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Abstract 

Additive manufacturing (AM) technologies continue to mature, evolving into stalwarts of high-end production lines, 

particularly with metals AM. Technology maturation has been facilitated by efforts in materials characterization, 

process sensing, and part qualification, among others. Advancements have been accompanied by a proliferation of 

AM data that is creating many new learning opportunities that have yet to be realized, hindered by a lack of curation 

and sharing. Data is often being generated in silos; associated with a specific time, process, material, location, etc. 

This manuscript investigates the state of data curation and analytics in AM. It begins by investigating AM data types 

and how this data is currently generated, curated, and shared. It then looks toward the future, where improvements in 

data curation will support emerging analytics. Finally, short-term needs and long-term opportunities are discussed, 

outlining future directions in data analytics for AM. 

1 Introduction 

In recent years, metals additive manufacturing (AM) 

technologies have established themselves as a stalwart 

of advanced manufacturing efforts.  While AM 

technologies have long shown promise in realizing 

design freedoms, it has not been until recently that these 

technologies were seriously considered as production 

alternatives.  Success stories from early adopters are 

demonstrating practicality and continuing to drive AM 

technologies into mainstream manufacturing as viable, 

profit-driven production technologies. Industry 

investments in metals AM have increased substantially 

in recent years and show no signs of stalling [4].   

While initial investment has long been an entry barrier 

to metals AM, machine investment is only a portion of 

this cost.  Much of the upfront costs can be attributed to 

“ramping up” activities, including the training and 

experience necessary to realize production-quality parts. 

The development of in-house expertise has been a 

distinguishing factor in determining maturity levels of 

AM practitioners.  Improved understanding of the 

design-to-product transformation is necessary to 

overcome these barriers that hinder market entry and the 

capability to manufacture original and one-off designs.   

Towards a better common understanding of AM 

processes, many efforts have focused on standards 

development, establishing specifications and 

communicating best practices in AM [5].  In parallel, 

significant investment has been made in measurements 

to reduce overall process uncertainty in AM, including 

design, material, process, and part characterization. 

Here we focus on the offshoots of these measurement, 

as AM characterization is introducing large amounts of 

new datasets from disparate sources.  However, 

generating data and gaining knowledge from the data 

generated are quite separate matters. 

Data analytics are critical to managing process 

variability and maturing AM processes.  However, 

processing data can be a tedious task, and often 

becomes a limiting factor of the value of datasets 

produced.  Studies have shown that only 30 percent of 

production data collected is also analyzed [6].  With 

new datasets being generated with domain-specific 

context, AM provides a unique opportunity to 

significantly increase that number.  Recent 

advancements in software and informatics technologies 

are well positioned to capitalize on this proliferation of 

data.  

This paper investigates new trends in AM data 

generation and methods to improve how AM data is 

leveraged.  To increase data usage we must understand 

what the data sources are, what processing is necessary, 

and where the opportunities lie.  Linking datasets across 

a build will provide new insight into the design, 

manufacture, and qualification details of an additively 

manufactured part.  Compiling this data across builds 

promises to provide new insight into process control and 

process improvement.  

2 Background 

A signature trait of today’s advanced manufacturing 

processes is the ability to incorporate data into decision 

making.  This incorporation includes measuring process 

performance, establishing performance baselines, 

integrating predictive analytics, defining performance 

metrics, and assessing quality, among others.  AM, as 

perhaps the most “digital” of these advanced 

manufacturing technologies, stands to significantly 

benefit from advancements in how data is captured, 

curated, managed, and incorporated into decision 

making. 

A single, unifying, characteristic of almost all AM data-

driven activities is the desire to better understand 



performance at each stage of an AM lifecycle [7].  

Digital threads have been explored to establish 

provenance of part or process behaviors at given points 

of time, and their aggregates [8]. However, AM 

measurements are creating new data management 

challenges with increased levels of detail and new 

representation requirements of data types such as time 

series data and image registrations.  The lifecycle stage-

driven perception of a digital thread is being challenged 

as datasets increase in complexity. 

New AM data requirements are often introduced from 

the bottom-up as new measurements are taken, 

diverging datasets across stages of the design-to-product 

transformation. Silos of disparate data become 

representative of ongoing data collection, with types of 

data varying from voltage signals to light intensities to 

images to statistical analyses to vectors to graphs to 

voxels.  While the large amount of data clearly has 

much to offer, extracting value is the challenge now 

faced. What has yet to be established, but is emerging, is 

an emphasis on top-down configurations of these new 

sets of data. 

Big data and related concepts are teaching us that as we 

collect new information there is always knowledge to be 

gained, even in the most unexpected places [9].  By 

emphasizing the learning potential of available datasets, 

new opportunities for gaining knowledge emerge.  

Significant hurdles must be overcome to effectively 

curate incoming AM data and fully exploit analytic 

opportunities.  The next section discusses the datasets 

being generated across the lifecycle of an additively 

manufactured part, from raw material to final part.   

3 Emerging Data 

This section focuses on data collected from metals AM, 

particularly metal powder bed fusion.  The datasets are 

separated into three subsections: feedstock material, in 

situ measurements, and ex situ measurements.  This data 

may be collected through experiments, or in part 

production, to establish a greater empirical foundation.   

3.1 Feedstock Material 

The characterization of AM feedstock material has 

become increasingly advanced.  Common powder 

measurements include powder size distribution and 

various flowability, morphology, and rheology 

measurements.  New measurements and measurement 

techniques continue to emerge. 

Often described globally, powder size distribution and 

powder bed density are increasingly studied at various 

locations of the build volume [10].  Powder flow 

measurements, to study how powder spreads during the 

build, include the use of optical cameras mounted in a 

build chamber or on a recoater blade. Digital image 

correlation (DIC) measurements are capturing spread 

direction and powder velocity.  Other powder spreading 

measurements include stiffness, coulomb damping, 

rolling friction, coefficient of restitution and angle of 

response during a powder sweep. 

Characterization of powder particles includes chemical 

analysis (mass spectrometer) and morphology (X-ray 

Computed Tomography).  Rheometer measurements 

have expanded to include metrics such as: total energy, 

permeability, torsion, normal force, and apparent 

density. Laser flash systems are measuring thermal 

properties of powder, including thermal diffusivity. 

Humidity and moisture measurements are studied 

during storage and processing.  

Each of these measurements play a key part in 

characterizing feedstock powder, but their 

interrelationships, and how they affect the quality of a 

build, are not yet clear. 

3.2 In Situ Measurements 

Various in situ measurements are taken during the AM 

process, including those related to the material, process, 

and part.  Measurements may come from both part 

production and experimental builds. 

Material Layer- Layer-by-layer material monitoring 

provides insight into the state of feedstock material 

immediately before it is processed.  In powder bed 

fusion, layerwise optical imaging using cameras above 

the build platform provides insight into the powder 

spread before processing. During spreading, 

measurements of the powder surface and of spreading 

angles are available with a profilometer.  Layering 

instruments may also be monitored, such as the 

acceleration and vertical displacement of a recoater 

blade. 

Melt Pool- Melt pool monitoring techniques are sought 

as a means for evaluating process parameters and 

providing insight into the final part during process time.  

Common melt pool measurements include: melt pool 

temperature, melt pool cooling rates, melt pool size, and 

melt pool shape. 



High-speed thermal imaging cameras are used to 

measure light intensity for given spatial correlations, a 

simplification of temperature measurements (rather than 

true temperature).  Supported measurements include 

melt pool temperatures, cooling rates, and 

generalizations of melt pool dimensions.  Experimental 

studies (Figure 1) have investigated the effect of varying 

power, velocity, and scan strategy on melt pool 

dimensions and melt pool shape [1].  

Photodetectors are used to detect light intensity from the 

build chamber (radiance over build volume) during the 

build and outputting voltage readings.  Melt pools are 

being monitored with light-sensing cameras equivalent 

to a photodetector array.  These cameras, coaxial with 

the laser path, are able to generate real time melt pool 

images and can provide data on melt pool shape, length, 

width, and location [11].   

Measurements to help understand melt pool behavior 

are becoming increasingly advanced.  Reflectance and 

emittance measurements of a melt pool are being 

measured with spectral direction emissivity methods.  

Emissivity, in combination with reflectance and 

radiance, has been measured to calculate true 

temperatures of a melt pool [12].  Emissivity values are 

specific to the AM process and measurement taken, with 

values dependent on material, measurement wavelength, 

melt pool temperature (energy density), direction (angle 

of observation) and surface characteristics (surface 

roughness).   

Part- Part measurements taken in process are being 

directly correlated with final parts.  Thermal 

measurements are providing insight into part cooling 

behavior, and optical measurements are being adopted 

for early defect detection.   

3.3 Ex Situ Measurements 

Measurements on a final part are critical for testing and 

qualification purposes. Additional measurements are 

often made on a witness specimen or witness coupons.  

These measurements may be destructive, as seen with 

mechanical testing, or non-destructive, as seen with 

scanning. 

Surface Measurements- Surface measurements are used 

to qualify against specifications, correlate surface 

quality with process performance characteristics, and 

provide ex-situ characterization of melt pool surfaces 

and tracks, among other applications. 

Outside of revisiting existing measurements, new 

surface characterizations are also being explored. 

Profile measurements, using techniques such as 

Scanning Electron Microscopy (SEM), allow detailed 

comparisons between modeled and produced parts. 

Datasets include surface images, surface height/ profile 

measurements, and information about other surface 

characteristics such as cracks and partially melted 

particles [13]. 

Microstructure Measurements- Ex situ measurements of 

part microstructure provide data for correlation with 

material and process measurements and can provide 

insight into part performance. These measurements, 

using methods such as SEM (Figure 2), support the 

evaluation of microstructure shape including grain 

orientation, grain size, and grain morphology of sample 

specimens. 

Electron backscatter diffraction (EBSD) and neutron 

diffraction techniques are used to measure lattice 

spacing in atomic structures.  The shape of a stressed 

unit geometry can be used to calculate stress and strain 

tensors from which residual stresses can be derived.   

Phase-specific stress/ strain measurements provide 

insight into how changes in crystalline phases affect part 

properties.  The study of phase changes provides insight 

into the effectiveness of post processes used for stress 

relief, including heat treatment-induced phase 

transitions. 

X-ray Computed Tomography (CT) measurements- X-

ray CT imaging measurements are in the form of 

grayscale, voxel-based images (voxels located through 

coordinates) that can be translated to other formats such 

as STL.  X-ray CT imaging allows for measuring 

Figure 2: Microstructure images from [2]. 

Figure 1: Time-series melt pool data from [1]. 



internal surfaces and volumes. Obtained images will 

vary based on material and scan parameters (e.g. 

voltage, line, magnification, face). 

X-ray CT images (Figure 3) are used to identify and 

characterize part defects, including voids, porosity, 

features, and microcracks. Some characterizations are 

more challenging than others, such as with a “spider-

web” like porosity with no well-defined shapes. 

X-ray CT allows for the study of failure due to defect 

propagation initiated by voids.  Mechanical testing (e.g. 

axial loading) of defect-induced specimens can be 

performed within an X-ray CT to provide insight into 

how pockets/shapes fail, essentially resulting in time 

series X-ray CT imaging. 

3.4 Analytics from the Bottom-Up 

Bottom-up measurements are often taken with specific 

requirements and analytics tasks.  These tasks range 

from assessing equipment performance to assessing 

process behaviors to establishing fundamental AM 

correlations.  

Model validation is a common application of 

measurements driven by bottom-up approaches. 

Thermal measurements are used to validate melt pool 

models.  DIC measurements can validate powder 

spreading models. EBSD measurements help predict 

geometric errors and distortion due to residual stresses 

while validating distortion and stress models. 

Often with multiple ways to measure a specific type of 

process behavior, measurements are sometimes desired 

to have insight into how different measurement types, or 

equipment types, compare. For instance, comparison of 

a thermal camera signature to a photodetector signature 

may be desired to see how well the measurements 

correlate.   

When comparing in situ measurements with ex situ 

measurements, analytics provide insight into process 

controllability.  For instance, in investigating scan 

strategies, correlations can be made between in situ 

(size, shape, temperature) and ex situ melt pool 

measurements (chevron, depth, microstructure, 

porosity).  Surface measurements are being mapped to 

process characteristics, such as laser power and scan 

path.   Ex situ track images provide information on scan 

patterns, track paths, cooling, texture, and melt pool 

profiles. Powder rheology measurements are correlated 

with powder spreading behaviors.  Each of these 

examples provide insight into process control. 

Perhaps the most sought after analytic opportunity, and 

one that requires both bottom-up and top-down 

approaches, is establishing expanded correlations 

between materials, process, part, and geometry.  For 

instance, mechanical-microstructure property 

relationships are studied to identify correlations with 

part performance. Correlations between thermal history 

and microstructure lead to better understanding of how 

changes in microstructure occur.   

While analytics already play an essential role in 

understanding AM processes, we are far from realizing 

the full learning potential of the data being collected.   

4 Making Sense of it all: The Top-Down 

Approach 

The requirement of a more top-down approach to AM 

data curation and analytics is based on the premise that 

to effectively utilize the enormously populous, yet 

greatly disparate, datasets, actions must be taken prior to 

the onset of data creation and curation. The goal is to 

ensure that data is curated in a manner that enables 

actionable, homogenously characterized data types to 

support increased analytic opportunities.  

Reconciling disparate data types can be a daunting task.  

When working with many unknowns, asserting common 

references is problematic.  The top-down approach 

offered here seeks to provide baseline references driven 

by domain nomenclatures, the domain being additive 

manufacturing.  By initially constraining datasets, 

though abstractly, we can begin to label [14] the types 

of data being generated from the top-down.  This 

approach seeks to quickly assert nomenclatures and 

associativity with datasets as the process dictates.   

Support for data characterization is perhaps best 

provided by advanced informatics techniques and 

algorithms, such as those associated with machine 

learning and neural networking, and enhanced 

representations, such as those provided through 

semantics and category theory.  

Using the concepts just discussed, a top-down 

methodology for curating and analyzing AM data is 

proposed (Figure 4). 

   Figure 3: X-ray CT images from [3]. 



Establishing a Common Reference Structure- A major 

challenge in effectively analyzing AM data is first 

establishing common references for how data is stored 

and accessed.  With the data types varying significantly, 

challenges may come from software capabilities and 

data structure.  The homogenization of heterogenous 

datasets requires some commonly shared identification 

mechanisms so that data can be effectively identified 

and labeled. A key to finding any common reference is 

utilizing structures that provide domain context and 

allow for controlled data label convergence.  

One method for creating such structures is the adoption 

of ontology, where concepts can be explicitly defined 

and related.  The explicit formalization of ontology 

supports well-structured definitions, and the 

contextualization of data, although the characterization 

of the data types remains a challenge.  The hierarchical 

nature of the ontology supports the abstraction and 

subsumption of data labels, and thus the reconciliation 

of data types through labels.  

Labeling and Registration- The post processing of raw 

data often necessitates human intervention and the 

methodical interpretation of datasets, a time-consuming 

process.    Here we refer to labeling [14] as a 

mechanism for augmenting raw data with specific 

attributes or characteristics.  The more attributes 

assigned to a piece of data or dataset, the better 

characterized the data becomes.  Well-characterized data 

is essential for data analytics, as the characteristics 

provide the common context on which an analysis can 

be performed.  Without this context, the meaning of the 

data can become lost, thus making analytics ineffective.   

The time commitment of augmenting raw data can 

significantly limit the availability of data, especially 

time-dependent data.  Recent advancements in 

computational techniques such as machine learning 

promise to lessen our reliance on human interpretation.    

Automation in the labeling process will effectively 

increase analytics opportunities.  

One step beyond labeling is the process of data 

registration.  Data registration allows data, such as 

images, to be linked through a single coordinate system.  

Figure 5 depicts what such a concept could mean if 

comprehensively applied to AM data.  The datasets are 

registered across time (t), from model, to build data, to 

layer data, to process data, to microstructure data to X-

ray CT data as a means to trace the evolution of a single 

part.  This example of exhaustive traceability can lead to 

a better understanding of how defects in parts are 

formed. 

Data Federation- The centralization of large datasets 

can quickly become unmanageable.   Additionally, 

disparities in data types sometimes necessitate 

alternative storage methods.  Utilizing data federation 

techniques is a necessary step to realizing the learning 

potential offered by AM datasets.  Data federation [15] 

allows data stored in various locations to be accessed as 

a sole data source, a notion critical for big data 

analytics.  

Given the variability demonstrated by AM processes, 

collaborative efforts are often sought to reduce 

individual investments.  The concept of data federation 

facilitates collaboration, as various entities may share 

dispersed information and localized expertise.   

Analytics- While AM data curation has long been a 

topic of interest, the advanced levels discussed here are 

not easily realized.  However, they are necessary steps 

to take advantage of advanced analytics techniques that 

are becoming increasingly available.  The larger and 

more diverse the datasets, the greater the potential to 

learn from them.  While analytics opportunities exist 

within the objective-driven, bottom-up approach, 

greater opportunities are available.  A top-down 

approach to data curation and analysis enables more 

objective learning approaches, where patterns may 

initially be sought irrespective of labels and 

characterization.  Deep learning and neural networking 

techniques support such approaches, and properly 

preparing for such approaches is essential to realizing 

the upcoming opportunities.    

Each of the steps described in Figure 4 are attainable 

with today’s tools.  While much upfront investment is 

required to set the stage for new analytics opportunities, 

the payoffs are significant.  Training methods with the 

ability to label and classify datasets will provide the 

instantaneous enrichment of new datasets.  Data patterns 

will provide new insight into AM correlations and 

material-process-part relationships.  Experimental and 

physics-based data can become complementary, feeding 

into new process control opportunities. 

Figure 4: A top-down framework for AM data analytics. 

    Figure 5.  Data registration across time t. 



5 Discussion 

Until now, much of the contents of this paper have 

focused on emerging datasets and upcoming analytics 

opportunities often associated with big data.  Big data 

techniques have demonstrated to be broadly applicable 

and extremely informative when correctly applied.  

Such approaches have the potential to revolutionize how 

data is used in manufacturing.  However, most of the 

techniques discussed are susceptible to failure when 

data is mischaracterized or mislabeled.  Methods are 

needed to guide, govern, and control the application of 

advanced analytics.  Methods are also need to control 

data feeds, or to separate the collection of useful data 

from what may be considered valueless. 

Closing the loop on the framework described in Section 

4 requires determining and restricting behaviors at 

multiple scales.  Consistently monitoring the 

conformance of datasets within the set constraints is 

important. The methods described can be applied in 

both sequence and in parallel, where errors can easily 

propagate and can become difficult to identify.  Such 

outcomes restrict real time applications of data 

analytics.  Desired scenarios support the generation and 

curation of data from the bottom-up while ensuring 

conformance from the top-down.  Ideally a 

metalanguage provides the constructs with the ability to 

check for conformance across each of the steps 

described in Figure 4.  

Metalanguages such as category theory can be applied 

to formally constrain interpretations of information, 

including those represented as disparate data and 

datasets.  As a metalanguage based on mathematical 

formalisms, category theory has the ability to 

mathematically restrict the data and information flow 

outlined in Figure 4, thus constraining and controlling 

these transitions. Establishing such trust is crucial to 

taking the next steps in AM data analytics, where 

automation could be leveraged in applications such as 

inline control and programmed material behavior.  

6 Summary 

Additive manufacturing technologies have made 

significant advancements over the past five years.  No 

longer viewed as only for toys or prototyping, 

significant investments have been made into maturing 

the technologies.  One of the byproducts of these 

investments has been the enormous amount of data 

generated.  This data will play a crucial role as AM 

technologies continue to mature.  This paper 

investigated the characteristics of this emerging data 

and proposed a top-down methodology for curating this 

data in a way that will open new data analytics 

opportunities in the future. 
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