∪ Y) = 1

2. From 
equations (26) and (27), this means that P(A ∩ B) = P(A ∪ B) = 1

2. Moreover, by equation (24), 
the resultant probability distribution must have zero support on A \ B and B \ A. Converting 
back to the disjoint states W, X, Y, Z, this means that P(W = A \ B) = P(X = B \ A) = 0 and 

Figure 2. Probability distributions where P(C) = 1 and (a) P(A) = 1, P(B) = 0,  
(b) P(A) = 0, P(B) = 1 and (c) P(A) = 1

2, P(B) = 1
2 that are supported on the the non-

disjoint states A and B and so satisfy equations (24)–(27).

Figure 3. Same ontic space as in figure 5 but now labelled by a ‘finer’ set of disjoint 
ontic states W, X, Y and Z.

L Kocia and P Love J. Phys. A: Math. Theor. 52 (2019) 095303
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P(Y = A ∩ B) = P(Z = A ∪ B) = 1
2. This is represented by the tuple (0, 0, 1

2 , 1
2 ) ∈ Λ3, which 

is the probability distribution in figure 2(c).
In other words, given the information that there is a probability 1

2 of being found in A and 
a probability 1

2 of being found in B, this model enforces that A and B are non-disjoint and so 
produces the physically intuitive result that the probability of being found in A or B is 12 (and so 
the probability of being found in neither A or B is 12 too). This is a very different outcome from 
the one obtained if A and B are assumed to be disjoint, which given the information that there 
is a probability 12 of being found in A and a probability 12 instead implies that the probability of 
being found in A or B is 1.

Though the constraints given by equations (24)–(27) produce a single convex set with the 
‘coarse’ set of non-disjoint states A, B, and C, the ‘finer’ disjoint set W, X, Y, and Z, cannot 
satisfy them with a single convex set.

Indeed, additional relations can only non-trivially supplement Kolmogorov’s axioms if 
they produce two or more convex subsets when the ontic states are expressed disjointly (with 
no overlaps). This is because additional relations that satisfy σ-additivity for all ontic states 
(i.e. all ontic states are disjoint) add nothing new to the probability theory unless they produce 
more than one convex subset. However, for the theory to still describe the subtheory of inter-
est, i.e. for the additional relations not to be too constraining, there must exist some other set 
of (non-disjoint) ontic states with respect to which all the probability distributions fall into 
the same convex set. This example demonstrates that such a middle ground between ‘uncon-
strained’ ontological models, which produce one convex set regardless of which set of disjoint 
or non-disjoint ontic states they are expressed with, and ‘overconstrained’ ontological mod-
els, which produce more than one convex set regardless of which set of ontic states they are 
expressed with, exists. This middle ground consists of constrained ontological models, which 
produce one convex set with respect to a particular set of non-disjoint ontic states and more 
than one for all other sets. This possibility appears to have been overlooked in the literature.

5. Grassmann WWM as an ontological model

In our prior work [9] we showed that it is possible to construct a local hidden variable theory 
(an ontological model) from the Grassmann WWM formalism to describe qubit stabilizer 
propagation using a non-negative probability distribution defined over states corresponding to 
the Grassmann monomials ξjξk. We now re-present these results with respect to the nomencla-
ture used to examine the simple ontological model in section 4.

A measure on the G3 algebra can be defined for any state ρ = |ψ〉 〈ψ|,

µρ(Ai) =

∫
ρ(ξ)Ã(ξ)d3ξ, (36)

where Ã(ξ) is the dual (odd) Weyl symbol of A(ξ) [9]. When A(ξ) ≡ Ai(ξ) is the Weyl symbol 
of an element of a positive-operator valued measure (POVM) Âi, then µρ(Ai) is a non-negative 
measure (a probability distribution) over outcomes Ai of state ρ:

PAi(ρ) ≡ µρ(Ai). (37)

However, we cannot rely on the measure µρ(A) as a probability measure over ontic states 
ξiξj  since it can be negative for A ∈ {ξjξk} as they are not elements of POVMs. Nevertheless, 
we can define a one-to-one map between µρ(ξjξk) and a bone fide probability measure that 
also preserves convex combination if we consider the Weyl algebra that the ξjξk satisfy.
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For the ontic state ξjξk,

−1
2
� µρ(ξjξk) =

∫
ξjξkρ̃(ξ)d3ξ =

1
2

∑
l

εjkl(αl + βl + γl) �
1
2

, (38)

for all one-qubit states ρ .
We note that

µρ(ξjξk) = µρ(−ξkξj) = −µρ(ξkξj), (39)

and so µρ(ξkξj) < 0 is the same statement as µρ(ξjξk) > 0. We choose to interpret µρ(ξjξk) > 0 
as proportional to the non-negative measure of ontic state ξjξi \ ξiξj  (and vice versa).

Given a probability P(ξjξk \ ξkξj) ∝ µρ(ξjξk) > 0, we further choose the probability of 
the other ontic state, P(ξkξj \ ξjξk), to be zero under the heuristic motivation that µρ does not 
need to track something if it is zero. Thus, given an ontic state λ ∈ {ξjξk}, we define the non-
negative probability of stabilizer state ρ  in ontic state λ \ −λ to be

Pρ(λ \ −λ) ≡ max{2µρ(λ), 0}, (40)

where the factor of 2 allows the probability to saturate an upper bound of 1. We note that this 
is perhaps an arbitrary definition, we shall see that it is an acceptable one as it produces a 
theory consistent with Kolmogorov’s axioms once unions and intersections are included, and 
reproduces the Grassmann WWM formalism for the stabilizer subtheory.

Any single qubit state’s Weyl symbol ρ  is represented by a linear combination of Grassmann 
monomials as in equation (10). Thus, our choice of definition for Pρ  equates the ‘addition’ 
operator in the Weyl algebra to a ‘convex addition’ operator since it treats any linear com-
bination involving negative coefficients in front of Grassmann monomials as a unique non-
negative convex combination, making use of the Grassmann anticommutation relations.

A stabilizer state has the Weyl symbol

ρjk ≡
1
2
(1 + iξjξk). (41)

We now consider a convex combination of the two distinct stabilizer states ρjk  and ρkj  under 
the Weyl algebra:

ρ = αρjk + βρkj

=
1
2
+ (α− β)iξjξk,

 (42)

for α, β � 0 such that α+ β = 1. Note that (α− β)iξjξk = (β − α)iξkξj .
WLOG, let us assume that α � β. Equation (40) for Pρ(λ \ −λ) means that the probability 

of being in ontic state ξjξk \ ξkξj after this convex combination is two times the coefficient in 
front of the resultant Weyl symbol’s ξjξk term, α− β, and the probability of being in ontic 
state ξkξj \ ξjξk is 0. Before we simplified the convex combination, P(ξjξk) = α and so

Pρ(ξjξk ∩ ξkξj) = Pρ(ξjξk)− Pρ(ξjξk \ ξkξj) = β = min{α,β}. (43)

This further agrees with

Pρ(ξjξk ∩ ξkξj) = Pρ(ξkξj)− Pρ(ξkξj \ ξjξk) = β = min{α,β}, (44)

since Pρ(ξkξj) = β. In other words, the convex combination takes a probability density of 
min{α,β} from ontic state ξjξk \ ξkξj to the intersection between the two ontic states. This 
means that
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P(ξjξk ∪ ξkξj) = Pρ(ξjξk \ ξkξj) + Pρ(ξkξj \ ξjξk) = α = max{α,β}. (45)

Therefore, for a map between µ and the probabilities to preserve µ’s convex combinations 
under its Weyl algebra, it follows that

P(ξjξk ∪ ξkξj) = max{P(ξjξk), P(ξkξj)} (46)

and

P(ξjξk ∩ ξkξj) = min{P(ξjξk), P(ξkξj)}. (47)

As a result, we have the same probability space as that considered in the simple example 
of section 4, except that instead of one independent pair A and B, we have three independent 
pairs. Moreover, we accomplished this via a one-to-one mapping between our probabilities 
and our measure µ in G3 such that the set of probability distributions, when considered over the 
non-disjoint ξjξk ontic states, is a convex set. Most importantly, as we showed in the previous 
section, these additional constraints satisfy Kolmogorov’s axioms and so form a valid classi-
cal probability theory or ontological model.

Using non-disjoint ontic states, we can set A1 = ξpq, B1 = ξqp, and then add two additional 
pairs: {A2 = ξpr, B2 = ξrp} and {A3 = ξqr, B3 = ξrq} so that:

P(Ai) + P(Bi) = 1, (48)

P(Ai ∪ Bi) = max{P(Ai), P(Bi)}, (49)

and

P(Ai ∩ Bi) = min{P(Ai), P(Bi)}. (50)

C = Λ now, and P(Λ) = 1 is enforced by Kolmogorov’s first axiom.
The allowed probability distributions all belong in the same family and for 

(a1, a2, a3, b1, b2, b3) ∈ Λ4, where a1 is the probability to be in A1 and so on, they take the 
form:

(α,β, γ, 1 − α, 1 − β, 1 − γ), (51)

where 0 � α,β, γ � 1.
Since there are no relations that govern the probabilities between the different pairs, these 

three sets of ontic states (1, 2, and 3) are independent of each other. Convex combinations of 
any probability distribution defined on these disjoint ontic states produce another probability 
distribution on the disjoint ontic states that satisfies the constraints given by equations (48)–
(50); there is only one convex set of probability distributions.

On the other hand, using disjoint ontic states, we can set W1 = ξrq \ ξqr,  
X1 = ξqr \ ξrq, Y1 = ξrq ∩ ξqr, and Z1 = (ξrq ∪ ξqr)

c, and then add two additional pairs: 
{W2 = ξpq \ ξqp, X2 = ξqp \ ξpq} and {W3 = ξpr \ ξrp, X3 = ξrp \ ξpr}, where we define Y3, Z3, 
Y4, and Z4 in a similar manner.

Wi, Xi, Yi, and Zi satisfy all the constraints that W, X, Y, and Z did:

P(Wi) + P(Xi) + P(Yi) = max{P(Wi) + P(Yi), P(Xi) + P(Yi)}, (52)

P(Yi) = min{P(Wi) + P(Yi), P(Xi) + P(Yi)}, (53)

P(Wi) + P(Xi) + P(Yi) + P(Zi) = 1, (54)
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P(Wi) + P(Xi) + 2P(Yi) = 1. (55)

Now there are 23  =  8 families of solutions that satisfy equations (52)–(55). As before in 
equations (33) and (34), we can find that P(Zi) = P(Yi) and so we discard P(Zi) when listing 
these eight cases (w1, w2, w3, x1, x2, x3, y1, y2, y3) ∈ Λ5, where w1 is the probability of being in 
W1 and so on. The set of solutions corresponds to all possible permutations of the two solu-
tions given in equations (33) and (34) extended to three independent pairs:

1. (α,β, γ, 0, 0, 0,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)), (56)

2. (α,β, 0, 0, 0, γ,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)),

 (57)

3. (α, 0, γ, 0,β, 0,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)), (58)

4. (α, 0, 0, 0,β, γ,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)), (59)

5. (0,β, γ,α, 0, 0,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)), (60)

6. (0,β, 0,α, 0, γ,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)), (61)

7. (0, 0, γ,α,β, 0,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)), (62)

8. (0, 0, 0,α,β, γ,
1
2
(1 − α),

1
2
(1 − β),

1
2
(1 − γ)), (63)

where 0 � α,β, γ � 1. These cases only contain one common probability distribution: the 
distribution (0, 0, 1

2 , 0, 0, 1
2 , 0, 0, 1

2 ) ∈ Λ5 when α = β = γ = 0.
Again, these are eight convex subsets of the 8-simplex of all distributions over eight 

ontic states; convex combinations of the probability distributions above do not satisfy equa-
tions (52)–(55) (unless α = β = γ = 0).

We have thus established that the Grassmann WWM formalism is equivalent to an onto-
logical model defined by three pairs of non-disjoint ontic states for the stabilizer subtheory 
and produces eight convex subsets when expressed in terms of disjoint ontic states. In the 
subsequent section 4, we develop more of its properties.

6. Properties of the Grassmann WWM ontological model

In the eight-state model, the ontic space is partitioned into eight disjoint states that are indexed 
by the eight three-tuples in Λ1:

Λ = {(+,+,+), (+,+,−), (+,−,+), (−,+,+),
(+,−,−), (−,+,−), (−,−,+), (−,−,−)}.

 (64)

Convex combinations of these eight tuples defines any valid probability distribution in the 
eight-state model.
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These three-tuples can be converted into equivalent six-tuples by defining the six-tuples 
to be (x+, y+, z+, x−, y−, z−) ∈ Λ6, where x+   =  1 and x−  =  0 if the first entry of the corre-
sponding three-tuple is ‘+’ and x+   =  0 and x−  =  1 if it the first entry is ‘−’ and so on. This 
produces a partition of the ontic space into eight six-tuples

Λ′ = {(1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1),
(1, 0, 1, 0, 1, 0), (1, 0, 0, 0, 1, 1), (0, 1, 1, 1, 0, 0),
(0, 1, 0, 1, 0, 1), (0, 0, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1)}.

 

(65)

Using six-tuples (Λ6) instead of three-tuples (Λ1) simplifies the resultant probability distribu-
tion of convex combinations because they can now be represented by a single six-tuple. For 
instance, the probability distribution 12 (+,+,+) + 1

2 (+,−,−) ∈ Λ1 cannot be simplified any 
further but 12 (1, 1, 1, 0, 0, 0) + 1

2 (1, 0, 0, 0, 1, 1) = (1, 1
2 , 1

2 , 0, 1
2 , 1

2 ) ∈ Λ6. For general probabil-
ity distributions, the equation for component-wise convex addition is

α(x+, y+, z+, x−, y−, z−) + β(x′+, y′+, z′+, x′−, y′−, z′−) = (α+ β)

(x+ + x′+, y+ + y′+, z+ + z′+, x− + x′−, y− + y′−, z− + z′−).
 

(66)

The six-tuple notation is still useful in simplifying convex combinations of ontic states into 
a single tuple when applied to the Grassmann WWM ontological model’s probability dis-
tributions, defined to be (w1, w2, w3, x1, x2, x3) ∈ Λ6 . However, now convex combinations of 
probability distributions must additionally satisfy equations (48)–(50) and so the same simple 
component-wise addition rule of equation (66) does not hold.

Nevertheless, the six-tuple is useful in another way for the Grassmann WWM ontological 
model because for probability distributions that correspond to quantum states ρ̂ , its entries 
correspond to the coefficients in front of the ontic states in the Weyl symbol of the state when 
it is written with the minimal number of terms such that all coefficients are non-negative (a 
unique form) [9]:

ḡ = (gp, gr, gq, g-p, g-r, g-q) ∈ Λ6, (67)

where gp = Pρ(ξrξq \ ξqξr) = max{0, 2µg(ξrξq)}, g−p = Pρ(ξqξr \ ξrξq) = max{0, 2µg(ξqξr)}, 
etc. Since a stabilizer state ρstab is given by equation (41), and the entries in a six-tuple in Λ6  
correspond to Pρ(ξjξk \ ξkξj), the six stabilizer states correspond to the probability distributions,

ρstab ∈{(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0)
(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}.

 
(68)

Therefore, for stabilizer states the entries in the six-tuple are five 0s and a single 1. This 
leads to a generalized discrete notion of conserved area or symplecticity for Clifford gates on 
stabilizer states [9]. For all these reasons, we will proceed to use this six-tuple notation from 
this point onwards.

Note that (w1, w2, w3, x1, x2, x3) ∈ Λ6  uniquely identifies any probability distribution in 
the Grassmann WWM ontological model since y i and zi can be determined from wi and xi 
(yi = zi =

1
2 (1 −max{wi, xi})) as we showed in the last section and equations (56)–(63).

The eight ontic states of the eight-state model given by equation  (65) in the six-tuple 
notation, also serve as a valid basis for the convex combination (vector space) operation in 
the Grassmann WWM ontological model with the six-tuple appropriately redefined to be 
(w1, w2, w3, x1, x2, x3). This can be shown by noting that the three sets of ontic states Wi, Xi, 
Yi and Zi (or Ai and Bi) are independent and that, for (wi, xi), convex combinations of (1, 0) 
and (0, 1) determine all the possible probability distributions given by equations (33) and (34) 
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(after they are converting back to their non-disjoint counterparts, convex added according to 
the constraints given by equations (24)–(27), and the converted back to the disjoint wi and xi). 
Thus, convex combinations of the Cartesian product {(1,0),(0,1)}3 must determine all the pos-
sible probability distributions given by the larger set of three pairs of independent ontic states. 
This Cartesian product corresponds to the eight states given by the six-tuples in equation (65).

To find the overlap between a probability distribution ρ = (wρ
1 , wρ

2 , wρ
3 , xρ1 , xρ2 , xρ3 ) and one 

of the eight ontic states λ ≡ (wλ
1 , wλ

2 , wλ
3 , xλ1 , xλ2 , xλ3 ) ∈ Λ′ of equation (65), one must be care-

ful to include their probability densities in the intersections y i and complements zi, which as 
we pointed out, are uniquely determined by wi and xi. In particular, the eight ontic states λ in 
equation (65) have support of 1 on three wi and/or xis, and 0 on all the others. Hence they must 
have support of 0 on all y is and zis (since yi = zi =

1
2 (1 −max{wi, xi})).

We have shown that every stabilizer state probability distribution has support of 1 on one 
wi or xi and 0 on all the other wis and xis. This means that each stabilizer state distribution has 
support of 12 on two pairs of y i and zi. Therefore, stabilizer state probability distributions have 
non-zero overlap with the four ontic states in equation (65) that also have a ‘1’ in the same 
entry of their six-tuple. For instance,

(1, 0, 0, 0, 0, 0) =
1
4
[(1, 1, 1, 0, 0, 0) + (1, 1, 0, 0, 0, 1)

+(1, 0, 1, 0, 1, 0) + (1, 0, 0, 0, 1, 1)] .
 

(69)

These actually (superficially) correspond to the same convex combinations as in the eight-
state model—as we have seen, the reasoning in the Grassmann WWM ontological involves 
tallying up additional y i and zi regions that do not exist in the eight-state model.

According to definition 2, the fact that stabilizer states have support on more than one ontic 
state means that the Grassmann model is a ψ-epistemic ontological model for the stabilizer 
state subtheory; the probability distributions of different (but non-orthogonal) stabilizer states 
overlap.

In summary, even with disjoint ontic states that must be converted to non-disjoint states 
when taking convex combinations to account for the constraints given by equations (48)–(50), 
component-wise addition of support on the eight ontic states λ ∈ Λ′  given by equation (65), 
which are equivalent to the eight-state model’s, still holds as a way to determine probability 
distribution overlap.

The Grassmann WWM ontological model is preparation non-contextual for the stabilizer 
subtheory. Any convex combination of stabilizer state probability distributions produces a 
unique probability distribution. If two probability distributions are not the same, they do not 
correspond to the same state since they directly one-to-one map to the Weyl symbol of the 
state.

The model is also measurement non-contextual for the stabilizer subtheory since the sta-
bilizer state probability functions given by equation (68) correspond to the conditional prob-
ability functions ξM

k : Λ′ → [0, 1] of Pauli measurement M, where the probability of outcome 
k given measurement M,

Pr(k|M) =
∑
λ∈Λ′

ξM
k (λ)ρ(λ). (70)

This is only the same as the probability of outcome k under another measurement M′ for 
all stabilizer states ρ  if the two are equivalent measurements (ξM

k = ξM′

k ⇔ (k, M) ∼= (k, M′)) 
because no two stabilizer states probability distributions produce the same overlaps with all 
other stabilizer state probability distributions.
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We also demonstrated in our prior work that the Grassmann WWM formalism, and there-
fore the Grassmann ontological model, exhibits measurement and preparation non-contextu-
ality for one qubit [9].

There are a few different ways of illustrating the unions and intersections of the eight 
ontic states λ given by equation (65) in a Venn diagram. We choose to use the Edwards–Venn 
diagram approach, which takes a hemispheric approach to illustrating overlapping regions 
between ontic states [24]; every additional ontic state added to the Venn diagram has more 
‘leafs’ or hemispheres that overlap with all previous ontic states thereby capturing all possi-
ble combinations of intersections with them. We show our ontic space in the Edwards–Venn 
diagram of figures 4 and 5.

We can use the properties introduced in this section, along with the eight-state Edwards–
Venn diagram, to show that the Grassmann WWM ontological model does not exhibit trans-
formation contextuality under the ‘blowtorch’ map. By using the tuples in Λ6 (the same as 
the set ḡ used in [9] and defined by equation (67)) to organize the probability distributions of 
states ρ , we can make use of the fact that their entries correspond to the coefficients in front of 
the monomials of a state’s corresponding Weyl symbol, and thereby rely on equations (17)–
(21) to see how the states evolve under the Clifford gates X, Y, Z and the Hadamard H. In this 
way, we see that under the T1 transformation,

(w1, w2, w3, x1, x2, x3)

→
T1

1
4
[(w1, w2, w3, x1, x2, x3)

 
(71)

+ (x1, x2, w3, w1, w2, x3)

+ (w1, x2, x3, x1, w2, w3)

+ (x1, w2, x3, w1, x2, w3)]

 
(72)

= (0, 0, 0, 0, 0, 0). (73)

This is the probability distribution for Î/2 and is illustrated in figure 6(a). The final simplifica-
tion exhibited in equation (73) can be calculated in at least two ways:

 1.  Convert from disjoint (Wi and Xi) to non-disjoint (Ai and Bi) ontic states, employ equa-
tions (48)–(50) to simplify, and then convert back to disjoint states, or

 2.  Find the Weyl symbol ρ′ = T1ρ and then use equation  (40) to obtain the probabilities 
Pρ′(λ) that make up the entries of the resultant six-tuple ḡ.

These two methods are equivalent because, as discussed, by construction, equations (48)–(50) 
are a probability theory that captures the Weyl algebra.

Notice that it is not possible to obtain this solution without appealing to the ‘coarse’ ontic 
states Ai and Bi either through method 1 or 2. Otherwise, a convex combination of four prob-
ability distributions from four different classes of solutions cannot be evaluated while satisfy-
ing the constraints given by equations (52)–(55).

On the other hand, acting on line (72) subsequently with the Hadamard gate to effect trans-
formation T2 produces:

(w1, w2, w3, x1, x2, x3)

→
T2

1
4
[(w3, x2, w1, x3, w2, x1)

 
(74)
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+ (w3, w2, x1, x3, x2, w1)

+ (x3, w2, w1, w3, x2, x1)

+ (x3, x2, x1, w3, w2, w1)]

 (75)

= (0, 0, 0, 0, 0, 0). (76)

Again, this is the probability distribution for Î/2 and the final simplification exhibited in 
equation (76) is the unique ḡρ tuple for the final state. This can be seen in figure 6(b). Notably, 
figure 6 also shows that ignoring the additional constraints given by equations (48)–(50) leads 
to the inequivalent parity simplices in probability space that are found when T1 and T2 are 
implemented in the eight-state model.

Therefore, the resultant probability distribution (0, 0, 0, 0, 0, 0) is attained no matter whether 
transformation T1 or T2 is taken in the Grassmann ontological model and so no transformation 
contextuality is present. The final solution is very similar to the one found in section 4’s equa-
tion (35) when using the ‘coarse’ ontic states A, B and C. On the other hand, if the additional 
constraints are ignored and so a single convex set under the disjoint ontic states is assumed to 
exist, then different probability distributions are obtained under T1 and T2.

We further note that any map consisting of convex combinations of states within the sta-
bilizer subtheory will necessarily produce a unique probability distribution for every unique 

Figure 4. An Edwards–Venn diagram of the ontic space of the Grassmann WWM 
model that is able to illustrate all the possible overlaps between the non-disjoint ontic 
states.
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quantum state expected, since every Weyl symbol and one-qubit operator is bijectively repre-
sented by a probability distribution by the definition of ̄g [9] and we have shown that one-qubit 
convex combination is fully treated at order �0 in section 5. So this result of no transformation 
contextuality generalizes to all one-qubit maps within the one-qubit stabilizer subtheory.

We proceed to now show why the proof used by Lillystone et al explicitly excludes classi-
cal probability distributions defined over non-disjoint elements, such as those satisfying addi-
tional constraints like those given by equations (48)–(50). We then argue that the Grassmann 
WWM ontological model is proof that single qubit non-contextuality can be handled by onto-
logical models with non-disjoint ontic states.

Figure 5. The eight ontic states λ ∈ Λ′  of the Grassmann WWM ontological model 
given by equation (65). Though these disjoint ontic states do not appear to cover all 
of ontic space, since they satisfy the additional equations  given by equations  (48)–
(50) when expressed as non-disjoint states, knowledge of the support of a probability 
distribution on these eight states is sufficient to determine it everywhere else in ontic 
space.
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7. Inequivalence between ontological models with disjoint ontic states  
and non-disjoint ontic states

Lillystone et al consider an arbitrary preparation non-contextual ontological model of a single 
qubit stabilizer subtheory. The WWM formalism for a single qubit is such a theory at � = 0. 
They then consider ∆p to be the support of the quantum state ρ  in the ontological model,

∆p = {λ|µρ(λ) > 0,λ ∈ Λ}. (77)

The proof then proceeds to delete any state λ ∈ Λ such that PI/2(λ) = 0 and partition the 
remaining set into eight disjoint spanning sets. Since P1(λ \ −λ) = 0 for all λ ∈ Λ, it fol-
lows by equations (48)–(50) that P1(λ ∩ −λ) = 1

2 for all λ ∈ Λ. Therefore, none of the eight 
Grassmann WWM ontic states given in equation (65) are disqualified.

Lillystone et al then proceed to produce a disjoint partition into eight sets. In particular, 
they rely on repeated application of the following feature of both ψ-ontic and ψ-epistemic 
ontologicla models: given

µρ(λ)µρ′(λ) = 0 ∀λ ∈ Λ, (78)

this implies that

supp(µρ) ∩ supp(µρ′) = ∅, (79)

if ρ �= ρ′ [10].
Since this is true for three pairs of basis states [17], argues that, given preparation non-con-

textuality, the ontic space can therefore be organized into 23  =  8 disjoint states. The argument 
is more clearly laid out in [15] and follows the reasoning that since six non-negative states 
have full support on only one unique basis element of one pair and the same partial support on 
all the other pairs, it must be possible to partition the space into eight disjoint sets.

For instance, in the eight-state model, the ontic states x  =  + and x  =  − are disjoint and 
so are y   =  + and y   =  −. Hence, the ontic space can be partitioned into the four disjoint sets 
{(x = +, y = +), (x = +, y = −), (x = −, y = +), (x = −, y = −)}. The partition into eight 
disjoint sets follows from then considering the disjoint sets z  =  + and z  =  −.

In the Grassmann WWM qubit model, the ontic states ξrξq \ ξqξr  and ξqξr \ ξrξq corre-
spond to the eight-state model’s x  =  + and x  =  − respectively, and ξpξq \ ξqξp and ξqξp \ ξpξq 
correspond to the eight-state model’s y   =  + and y   =  − respectively. They can certainly be 
divided into the disjoint subsets by Lillystone et  al’s argument and, along with the states 
xipξr \ ξrξp and ξrξp \ ξpξr  that are analogous to the states z  =  + and z  =  − respectively, pro-
duce the eight disjoint ontic states given by equation (65).

But for the Grassmann WWM model, though equation (79) still holds (disjointness) and 
reexpressing ontic states in terms of disjoint ontic states produces bipartitions of the ontic 
space, it does not preserve convex combination of single-qubit state probability distributions. 
This is because the Weyl algebra over anti-commuting elements is equivalent to imposing 
additional constraints on top of Kolmogorov’s axioms, as we have seen, which have more than 
one family of solutions when reexpressed in terms of disjoint ontic states and convex combi-
nations between families of solutions is not preserved. This is true even though the model is 
preparation and measurement non-contextual for one qubit.

Lillystone et al complete the proof by directly relying on convex linearity to argue that 
there exists an implementation of T1 and T2 that has the same contextual implementation as 
theirs, when defined over the eight disjoint sets; they assume that the states in their convex 
sum fall into the same convex set when considered in terms of disjoint ontic states. They 
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thus implicitly neglect the possibility of an additional set of constraints, commensurate with 
Kolmogorov’s axioms, that does not result in a single convex set that contains all the prob-
ability distributions they consider when their ontic states are expressed as disjoint ontic states. 
Therefore, the Grassmann WWM ontological model lies outside the scope of their argument.

8. Conclusion

This paper answers the question of how to interpret the Grassmann WWM formalism at 
order �0 in the framework of ontological models established by Leifer [19]. We show that 
the Grassmann WWM ontological model is ψ-epistemic, that it is most simply expressed in 
terms of overlapping or non-disjoint ontic states due to an additional set of constraints it must 
satisfy, that this additional set of constraints only serve to restrict the model which remains a 

Figure 6. The convex combinations produced by (a) T1 and (b) T2 in the ontological 
model defined over disjoint ontic states. Note that the resultant probability distribution 
from the convex combination is the same for (a) and (b) when the ontic states are 
converted to their non-disjoint counterparts and equations (48)–(50) are used. On the 
other hand, if this additional system of equations is ignored then the resultant probability 
distributions are different for T1 and T2. In fact, the two different resultant probability 
distributions correspond to the light and dark grey regions of the eight-state model’s 
ontic space indicated in figure 1.
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classical probability model, and that the probability distributions over these ontic states form 
a single convex set, but that probability distributions over disjoint ontic states do not.

If the additional set of constraints is ignored (i.e. explicitly not satisfied), convex com-
binations of probability distributions from different families of solutions produce different 
results when only one is expected. This is the origin of transformation contextuality under the 
‘blowtorch’ map in Lillystone et al’s ontological eight-state model over disjoint ontic states. 
We showed that transformation contextuality is not present in the Grassmann WWM classi-
cal probability theory at order �0—an ontological model defined over non-disjoint states with 
such an additional set of constraints.

The Grassmann model offers a case where Lillystone et al’s proof—that preparation non-
contextual qubit ontological models exhibit transformation contextuality in the one-qubit sta-
bilizer subtheory—does not hold. Indeed, we have shown that ontological models defined over 
non-disjoint ontic states appear to be able to treat single-qubit noncontextuality properly, and 
so not exhibit transformation contextuality in the one-qubit stabilizer subtheory. We therefore 
contest Lillystone et al’s conclusion that ‘the single-qubit stabilizer subtheory, a very simple 
subtheory of the smallest quantum system, exhibits generalized contextuality (and) demon-
strates that generalized contextuality is so prevalent that even an essentially trivial quantum 
subtheory is classified as contextual, and therefore non-classical’ [17].

In summary, we have shown that for the qubit stabilizer subtheory to be captured by a 
preparation, transformation and measurement non-contextual ontological theory, it must be 
handled in terms of non-disjoint ontic states, unlike the case for the odd-dimensional single-
qudit stabilizer subtheory.

As a final point, one can ask more precisely why supplementation of Kolmogorov’s axioms 
by an additional set of constraints does not seem to be present in the literature on ontological 
models so far. We point out that such an additional set of constraints can always be formulated 
for any ontological model after it is reexpressed in terms of non-disjoint ontic states. However, 
prior work has almost always considered ontological models where such an additional set 
of constraints is trivial because they are too weak; it only produces one family of solutions 
when the model is reexpressed in term of its original disjoint ontic states. And therefore it is 
natural that such constraints have not been discussed. Nevertheless, this ability to include an 
additional set of constraints, available due to the freedom provided by the sum rule (a conse-
quence of σ-additivity), has always been there. In a way, this is an unused ‘degree of freedom’ 
of classical probability theories that has been hidden in plain sight all along, or at least since 
the introduction of the Grassmann algebra in physics.
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