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Economic and convenience benefits of interconnectivity 

drive current explosive emergence and growth of networked 

systems.  However, these benefits of interconnectivity are 

inherently associated with various risks, including risk of 

undesirable contagion [1].  Due to reliance on networked 

infrastructures, understanding and ability to manage the 

fundamental risk/benefit tradeoffs of interconnectivity is one of 

the most important challenges faced by modern society.  

Generally, this is a difficult problem especially for large-scale 

networked infrastructures when centralized management may 

not be feasible.  Often, different parts of infrastructure have 

different owners, which further complicates the problem. 

This situation can be naturally modelled as a non-cooperative 

game of selfish system components, which are either under 

different ownership or under control by different entities due to 

lack of centralized control.  Inefficiency of the selfish vs. 

socially optimal management can be quantified by the 

corresponding Price of Anarchy (PoA).  This inefficiency is due 

to the positive externalities since an investment in contagion 

risk mitigation by a network component reduces likelihood of 

the contagion and thus benefits other system components [2].  

Since quantitative comparison of various inefficiency 

mitigation strategies is typically computationally prohibitive, 

we propose to explore a possibility of developing practical 

mitigation strategies under practically plausible assumption of 

large losses due to the contagion.   

Our results indicate that under natural assumption on the cost 

structure, a socially optimal strategy keeps the system on the 

boundary of contagion free region in the space of system 

parameters.  However, a selfish strategy keeps the system 

“close” to boundary of the contagion region within this region 

with finite contagion losses.  Thus, inefficiency mitigation 

includes (a) elimination of the contagion losses, and (b) moving 

the system operational point towards socially optimal point by 

rebalancing individual investments through a combination of 

regulations and incentives. 

We consider a Susceptible-Infected- Susceptible (SIS) model 

on an undirected connected graph with N  nodes and 

irreducible symmetric incidence matrix 
N

jiijAA 1,)(  , where 

1 jiij AA  if nodes i  and  are connected by a link and 

0 jiij AA  otherwise.  Once node i  becomes infected, it 

spreads infection to each of its neighboring nodes j  at fixed 

rate 0 .  Node i  recovery time is distributed exponentially 

with average i .  It is known [3] that SIS model is infection 

free if  1 , and has finite portion of nodes persistently 

infected otherwise, where   is the Perron-Frobenius (P-F) 

eigenvalue of matrix 
N

jiiji AB 1,)(   . 

Following [3] we assume that nodes can invest in the 

reduction of their expected recovery time: average node i  

recovery time )( iii c   is a decreasing and strongly convex 

function of the node i  investment 0ic .  “Large” investment 

makes recovery “very fast” and “small” investment makes 

recovery time “very slow,” i.e.,  )(ci  as 0c , and 

0)( ci  as c , Ni ,..,1 .  We also assume that 

infected node i  suffers a “large” loss ii hH  , where

)1(Ohi   as 0 .  Thus the expected node i  loss is 

                iiii ccphcL  )()()(  ,                                      (1) 

where steady-state probability of node i  being infected, ip  

depends on the entire vector of investments ),..,( 1 Nccc  .   

Socially optimal investments ),..,( 1

opt

N

optopt ccc   

minimize the aggregate loss: 

          
 i iii

c

opt ccphc
i

])()[(minarg
0

 .                   (2) 

We show that the optimal infection probabilities are of the order 

of 
2  as 0 :                    

                 )()]([ 32

0  Opcp opt

i

opt

i  ,                                (3) 

where 00 opt

ip .  Since socially optimal investments result in 

asymptotically zero contagion losses: 

0)]([)(lim 0  
opt

ii cph , socially optimal investments 

)(lim 0 
optopt cc   asymptotically minimize the 

aggregate system investment subject to system being infection 

free: 

                   
i ic

opt cc  1)(minarg ,                           (4) 

where P-F eigenvalue )(c  depends on the vector of node 

investments ),..,( 1 Nccc  , as shown in Figure 1. 
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Fig. 1.  Social optimization: large infection losses. 

 

Following [3], we model selfish node investment in the 

recovery capability as a non-cooperative game G , where each 

node Ni ,..,1  attempts to minimize its expected individual 

expected loss (1) over this node investment ic , given 

investments by other nodes ),(: ijcc ji  .  We show that 

under our and some additional technical assumptions, game G  

is strictly concave, and thus has unique pure Nash equilibrium 

),..,( **

1

*

Nccc  , which solves the following optimization 

problem: 

   ]),()[(minarg *

0

*

iiiii
c

i cccphc
i

 


 .                        (5)  

Our analysis indicates that investments (5) result in the 

infection probabilities of the order of   as 0 :                    

                    )()( 2*

0

*  Opcp ii  ,                                           (6) 

where 0*

0 ip , and thus selfish investments result in non-

diminishing infection losses 0*

0 ii ph  as 0 .   

Inefficiency of selfish investment can be quantified by the 

corresponding Price of Anarchy 
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We have from (3), (6):  

              210 )(lim PoAPoAPoA   ,                               (8) 

where the aggregate optimal and selfish investments are
opt

ii

opt cc   and 
**

iicc   respectively. Component 

0)1( *

01   i ii

opt phcPoA  quantifies inefficiency due to 

contagion losses, and component  
optccPoA  *

2  quantifies 

inefficiency due to imbalance of investments by selfish nodes 

as compared to the socially optimal investments as 0 .  It 

follows from (6) that “small” additional investments of the 

order of   as 0  can eliminate inefficiency due to 

contagion losses thus making 01 PoA .  Since 1PoA  

implies 12 PoA , we conjecture that the leading contributor 

to inefficiency of selfish investments is the investment 

imbalance as compared to the socially optimal investments, 

which challenges a conventional view that selfish nodes 

underinvest in the contagion avoidance.   

We demonstrate how selfish investments (5) and 

corresponding infection probabilities (6) can be derived from 

known results on P-F perturbation theory [4].  The 

corresponding expansions allow us not only to evaluate PoA 

(8), but also to develop and evaluate practical inefficiency 

mitigation techniques through combination of regulations and 

incentives.  Broadly speaking, regulations/incentives should 

force/incentivize “systemically important” nodes to invest 

more in the recovery capability.  “Central planner,” being 

capable of measuring the aggregate loss due to contagion 

aveave

agg

ave pNhh : , where the portion of infected nodes is 

iiave pNp  1
 and the overall average node loss due to 

infection is )()(: 1 cphNph iiiaveave  
, mandates 

penalty/payment to each node Ni ,..,1  according to this 

node centrality measure i  where 1 ii . Specifically, the 

central planner imposes penalty on node i  equal to 

iiavei hph   if iiavei hph   or provides payment 

aveiii hhp   to node i  if iiavei hph  . 

We show that for a general network, the properly defined 

centrality measure i  can be expressed in terms of 

eigenvectors of matrix 
N

jiiji AB 1,)(   .  For a random 

uncorrelated network, where for each node Ni ,..,1  

infection loss ih  and expected recovery time as a function of 

this node investment c , )(ci  depend only in this node degree 

 


ij iji Ad , we derive explicit expressions for the selfish 

equilibrium investments (5), infection probabilities (6), and the 

optimal centrality measure i , such that penalties/payments of 

iiavei hph   eliminate inefficiency by transforming 

competitive equilibrium in the socially optimal equilibrium.  
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