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Quantum critical singularities in two-dimensional metallic XY ferromagnets

Chandra M. Varma
Department of Physics, University of California, Riverside, California 92521, USA

W. J. Gannon and M. C. Aronson
Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA

J. A. Rodriguez-Rivera and Y. Qiu
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

(Received 1 October 2017; revised manuscript received 11 February 2018; published 20 February 2018)

An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling
function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function
near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by
comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY).
The calculations are motivated by the measured properties of the metallic compound YFe2Al10, which is a
realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling
function as well as the singularities measured in the experiments are given by the theory without adjustable
exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-
QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend
credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical
properties of diverse systems.
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I. INTRODUCTION

YFe2Al10 is nearly tetragonal, with a divergent uniform
magnetic susceptibility at low temperatures with field applied
in the a-c plane but a constant value at the same temper-
atures for fields applied along the b axis [1]. There is no
observed anisotropy of the susceptibility within the a-c plane.
These results suggest that the metal is accidentally close to
a ferromagnetic quantum critical point and that the relevant
model for criticality is the 2D-XY model. The specific heat
divided by temperature is logarithmic in temperature. We show
here that the singularity in the susceptibility and the specific
heat together and the singularity in the frequency/temperature
dependence of the correlations [2] and their contrast with the
momentum dependence are consistent with the recent solution
of the 2D-DQXY model.

Classical 2D FM transitions of the Berezinskii, Kosterlitz-
Thouless [3,4] variety at finite T have been found in some
insulating compounds in the past [5]. YFe2Al10 appears to
be the first metallic compound to be very near a planar
ferromagnetic quantum transition.

II. RESPONSE FUNCTION OF A 2D XY MODEL
NEAR QUANTUM CRITICALITY

The 2D-dissipative quantum XY model describes the
physics of interacting quantum rotors lying in a plane and
includes dissipation due to transfer of energy to other exci-
tations. It is specified by the action given, for example, by
Eq. (1) in Ref. [6]. Without dissipation, the phase diagram

and the correlation functions of the quantum XY model in 2D
belong to the classical 3D XY universality class. But in a metal,
the dissipation introduced by coupling of the fluctuations to
corresponding incoherent fluctuations of the fermions, leads
to a much richer phase diagram [6–8]. A theory of the
phase diagram and of the quantum-critical fluctuations has
been derived and tested by quantum Monte-Carlo calculations
[6,9,10]. The fluctuations in such theories present a new
paradigm in quantum critical phenomena. The conventional
theories of quantum-critical phenomena [11,12] are based on
anharmonic soft spin fluctuations, which are extensions of
the theory of classical dynamical critical phenomena [13],
applicable to models of the Ginzburg-Landau-Wilson type.
In such theories, the frequency and momentum dependence
of the correlation function are always entangled and a finite
dynamical exponent z given by the dispersion of the spin-wave
excitations in the presence of dissipation relates the spatial and
temporal correlations. A quite different class of correlation
functions are found for the 2D-DQXY model because the
critical properties are determined not by spin-wave excitations
but by topological excitations in space and time.

The 2D-DQXY model can be exactly transformed [9,14]
to a model of orthogonal topological charges, warps, and
vortices. Warps interact with each other in (imaginary) time
and are essentially local in space while the vortices interact
purely in space. The correlation function of the order param-
eter eiθ(r,τ ) of the 2D-DQXY model have been derived by
quantum Monte Carlo [6] which also checks their relation to
the correlation functions of warps and vortices. The model
transformed to interacting topological excitations has also been

2469-9950/2018/97(8)/085134(5) 085134-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.085134&domain=pdf&date_stamp=2018-02-20
https://doi.org/10.1103/PhysRevB.97.085134


VARMA, GANNON, ARONSON, RODRIGUEZ-RIVERA, AND QIU PHYSICAL REVIEW B 97, 085134 (2018)

solved analytically [15]. The correlation function is found in
an extensive region of parameters in which the proliferation of
warps determines the criticality to be,

C(r,τ ) ≡ 〈eiθ(r,τ )e−iθ(0,0)〉 ≈ χ0 log(r0/r)e(−r/ξr ) 1

τ
e
−( τ

ξτ
)
. (1)

The three especially note-worthy features of (1) are (i) it is
separable in its r and τ dependence, (ii) its thermal Fourier
transform at criticality, when ξτ → ∞ has the ω/T scaling
[9], introduced in critical phenomena in Ref. [16] and termed
“Planckian” [17], and (iii) that [6,15]

(ξr/a) = log (ξτ /τc). (2)

This means that the dynamical critical exponent z is effectively
∞. ξτ has an essential singularity as a function of the dimen-
sionless dissipation parameter α but an algebraic singularity
as a function of the dimensionless parameter K̃ ≡ √

KKτ .
Here K is the Josephson coupling and Kτ is the kinetic energy
parameter in the quantum XY model. On the disordered side
of the QCP, ξτ is given by,

ξτ /τc = e
√

cαc/(αc−α), at constant K̃, and

=
( K̃c

K̃c − K̃

)ντ

, at constant α; ντ ≈ 1/2. (3)

c is a constant of O(1) and τc a short-time cutoff. If the
transition, as expected, is driven by (K̃ − K̃c), the logarithmic
dependence of the spatial correlation function may lead to a
very short observed correlation length unless the sample is
tuned to very small values of (K̃ − K̃c), and other effects, such
as disorder do not change the asymptotic critical properties.

At criticality, i.e., for ξ−1
τ = ξ−1

r = 0, the thermal Fourier
transform of the correlation function is

C(q,w,T ) ∝ 1

q2
tanh

ω

2T
, (4)

with a high frequency cutoff. For finite ξτ and ξr the infrared
singularities are cut off and their form is given in the Appendix
in Ref. [6].

III. SCALING FOR THE FERROMAGNETIC QUANTUM
XY MODEL IN A FIELD

The magnetic field B⊥ in the plane couples linearly to the
order parameter and serves as a cutoff to the quantum critical
regime. To address the experimental results, we first present a
scaling theory for the correlation function in a magnetic field
and connect the results to the calculated form, Eq. (1) derived
at B = 0.

A novelty is to derive a scaling form of the correlation
function when the spatial correlations depend logarithmically
on the temporal correlation length and neither may bear power-
law relations to the control parameters. Consider the response
of the 2D-XY ferromagnet with a uniform field B in the easy
plane at a temperature T to a small applied time and space
dependent field h(r,t), also in the easy plane. Follow the usual
process of scaling for the correlation function on taking the
derivative of logarithm of the partition function with respect to
h(r1,τ1) and h(r2,τ2), r = |r1 − r2|,τ = τ1 − τ2, and scale the
space and time metric together with the scaling operators in the

action so as to keep the singular part of the partition function
invariant. The space metric is expanded by the correlation
length ξr and the time metric by ξτ . The renormalization group
eigenvalue for B⊥ on scaling time is defined to be zb.

C(r,τ,T ,B⊥) = ξ−2d
r ξ−2

τ ξ 2zb

τ χ

(
r

ξr

,
τ

ξτ

,T ξτ ,B⊥ξzb

τ

)
. (5)

The q = 0,ω = 0 limit of the correlation function is found
by integrating over r and τ . Divided by T , this gives the
temperature and magnetic field dependence of the static uni-
form susceptibility, Eq. (6). The integration over the space
variable brings a factor ξd

r , as usual. At this point the special
properties of the results in (1) may be used. Since the temporal
correlation function is ∝1/τ at criticality, integration over τ

can produce at most only logarithmic corrections, which may
be neglected to begin with in comparison with the rest. Also,
since ξr ∝ log ξτ , the space dependent prefactors may also be
neglected to logarithmic accuracy. So we get

χ (T ,B⊥) ≡ dM(T ,B⊥)

dB⊥
= 1

T
〈cos2(θ )〉

= 1

T
C(q = 0,ω = 0,T ,B⊥)

= 1

T
ξ−2+2zb

τ χ
(
T ξτ ,B⊥ξzb

τ

)
. (6)

On re-scaling T ξτ → 1 to express ξτ in terms of T , one gets

χ (T ,B⊥) ∝ T (1−2zb)f1,χ

(
B⊥
T zb

)
, (7)

or equivalently

χ (T ,B⊥) ∝ B
(1−2zb)/zb

⊥ f2,χ (T/B
(1/zb)
⊥ ). (8)

On comparing (7) with the static susceptibility calculated from
(1) and again neglecting logarithmic corrections, we find that
the two are mutually consistent only if zb = 1. Given the
1/T factor in (6), the correlation function has an exponent
0 which is consistent with having logarithmic corrections.
Scaling cannot give the logarithmic corrections, which turn
out to be important in relation to experiments, as seen below.
We therefore explicitly calculate the magnetic susceptibility
by the Monte-Carlo technique using the procedure of Ref. [6]
for the dissipative quantum XY model.

A. Monte-Carlo calculations

The uniform magnetic susceptibility per unit cell is

χ (T ) ≡ 1

N2

N2∑
i

∫ β

0
dτ 〈M(i,τ )M(i,0)〉;

M(i,τ ) = cos(θi(τ )), (9)

where N2 is the number of unit cells on a lattice labeled by i.
This is converted to a form suitable for quantum Monte Carlo
calculations on a discrete space N × N and imaginary time
one-dimensional lattice τn of Nτ cells,

χ (T ) = 1

N2Nτ

N2,Nτ∑
i,n

〈cos(θi,n) cos(θi,0)〉. (10)
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FIG. 1. Comparison between the uniform magnetic susceptibility
χ = M/B of YFe2Al10 measured in a field of 0.05 T in the critical
a-c plane (red circles) [1] to fits to ∝T −1.4 (blue line) and the
form calculated from the correlation functions of the dissipative
2D-quantum XY model in this paper with τ−1

c = 160 K, (green line)
which is the approximate scale below which the divergent form
appears in the experiments. Also shown are direct calculation of
χ by Monte-Carlo method (black crosses), with temperature and
susceptibility scaled to the experimental data. Fits are performed for
T < 20 K with τ−1

c = 160 K as a fitted parameter in the theory for
the 2DXY model.

The calculation is entirely as in the calculation of the action
susceptibility, Eq. (10), of Ref. [6]. The discretization and
calculation procedure is also fully described there in Sec. II C.
τn = nδτ = nβ/Nτ . δτ = τc is the ultraviolet (short) time
cutoff. The temperature in the calculation is controlled by N−1

τ .
This has been calculated on a N2 = 50 × 50 lattice and with
Nτ ranging from 20 to 200. With an upper cutoff τ−1

c = 160 K,
this effectively gives results at discrete temperatures from 20
to 0.8 K. The results for χ (T ) are given in Fig. 1.

The black crosses in Fig. 1 are the result, and they compare
favorably to the measured uniform susceptibility χ , also shown
in Fig. 1. Motivated by the discussion above, we look for
logarithmic factors multiplying T −1. We find that the calcu-
lated susceptibility fits T −1 log2(T/ωc), where ωc = 1/τc is
the high energy cutoff given in Eq. (3). We also show the exper-
imentally derived function T −1.4, which mimics 1

T
( log T τc)2

very well over the range of experimental temperatures, with
τ−1
c = 160 K. The previously reported scaling analysis [1] is

purely phenomenological, with two critical exponents that are
determined by the experiments and with a spatial correlation
length, discussed below, which is in qualitative conflict with
experiments. In contrast, the logarithmic corrections found
here leave no parameter in the theory undetermined.

The experimental results [1] for the scaling of M(B,T ) in
YFe2Al10, previously fitted [1] to the scaling expression

−(d(M/B⊥)/dT )B1.4
⊥ ∝ F (T/B

(1−0.4)
⊥ ), (11)

are compared to the result

−(d(M/B⊥)/dT )
B⊥

log2(Bτc)
∝ fM

(
T

B⊥ log2(Bτc)

)
(12)

in Fig. 2.

Figure 2 shows that Eq. (12) gives an acceptable scaling
collapse, with a tiny offset of the field B → B ′, B ′ = B +
0.07 T and Bc = 100 T, the latter in reasonable agreement
with the value of τ−1

c = 160 K, using gμBBc = h̄/τc with the
Landé g factor taken to be 2 and μB the Bohr magneton. We
do not know the origin of the small offset of 0.07 T required
to best fit the data which spans the range up to 6 T; it may be
due to impurities in the sample.

B. Scaling of the free energy

The scaling for the free energy per unit volume may be
considered similarly

f (T ,B) ∝ T ξ−d
r ξ−1

τ �
(
T ξτ ,B⊥ξzb

τ

)
. (13)

This gives, using the same results as for the calculation of
magnetization, that

f (T ,B) ∝ T 2 ln2(T τc)�̃

(
B⊥

T/ log2(T τc)

)
. (14)

With (14), the results for M(T ,B⊥) and χ (T ,B⊥) derived above
from the correlation functions follow to logarithmic accuracy.
The specific heat divided by T at constant B⊥ has in addition to
a constant and a log(T ) term a log2(T ) term with a coefficient
that is 1/3 of the logarithmic term. The specific heat as a
function of magnetic field B⊥ similarly follows. Note the factor
T in (13). This is unimportant for classical transitions, where
it is replaced near criticality by Tc but essential to keep for a
transition with T → 0.

C. Dynamics

Consider now the extension of the correlation function,
Eq. (5), to obtain the frequency and momentum dependent
magnetic response function. In the absence of the detailed
Monte-Carlo calculations of the correlation function in a
magnetic field, one may guess on grounds given below that
the magnetic response function has the approximate scaling
form,

χ ′′(q,ω,T ,B⊥)

∝ log(
√

ω2 + (2kBT )2τc)√
ω2 + (2kBT )2

fχ

(
ω

T
,qa log(ξτ /τc),

B⊥
(T/ log(

√
ω2 + (2kBT )2τc)

)
. (15)

This follows the form of the derived correlation function (1)
except for the modifications necessary due to the scaling cor-
rections due to B⊥. The logarithmic term and its argument have
been chosen so that it reproduces the temperature dependence
of the calculated uniform magnetic susceptibility, derived by
using the Kramers-Kronig relation between the imaginary
part χ ′′(q,ω,T ,B⊥) and the real part at ω = 0, as well as
the magnetic field dependence of the magnetization derived
above.

Equation (15) may be put in various other forms as desired.
It follows that for finite B⊥, this divergence is cut off. It is pre-
dicted that together with ω/2T scaling of the form calculated in
microscopic theory to be of the form tanh(ω/2T ), with a cutoff
at ωc = τ−1

c , there should be singular prefactors. This has been
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FIG. 2. (a) The scaling of the uniform magnetization divided by field M/B as a function of temperature T measured at different fixed fields
B indicated in the figure to Eq. (11), as shown in Ref. [1]. Measurements were made for temperatures 1.8 � T � 30 K with the field in the
critical a-c plane. (b) Same data as (a), which can be scaled using Eq. (12), with a substitution of the external field B with B ′ = B + 0.07 T
and Bc = 100 T. Colors indicating different magnetic fields are the same as (a).

tested by inelastic neutron scattering as described in Ref. [2],
where it was fitted to the form (ω2 + π2T 2)−1.4/2 tanh (ω/T ).
As we see below, the data fits Eq. (15) equally well.

A comparison of Eq. (15) presented here to the energy
dependence of the measured dynamical susceptibility is shown
in Fig. 3 for ω � T . The correspondence between temper-
ature and energy revealed by a previous scaling analysis
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FIG. 3. The dynamical susceptibility χ ′′ at T = 0.1 K as a func-
tion of energy obtained by inelastic neutron scattering using the
MACS spectrometer at the National Institute For Standards and
Technology [18]. Data (red circles) were measured at a constant fixed
energy over a large area of q space, corrected for the Fe2+ form
factor, then integrated over four Brillouin zones that are out of the
critical (a-c) plane (along qK , parallel to the crystal b axis) and over
one Brillouin zone within the critical plane (along qL, parallel to the
crystal c axis) [2]. Measurements were made with a small bias field
of 0.025 T along the crystal a axis to suppress superconductivity in
the aluminum sample holder. Fits are made to the forms given by
Eq. (15) for E = h̄ω � kBT , so that χ ′′ ∼ E−1.4 (black line), and
(1/E)log2(Eτc) (green line), fixing (τ−1

c = 14 meV ≈ 160 K). Error
bars on data points represent one standard deviation.

[1] and the Kramers-Kroning relation [2] suggests that the
momentum-integrated dynamical susceptibility χ ′′ is a func-
tion of (1/ω)log2(ωτc) with a high energy cutoff ωc. Fixing
τ−1
c = 14 meV (≈160 K) gives the fit shown in Fig. 3, nearly

indistinguishable from the phenomenological E−1.4 power law
behavior used previously [2]. The correspondence of Eq. (15)
to the change in the dynamics in a magnetic field may be seen
in that paper.

On considering the q dependence, one encounters an inter-
esting discrepancy in relation to the experiments. The sample
is, not surprisingly, not exactly at criticality. The dynamical
measurements, both through neutron scattering and more
directly through the muon spin-relaxation rate [19] suggest
a low temperature cutoff in the experiments of about 1 K.
So ξ−1

τ ≈ 1 K. In experiments not exactly at criticality, T

and B⊥ should be replaced approximately by
√

T 2 + ξ−2
τ

and
√

B2
⊥ + B2

x with (gμBBx)2〈S2〉 ≈ ξ−2
τ , where (gμB)2〈S2〉

is a measure of the mean-square magnetic moment in the
fluctuations. Using τ−1

c ≈ 100 K, the corresponding cutoff in
the spatial correlation length ξr may be estimated using Eq. (2)
to be about four lattice constants. But the spatial correlation
length in neutron scattering experiments is only about a lattice
constant, although independent of temperature in accord with
the theory. A possible explanation [20] of such extreme spatial
locality while scale-invariant behavior is observed with long
temporal correlation length ξτ /τc of O(102) may lie in the
crossover due to disorder in quantum-critical problems with
large dynamical critical exponent z. This matter can be tested
by further experiments in samples closer to criticality. Tuning
closer to criticality may be difficult since using the second of
(3), which is the more likely applicable, ξτ /τc ≈ 102 implies
that already (1 − K̃/K̃c) ≈ 10−3.

IV. CONCLUDING REMARKS

These results test the theory of the 2 + 1 D-XY model in
considerable detail. In particular, the success of the results in

085134-4



QUANTUM CRITICAL SINGULARITIES IN TWO- … PHYSICAL REVIEW B 97, 085134 (2018)

explaining the singularities in the properties associated with
the free energy depends on the novel results of the theory that
the correlation function is the product of a function in space
and a function in time, and that the spatial correlations vary
logarithmically as the temporal correlations. The result that at
criticality the time dependence is proportional to 1/τ , i.e., has
the Planckian scalingω/T , has also been crucial. As may easily
be seen, these results cannot be obtained by simply putting the
dynamical exponent z → ∞ in the conventional dynamical
critical theory. Further tests of the theory require samples in
which the distance to quantum criticality can be systematically
changed, for example, by applying pressure, thereby observing
a longer spatial correlation length varying logarithmically as
the distance to the critical point.

ACKNOWLEDGMENTS

C.M.V. acknowledges with pleasure discussions with Joerg
Schmalian and Alexei Tsvelik. Special thanks are due to
Changtao Hou and Lijun Zhu who wrote the Monte-Carlo
routines used for the results shown in Fig. 1. Part of this
research was conducted at Brookhaven National Laboratory,
where W.J.G. and M.C.A. were supported under the auspices
of the U.S. Department of Energy, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH1886. Access
to MACS was provided by the Center for High Resolution
Neutron Scattering, a partnership between the National Insti-
tute of Standards and Technology and the National Science
Foundation under Agreement No. DMR-1508249.

[1] L. S. Wu, M. S. Kim, K. Park, A. M. Tsvelik, and M. C. Aronson,
Proc. Natl. Acad. Sci. U.S.A. 111, 14088 (2014).

[2] W. J. Gannon, L. S. Wu, I. A. Zaliznyak, W. Xu, A. M.
Tsvelik, J. A. Rodriguez-Rivera, Y. Qiu, and M. C. Aronson,
arXiv:1712.04033.

[3] J. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973).
[4] V. Berezinskii, Zh. Eksp. Teor. Fiz. 32, 493 (1970) [Sov. Phys.

JETP 32, 493 (1970)].
[5] S. T. Bramwell, P. C. W. Holdsworth, and M. T. Hutchings,

J. Phys. Soc. Jpn. 64, 3066 (1995).
[6] L. Zhu, Y. Chen, and C. M. Varma, Phys. Rev. B 91, 205129

(2015).
[7] E. B. Stiansen, I. B. Sperstad, and A. Sudbø, Phys. Rev. B 85,

224531 (2012).
[8] A Caldeira-Leggett form of dissipation is used in Refs. [6,9,10].

In the present context, this can be shown to come from the
coupling ∇θ , which represents the collective ferromagnetic spin
current, to the spin current of the incoherent fermions.

[9] V. Aji and C. M. Varma, Phys. Rev. Lett. 99, 067003 (2007).
[10] L. Zhu, C. Hou, and C. M. Varma, Phys. Rev. B 94, 235156

(2016).

[11] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism,
Springer Series in Solid-State Sciences (Springer-Verlag, Berlin,
1985).

[12] J. A. Hertz, Phys. Rev. B 14, 1165 (1976).
[13] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

(1977).
[14] V. Aji and C. M. Varma, Phys. Rev. B 82, 174501 (2010).
[15] C. Hou and C. M. Varma, Phys. Rev. B 94, 201101(R)

(2016).
[16] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams,

and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).
[17] J. Zaanen, Nature (London) 430, 512 (2004).
[18] J. A. Rodriguez, D. M. Adler, P. C. Brand, C. Broholm, J. C.

Cook, C. Brocker, R. Hammond, Z. Huang, P. Hundertmark,
J. W. Lynn, N. C. Maliszewskyi, J. Moyer, J. Orndorff, D. Pierce,
T. D. Pike, G. Scharfstein, S. A. Smee, and R. Vilaseca, Meas.
Sci. Technol. 19, 034023 (2008).

[19] K. Huang, C. Tan, J. Zhang, Z. Ding, D. E. MacLaughlin, O. O.
Bernal, P.-C. Ho, C. Baines, L. S. Wu, M. C. Aronson, and L.
Shu, arXiv:1801.03659.

[20] C. M. Varma, arXiv:1701.03853.

085134-5

https://doi.org/10.1073/pnas.1413112111
https://doi.org/10.1073/pnas.1413112111
https://doi.org/10.1073/pnas.1413112111
https://doi.org/10.1073/pnas.1413112111
http://arxiv.org/abs/arXiv:1712.04033
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1143/JPSJ.64.3066
https://doi.org/10.1143/JPSJ.64.3066
https://doi.org/10.1143/JPSJ.64.3066
https://doi.org/10.1143/JPSJ.64.3066
https://doi.org/10.1103/PhysRevB.91.205129
https://doi.org/10.1103/PhysRevB.91.205129
https://doi.org/10.1103/PhysRevB.91.205129
https://doi.org/10.1103/PhysRevB.91.205129
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevB.94.235156
https://doi.org/10.1103/PhysRevB.94.235156
https://doi.org/10.1103/PhysRevB.94.235156
https://doi.org/10.1103/PhysRevB.94.235156
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.94.201101
https://doi.org/10.1103/PhysRevB.94.201101
https://doi.org/10.1103/PhysRevB.94.201101
https://doi.org/10.1103/PhysRevB.94.201101
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1038/430512a
https://doi.org/10.1038/430512a
https://doi.org/10.1038/430512a
https://doi.org/10.1038/430512a
https://doi.org/10.1088/0957-0233/19/3/034023
https://doi.org/10.1088/0957-0233/19/3/034023
https://doi.org/10.1088/0957-0233/19/3/034023
https://doi.org/10.1088/0957-0233/19/3/034023
http://arxiv.org/abs/arXiv:1801.03659
http://arxiv.org/abs/arXiv:1701.03853



