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1. INTRODUCTION 

Virtualization is the dominant technology employed in enterprise data centers and those used for offering 
cloud computing services. This technology has resulted in what is called a virtualized infrastructure. From 
a computing and communication point of view, the two forms of virtualization that have made significant 
impacts are Server (or Hardware) virtualization and Operating System (OS) virtualization. Server 
virtualization is enabled by software called a Hypervisor —functionally, an operating system kernel with 
some additional kernel modules that provides an abstraction of the hardware, enabling multiple 
independent computing stacks called virtual machines (VMs), each with its own OS and applications, to 
be run on a single physical host. While access to CPU and memory (to ensure process isolation) are 
handled directly by the hypervisor (through instruction set (CPU) virtualization and memory 
virtualization respectively with or without assistance from hardware), it handles the mediation of access 
to devices by calling on software modules running either in the kernel or in dedicated VMs called 
Device-driver VMs.  This physical host is called a virtualized server or hypervisor host.  
 
Operating system virtualization, on the other hand, is enabled purely by using OS kernel-level features 
(e.g., namespaces, Cgroups, etc. in Linux OS distributions) that allow for the definition of encapsulated 
entities called containers, each running as an isolated process (i.e., hosting one or more applications) on 
the same OS kernel. The creation, configuration, and running of containers is enabled by software called 
container runtime, which makes direct Application Programming Interface (API) calls to the OS kernel 
for performing these functions. Thus, we see that hypervisor software provides abstraction of the 
hardware while container runtime software enables the creation of an artifact (called a container) that 
provides abstraction of the OS. 
 
The initial motivation for server virtualization—even before their deployment in data centers used for 
cloud services—is better utilization of hardware resources with the added benefit of reduced floor space 
and power consumption. After the advent of cloud services, virtualized servers have become the de facto 
component of data centers’ infrastructure, especially for those offering Infrastructure as a Service (IaaS). 
This is because a VM image, being a complete computing stack with its virtual hardware resource 
definitions and OS (called Guest OS) can be offered as a basic computing unit to the cloud service 
consumer (CSC) for this type of cloud service.  

Out of the two forms of virtualization referred to above (i.e., hardware virtualization and OS 
virtualization), the focus of this manuscript is on hardware virtualization and its resulting artifact 
virtualized server. The data center ecosystem consists of multiple virtualized servers with its hardware, 
the core virtualization software (the hypervisor), and VMs. The ecosystem, together with the network 
inside of each virtualized server (called virtual network) and the linking of virtualized servers, constitutes 
the virtualized server environment. The goal of this manuscript is to develop security assurance for all 
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components of a virtualized server environment. The approach adopted in this manuscript for realizing 
this goal is as follows: 

• Study the functions of various components in a virtualized server environment 
• Identify threats to the secure execution of those functions 
• Develop the security assurance measures to counter those threats  

For the hypervisor, which is the core component of the environment, there are multiple commercial 
product offerings. Since the objective of this manuscript is to outline product-agnostic security assurance 
measures, the approach adopted is to identify a set of baseline or canonical functions of the hypervisor 
that will form the basis for threat identification. 
  
The overall organization of this manuscript is as follows. In Section 2, a brief technology overview of 
components in a virtualized server environment is provided. The hardware functions in a virtualized 
server are briefly described in Section 3. Section 4 identifies and elaborates on the baseline functions of 
the hypervisor and the threats to those functions. The threat to the secure execution of VM-resident 
programs, such as Guest OS and applications, form the subject matter for Section 5. Section 6 describes 
typical virtual network configurations in a virtualized server and the protections required for those 
configurations. The security assurance measures for hypervisor, VM, and virtual networks are developed 
in Sections 7, 8, and 9, respectively. The security assurance for booting a virtualized server platform is 
described in section 10. Section 11 provides the summary and conclusions.  

2. VIRTUALIZED SERVER ENVIRONMENT – A TECHNOLOGY OVERVIEW 

From the perspective of this manuscript, a virtualized server environment consists of the following 
components: 
• A physical host, called a virtualized server or hypervisor host, with server virtualization software 

(hypervisor and its associated modules), along with multiple computing stacks (i.e., Virtual Machines 
or VMs) running on it. The hypervisor host has hardware extensions to assist virtualization. 

• A virtual network, or software-defined network, inside the virtualized server, consisting of software-
defined network devices. This network is configured with network segmentation techniques such as 
Virtual Local Area Network (VLAN) and overlay-based network (e.g., VXLAN) that span multiple 
virtualized servers and enable logical segmentation of the VMs distributed throughout the data center. 

A Virtualized server can have two different types of hypervisors: one that can be mounted directly on the 
hardware (called bare metal) and the other that requires an OS (called host OS) for its installation. These 
two types of hypervisors are also called Type 1 and Type 2 hypervisor, respectively. The VMs, also called 
Guests, host and run the application programs with the help of an OS (called the Guest OS). The 
virtualized server platforms, consisting of Type 1 and Type 2 hypervisors, are shown in Figure 1.   

In addition to classification based on the platform on which it is mounted (bare metal or host OS), 
hypervisors can be classified based on the type of virtualization they provide for devices. In one approach, 
called Full Virtualization, the hypervisor will expose the interface of a well-known hardware device that 
is available in the real world to the VM, and it will completely emulate the behavior of that device. 
Emulation allows the programs running in VMs to use the guest OS drivers that were designed to interact 
with the emulated device without installing any special driver or tool specified by the hypervisor vendor. 
In another approach called para-virtualization, the hypervisor provides an interface of an artificial device 



to the guest that has no corresponding hardware device. This artificial device is a software-only device 
that presents a lightweight interface designed and optimized to work in virtual environments. However, 
the performance improvement made possible with para-virtualization requires that the guest OS and 
device drivers be modified to communicate directly with the hypervisor through a special interface called 
hypercall interface. 

 

Figure 1:  Virtualized Server Platforms with Type 1 and Type 2 Hypervisor 
 

The hardware extensions in a hypervisor host assist virtualization through functions such as instruction 
handling and memory management. Hardware features, such as CPU/Instruction Set virtualization and 
memory virtualization, respectively, enable these functions and are described in detail in Section 3. 

All Physical hosts or servers are connected to the data center network (or become nodes of the data center 
network) using a physical device called a Network Interface Card (NIC). An independent computing 
stack such as a VM requires a similar connection to the networking infrastructure of the data center. This 
is enabled by an artifact called a Virtual NIC (vNIC), which is the software defined analog of the physical 
NIC (pNIC). In addition, since there are multiple VMs or containers inside a single physical host, there is 
the need to provide interconnection among the multiple VMs within it. This requirement necessitates the 
creation of a software-defined network within a physical host (called virtual network) with 
switching/bridging functions performed by software-defined entities (called virtual switches/virtual 
bridges), which are software analogs of the corresponding physical network devices. 

3. VIRTUALIZED SERVER HARDWARE FUNCTIONS  

As already stated, the hardware of a virtualized server provides two features to assist the virtualization 
function of the hypervisor: Instruction Set Virtualization and Memory Virtualization. These hardware-
based functions provided by chip vendors are mature technologies that have been utilized for more than a 
decade and whose known vulnerabilities have already been addressed. Therefore, no threats need to be 
considered for these functions. 
 



Instruction Set Virtualization: The processor architecture of the hardware is generally designed to operate 
OS instructions at a higher privilege level than the application instructions. However, in a virtualized 
server, the guest OS instructions cannot be executed at the highest privilege level (e.g., Ring 0 in x86 
architectures) since the hypervisor that mediates the access of various VMs to hardware resources of the 
virtualized server must operate at a higher privilege level than any guest OS. To facilitate this, hardware 
architectures (e.g., Intel, AMD1) provide two modes of operation (host and guest) for the processor, each 
with four hierarchical privilege levels (Ring 0 thru Ring 3). Additionally, among the two modes, the host 
or root mode has a higher privilege for executing CPU instructions than the guest or non-root mode, and it 
is in the former mode that hypervisor instructions are executed. The guest mode is used for executing 
instructions from guest OSs and VM-based applications.  

Contribution to Hypervisor Security Assurance Verification: By running the hypervisor in root mode and 
guest OSs in non-root mode at privilege or ring level 0, the hypervisor is guaranteed safety from at least 
any instruction set-type attacks by any Guest OS. This safety is ensured by allowing the hardware to 
trap privileged instructions from a guest OS to run in non-root mode. Additionally, when the hypervisor 
does not have to perform additional functions (e.g., translating sensitive instructions using techniques 
such as binary translation) for handling the instructions, the code executing with privileges is reduced in 
the hypervisor, making the trusted computing base (TCB) smaller and enabling better assurance 
verification. 

Memory Virtualization: Hardware-assisted memory virtualization is provided using two levels of page 
tables (Guest page table and Host page table). The guest page table, maintained by a guest OS, 
translates from guest virtual to guest physical addresses, whereas the host page table translates from 
guest physical to host physical addresses.  

Contribution to Hypervisor Security Assurance Verification: The availability of a hardware-based host 
page table eliminates the need for the hypervisor to generate and maintain shadow page tables, providing 
the same security advantage (i.e., smaller TCB) as for Instruction Set Virtualization. 

4. HYPERVISOR BASELINE FUNCTIONS AND THREATS 

The hypervisor is the core component in the virtualized server platform, and its baseline functions are as 
follows [1]: 
• HY-BF1: VM Process Isolation – The hypervisor, in addition to its software-based tasks, 

leverages the hardware extension features in two ways to enforce process isolation. First, it runs 
in higher privilege mode (i.e., host mode) and uses the special instruction vmrun to switch the CPU to 
lower privilege mode (i.e., guest mode) for VMs to begin execution. Second, before VMs start 
running, it creates a data structure called Virtual Machine Control Block (VMCB) for recording the 

                                                           
1 Any mention of commercial products or organizations is for informational purposes only; it is 
not intended to imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor is it intended to imply that the products identified are necessarily the best 
available for the purpose. 

 



execution state of VMs, and it leverages the memory management features (e.g., two layered page 
tables) of the hardware to enforce separation of memory address spaces for VMs.  

• HY-BF2: Devices Mediation & Access Control – Mediates access to all devices (e.g., Storage, 
Network, etc.) 

• HY-BF3: Execution of Guest Instructions through Hypercall Interface – This functionality is only 
applicable to para-virtualized hypervisors, which handle certain device access instructions from 
guests directly through its hypercall interface rather than through the combination of vmexit and host 
mode transition events.  

• HY-BF4: VM Lifecycle Management – Performs all functions including creation and management of 
VM images, control of VM states (Start, Pause, Stop, etc.), VM migration, creation of snapshots, VM 
monitoring, and policy enforcement 

• HY-BF5: Management of Hypervisor – Setting various configuration parameters, such as CPU and 
memory allocation logic, including those for the Virtual Network inside the hypervisor; also includes 
tasks such as updates and application of patches to hypervisor modules 

To execute the above baseline functions, different software modules are needed, which makes the 
hypervisor a non-monolithic software. The software module that carries out each baseline function along 
with the location in the overall virtualized server platform architecture where each resides is given in 
Table 1 below.  

Table 1: Hypervisor Baseline Functions & Deployment Locations 
Baseline Function Component 

(Software Module) 
Location 

VM Process Isolation (HY-
BF1) 

Hypervisor Kernel Either an OS kernel (along with a kernel module) 
itself or a component installed on a full-fledged 
OS (Host OS) 

Devices Mediation & Access 
Control (HY-BF2) 

Device emulator or 
Device driver 

Either in a dedicated VM (called Device-driver 
VM) or in the hypervisor kernel itself 

Execution of Guest 
Instructions through hypercall 
interface 
(HY-BF3) 

Hypervisor Kernel Pertain to only para-virtualized hypervisors and 
handled by hypercall interfaces in that type of 
hypervisor 

VM Lifecycle Management 
(HY-BF4) 

A management 
daemon 

Installed on top of the hypervisor kernel but runs 
in unprivileged mode 

Management of Hypervisor 
(HY-BF5) 

A set of tools with 
CLI (command line 
interface) or a GUI 

A console or shell running on top of the 
hypervisor kernel 

 
The tasks involved in implementing each of the above baseline functions are described in more detail in 
the following subsections and accompanied by statements of potential threats to secure execution of these 
tasks. However, the virtual network configuration tasks (in HY-BF5), including the set-up for VM 
network traffic monitoring (in HY-BF4), are discussed under a separate section (Section 6) due to their 
critical roles in the security of the entire virtualized server environment. 

4.1 Potential Threats to VM Process Isolation (HY-BF1) 
 



The threats to VM process isolation are the results of two primary causes [1]: 
 
Breach of Process Isolation – VM Escape: Major threats to any hypervisor come from malicious VM-
resident programs. These programs can subvert the isolation function provided by the Virtual Machine 
Monitor (VMM)/hypervisor to hardware resources such as memory pages. In other words, these 
programs can, under some conditions, access areas of memory belonging to the hypervisor or other VMs 
or devices (e.g., memory mapped devices) that they are not authorized to access. Examples of such 
attacks include some crafted applications in VM executing arbitrary code on the host OS [2] or VM 
programs accessing areas of memory that are not allocated to them, thereby causing corruption or 
information leakage [3]. Extreme attack scenarios may include VMs with malicious programs taking 
control of the hypervisor to install rootkits or attack other VMs on the same virtualized server. These 
threats are mainly due to code flaws in the hypervisor. 

Denial-of-Service to some VMs: Hypervisor offerings come with sophisticated CPU and memory 
allocation options. Improper use of these configuration options may result in some VMs hogging 
resources, resulting in denial-of-service or the inability to meet the critical availability requirement for 
some VMs.  

4.2 Potential Threats to Devices Mediation (HY-BF2) 
 
The applications executing in VMs need to access devices such as video output, network (for 
communication), or block (storage) devices. There are three common approaches to handling devices by 
virtualized servers: (a) Passthrough, (b) Emulation, and (c) Para-virtualization [4]. Out of these, the 
passthrough approach provides exclusive access to a device for a VM. Since this is not a scalable 
approach, it is adopted for VMs running specialized applications. The para-virtualization approach was 
generally designed for enhancing performance for accessing devices. In this approach, the hypervisor 
provides to the guest an interface of an artificial device that has no corresponding hardware counterpart. 
Therefore, it requires that the hypervisor and guest agree on an interface that takes into consideration the 
features of the specific hypervisor-guest combination. This naturally means that a generic guest OS 
device driver cannot be used, and a specially modified device driver is needed to be run in the guest. Calls 
from these special device drivers are directly handled by the hypervisor through its hypercall interface 
instead of the usual route of a driver call causing a vmexit. Because of the need to use customized device 
drivers for each environment, the difficulty of providing security guarantees to them (e.g., certification), 
and the fact that hardware extensions have substantially mitigated performance penalties in full 
virtualization, para-virtualization has limited deployments. This leaves the emulation approach to 
handling devices using full virtualization as the most commonly deployed technique in many production 
environments. 
 
The code for device emulation resides either in the hypervisor kernel or in a dedicated VM. Any I/O call 
from a guest VM application is intercepted by the hypervisor kernel and forwarded to this code since guest 
VMs cannot typically access the physical devices directly unless they are assigned to it. This code 
emulates devices, mediates access to them, and multiplexes the actual devices since each permitted VM 
has full access to the underlying physical device. 
 



The main threats with respect to devices mediation are: (a) Unauthorized access to memory regions by 
Direct Memory Access (DMA) capable devices due to faulty device driver code, (b) Unauthorized access 
to devices by VMs, and (c) denial-of-service due to monopolization of I/O bandwidth. 
 
4.3 Potential Threats to the Execution of Instructions by Hypercall Interface (HY-BF3) 

In hypervisors implementing para-virtualization, certain guest instructions (e.g., accessing devices by 
accessing memory areas assigned to memory-mapped devices) cause a trap directly into the hypervisor 
instead of through channels enabled by vmexit instruction. This mechanism is called a hypercall, and the 
portion of the hypervisor dealing with such instructions is called a hypercall interface. Lack of proper 
validation of those instructions (e.g., not checking the scope for an instruction that requests a full dump of 
a VM’s Virtual Machine Control Block, or not checking input values) would cause the entire 
virtualized server to crash. This is a hypervisor design vulnerability that must be addressed through proper 
validation and testing of the relevant hypervisor code rather than through any assurance measures in 
deployment. 

4.4 Potential Threats originating from VM Lifecycle Management (HY-BF4) 

In most instances, the lifecycle management operations on VMs are performed using commands 
submitted through a GUI or a scripting environment, both of which are supported by a management 
daemon at the back-end. This is a standard architectural paradigm for any management software. 
Vulnerabilities and potential threats are not virtualized server environment-specific and are therefore 
outside of the scope of this manuscript. Instead, the threat analysis in this context is to identify some VM 
lifecycle management operations that might be sources of potential threats for other baseline functions. 
This analysis reveals the following: 

• Retrieving and deploying VM images that do not conform to the enterprise security profile in the 
image library, including those with outdated guest OS versions and patches, could result in a potential 
breach of process isolation described in Section 4.1. Similar potential threats exist if VMs are 
instantiated from snapshots taken at a considerable time in the past. 

• Migrating VMs from one virtualized server to another (a process called VM Migration) involves 
transferring a running VM’s memory content and processor state. The execution of this operation 
without necessary safeguards such as encryption of migration traffic etc., could result in the operation 
of a compromised VM in the destination platform, thereby affecting all three aspects of security—
confidentiality, integrity and availability. 

 

4.5 Potential Threats to Hypervisor Host Administration (HY-BF5) 

The tasks under this function relate to the overall administration of a hypervisor host and software, and 
they are usually performed through user-friendly web interfaces or network-facing virtual consoles. 
Threats to the secure execution of these tasks are common in any remote administration and are therefore 
not addressed in this manuscript. However, the core requirement in a data center with virtualized servers 
is to have a uniform configuration for entire groups of hypervisors based on different criteria (e.g., the 
sensitivity of applications, line of business, clients in cloud service environments, etc.). Another 
requirement is to provide a safe network path for management traffic (packets containing administrative 
commands), considering that a portion of this network is a software-defined virtual network. 



 
5. THREATS TO THE SECURE EXECUTION OF VM-RESIDENT PROGRAMS 

The Guest OS and applications are the VM-resident programs that must execute securely in the presence 
of a higher privileged hypervisor software executing on the same hardware platform. The hypervisor is 
responsible for process isolation between VMs and the safe execution of each individual VM. However, a 
malicious or compromised hypervisor can be a source of threat to VMs for several reasons. First, the data 
structure that carries the execution state of VMs, called the Virtual Machine Control Block (VMCB), is 
created and handled by the hypervisor. Second, the hypervisor controls the nested page tables, which are 
really a pair of tables—one mapping from guest virtual addresses to guest physical addresses and the 
other mapping from guest physical addresses to host physical addresses. Thus, we see that a hypervisor 
can read and write the entire guest memory. By monitoring the execution state of a VM, it can also 
subject it to memory replay attacks [4].  
 
The predominant use case for virtualized server platform is in the Infrastructure as a Service (IAAS) 
cloud service. In this service, the cloud service provider (CSP) provides the hypervisor while the guest 
VMs host and run the cloud service customers’ (CSC) programs. A malicious hypervisor thus has the 
potential to affect the integrity and confidentiality of CSC’s resources such as data and applications. Since 
a single cloud data center often hosts multiple guest VMs from different CSCs, data belonging to several 
VM owners may be breached by a single hypervisor. Therefore, the hypervisor should be treated as 
untrusted software, and VMs in a cloud data center need to be protected from the hypervisor.  
 
The threats to the secure functioning of guest OS and VM-resident applications are by and large not 
unique to virtualized server platforms except for the fact that the VM executes as a lower privileged 
software, and its execution flow is controlled by the higher privileged hypervisor software.  
 
6. PROTECTION FOR VIRTUAL NETWORK CONFIGURATIONS 

To link the VMs inside a hypervisor host to each other and to the outside (physical) enterprise network, 
the hypervisor can define an entirely software-defined network called a virtual network. The components 
of this virtual network are: (a) one or more software-defined network interface cards, called virtual 
network interface cards (vNICs), inside each VM and (b) multiple software-defined switches, called 
virtual switches, operating inside the kernel of the hypervisor. The virtual switches have multiple ports, 
just like physical switches. One set of ports is used for connecting to the vNICs in VMs. The other set of 
ports, called uplink ports, are used for connecting the virtual switches to the physical network interface 
cards (pNICs) of the hypervisor host. Thus, a communication pathway is established for connecting VMs 
resident inside the same hypervisor host as well as to those resident in other hypervisor hosts. This then 
enables applications and guest OS instances running inside VMs to interact with computing, network, and 
storage elements on the data center’s physical network. The network traffic flowing inside a virtual 
network can broadly be classified as [5] 

• Management traffic: commands for hypervisor administration and VM lifecycle operations 
• Infrastructure traffic: network packets generated during VM migration 
• Inter-VM traffic: communication between applications or application tiers running in VMs 

 



Thus, the entire network infrastructure in a virtualized server environment consists of a virtual network 
inside each hypervisor host and the physical datacenter network linking the various hosts. The threats to 
this network infrastructure are no different than those encountered in environments that consist of only 
physical (non-virtualized) hosts. However, defining the virtual network inside each VM entirely by 
software requires a different set of configurations (virtualized server-specific) and solutions (virtual 
firewalls) for ensuring secure communication. 
 
There are four common virtual network configuration areas that have a bearing on the security of the 
network infrastructure in a virtualized server environment [5]. 

• Network segmentation 
• Network path redundancy 
• Firewall deployment and configuration 
• VM traffic monitoring 

 
A brief overview of the components and techniques involved in the above four configuration areas is 
necessary to arrive at security assurances associated with their deployment. 
 
Network segmentation: This is a fundamental network configuration in any medium to large data center 
used for supporting enterprise IT resources or used for offering cloud computing services. This is due to 
the need for logical separation of applications/VMs with different sensitivity levels or belonging to 
different organizational entities (departments) or clients (as in cloud service environments). The two 
techniques commonly found in virtualized server environments are Virtual Local Area Network (VLAN) 
and Overlay-based virtual networking [5]. 
 
VLAN is a network segmentation technique that creates broadcast domains within a large data center 
network. In a data center with all physical (non-virtualized) hosts, a VLAN is defined by assigning a 
unique ID called a VLAN tag to one or more ports of a physical switch. All hosts connected to those ports 
then become members of that VLAN ID, creating a logical grouping of servers (hosts), regardless of their 
physical locations, in the large flat network of a data center. The concept of VLANs can be extended and 
implemented in a data center with virtualized hosts using virtual switches with ports or port groups that 
support VLAN tagging and processing. In other words, VLAN IDs are assigned to ports of a virtual 
switch inside a hypervisor kernel, and VMs are assigned to appropriate ports based on their VLAN 
membership. These VLAN-capable virtual switches can perform VLAN tagging of all packets going out 
of a VM (with the tag depending upon which port it has received the packet from) and can route an 
incoming packet with a specific VLAN tag to the appropriate VM by sending it through a port with a 
VLAN ID assignment equal to the VLAN tag of the packet and with a matching media access control 
(MAC) address. An example of a VLAN configuration inside a virtualized server is shown in Figure 2. 



 

 
Fig 2. Virtual Local Area Network (VLAN) Configuration in a Virtualized Server 

 

This logical segmentation of traffic inside the virtualized host is then extended to the physical network of 
the data center by configuring link aggregation (to carry traffic of multiple VLANs) on links between the 
pNICs of these virtualized hosts and the physical switches in the data center and configuring the receiving 
ports on the physical switch as trunking ports (capable of receiving and sending traffic belonging to 
multiple VLANs). A given VLAN ID can be assigned to ports of virtual switches located in multiple 
virtualized hosts. Thus, the combined VLAN configuration, consisting of the configuration inside the 
virtualized host (assigning VLAN IDs to ports of virtual switches or vNICs of VMs) and the 
configuration outside the virtualized host (link aggregation and port trunking in physical switches), 
provides a pathway for VLANs defined in the physical network to be carried into a virtualized host (and 
vice versa). This provides the ability to isolate traffic among VMs distributed throughout the data center 
using logical segments, and thus a means of providing confidentiality and integrity protection to the 
applications running inside those VMs. 

In Overlay-based networking, isolation is realized by encapsulating an Ethernet frame received from a 
VM by a hypervisor kernel module called the Overlay module. In an example of the encapsulation 
scheme (or overlay scheme) called VXLAN, the Ethernet frame received from a VM, which contains the 
MAC address of the destination VM, is encapsulated in two stages: first, with the 24-bit VXLAN ID 
(virtual Layer 2 (L2) segment) to which the sending/receiving VM belongs, and second, with the source 
and destination IP addresses of the VXLAN tunnel endpoints (VTEP), which are kernel modules residing 
in the hypervisors of the sending and receiving VMs, respectively. VXLAN encapsulation thus enables 
the creation of a virtual Layer 2 segment that can span not only different virtualized hosts but also IP 
subnets within the data center. A Schematic diagram of VXLAN components is shown in Figure 3.  
 



 

Figure 3: Virtual Network Segmentation using Overlays (VXLAN) 
 

A particular tenant can be assigned two or more VXLAN segments (or IDs). VXLAN-based network 
segmentation can be configured to provide isolation among resources of multiple tenants of a cloud data 
center. The tenant can make use of multiple VXLAN segments by assigning VMs hosting each tier (web, 
application, or database) to the same or different VXLAN segments. If VMs belonging to a client are in 
different VXLAN segments, selective connectivity can be established among those VXLAN segments 
belonging to the same tenant through suitable firewall configurations, while communication between 
VXLAN segments belonging to different tenants can be prohibited. 

Network path redundancy: Hypervisors offer a configuration feature called network interface card (NIC) 
teaming, which allows administrators to combine multiple pNICs into a NIC team for NIC failover 
capabilities in a virtualized host. The members of the NIC team are connected to the different uplink ports 
of the same virtual switch. Failover capability requires at least two pNICs in the NIC team. One of them 
can be configured as “active” and the other as “standby.” If an active pNIC fails or traffic fails to flow 
through it, the traffic will start flowing (or be routed) through the standby pNIC, thus maintaining 
continuity of network traffic flow from all VMs connected to that virtual switch. This type of 
configuration is also called active-passive NIC bonding.  

Firewall Deployment and Configuration: Software-defined firewalls, called virtual firewalls, are generally 
the ones that are deployed on virtualized server platforms. There are two kinds of virtual firewalls—
subnet-level virtual firewalls and kernel-level virtual firewalls. Subnet-level firewalls run in a dedicated 
VM, which is usually configured with multiple vNICs. Sometimes they come packaged as a virtual 
security appliance. Each vNIC in a subnet-level firewall is connected to a different subnet or security 
zone of the virtual network. Kernel-level firewalls, as the name denotes, are run as loadable (hypervisor) 



kernel modules and use the hypervisor’s introspection application programming interface (API) to 
intercept every packet coming into and out of an individual VM. 
 
VM Monitoring: Firewalls only ensure that inter-VM traffic conforms to organizational information flow 
and security rules. However, to identify any malicious or harmful traffic coming into or flowing out of 
VMs and to generate alerts or take preventive action, it is necessary to set up traffic monitoring 
capabilities to monitor all incoming/outgoing traffic of a VM. This requires functionality to send copies 
of those packets to a network analyzer application. The purpose of a network analyzer application is to 
perform security analysis, network diagnostics, and network performance metrics generation. One of the 
techniques by which the above referred operation can be implemented is called port mirroring where the 
packets (or copies of the packets) flowing into and out of the port of a virtual switch (to which the 
monitored VM is connected and is called the source port) is forwarded to another port (called the 
destination port) which may be another virtual port or an uplink port. The entity holding the network 
analyzer application is connected to the destination port. 

7. SECURITY ASSURANCE FOR HYPERVISOR BASELINE FUNCTIONS 

7.1 Security Assurance for VM Process Isolation (HY-BF1) 
To ensure the isolation of processes running in VMs, the following requirements must be met [1]: 

(a) The privileged commands or instructions from a Guest OS to the host processor must be mediated 
such that the core function of the VMM/hypervisor as the controller of virtualized resources is 
maintained. 
(b) The integrity of the memory management function of the hypervisor host must be protected against 
attacks such as buffer overflows and illegal code execution, especially in the presence of translation tables 
(e.g., host page table) that are needed for managing memory access by multiple VMs. 
(c) Memory allocation algorithms must ensure that payloads in all VMs are able to perform their 
functions. 
(d) CPU/GPU allocation algorithms must ensure that payloads in all VMs are able to perform their 
functions. 
 
The requirements (a) and (b) are to be met by the hypervisor code by proper implementation of the data 
structures, such as Virtual Machine Control Block (VMCB) and second level page tables, that translate 
guest physical address to host physical address. In addition, hardware extension features, such as 
Instruction Set Virtualization and Memory Virtualization (described in Section 3), provide isolated 
execution environments for guests and hypervisor instructions as well as secure memory management 
through hardware page tables and should be leveraged by the hypervisor. The requirements (c) and (d) 
are meant to ensure the availability of application services running in VMs. The enablers are some 
features in memory allocation and CPU allocation algorithms and the assurance requirements they 
should meet are given below: 
 
(1) The hypervisor should have configuration options to specify a guaranteed physical RAM for every VM 
that requires it as well as a limit to this value and a priority value for obtaining the required RAM 
resource in situations of contention among multiple VMs. Further, the over-commit feature that enables 
the total configured memory for all VMs to exceed the host physical RAM should be disabled by default. 



(2) The hypervisor should provide features to specify a lower and upper bound for CPU clock cycles 
needed for every deployed VM as well as a feature to specify a priority score for each VM to facilitate 
scheduling in situations of contention for CPU resources from multiple VMs. 

7.2 Security Assurance for Devices Mediation (HY-BF2) 

Among all three approaches for handling devices in virtualized servers (Passthrough, Emulation, and 
Para-virtualization), emulation presents the greatest advantage in that it enables running VMs using the 
drivers that are available for that guest OS, without installing any special driver or tool provided by 
the hypervisor vendor. The advantage of using native OS drivers is that their vulnerabilities have been 
well-analyzed, published, and remediated. 

The first three assurance requirements for secure device access in virtualized servers [1] pertain to 
emulation while the last requirement pertains to the passthrough scenario: 

(1) All device drivers installed as part of a hypervisor platform should be configured to run as lower-
privileged level process (guest mode) rather than the privilege level of the hypervisor (host mode). If 
device drivers are run on the same privilege level as the hypervisor, they should be designed, developed 
and tested using formal verification to guarantee that the drivers cannot compromise the security of 
hypervisor execution. This recommendation applies to any code running at the same privilege level as the 
hypervisor in the kernel (e.g., VMM). 

(2) It should be possible to set up an Access Control List (ACL) to restrict the access of each VM process 
to only the devices assigned to that VM. To enable this, the hypervisor configuration should support a 
feature to tag VMs and/or have a feature to specify a whitelist, or list of allowable devices, for each VM. 

(3) It should be possible to set resource limits for network bandwidth and I/O bandwidth (e.g., disk 
read/write speeds) for each VM to prevent denial-of-service (DOS) attacks. Additionally, the proper use 
of resource limits localizes the impact of a DOS to the VM or the cluster for which the resource limit is 
defined. 

(4) Passthrough scenarios generally involve DMA capable devices. A DMA capable device is one that has 
the capability to read and write directly to and from main memory, allowing the CPU to perform other 
tasks in parallel. The security assurance required against unauthorized access from DMA capable 
devices, is that they should only be installed on hardware platforms that have the Input-Output Memory 
Management Unit (IOMMU) feature that can be configured to confine access by such devices to only the 
assigned memory regions. 

7.3 Security Assurance for VM Lifecycle Management Functions (HY-BF4) 

In Section 4.4, two VM lifecycle management operations were identified as potential sources for threats 
to other baseline functions: VM image management and VM migration. In large virtualized 
infrastructures, the installed base, consisting of a large number of operational VMs, may span different 
jurisdictions (departments, lines of business, or clients in infrastructures used for cloud services). For 
performing lifecycle management operations on these VMs, fine-grained administrative permissions are 
required to  provide security guarantees such as least privilege. The security assurances required for these 



operations (VM image management, VM migration, and fine-grained administrative permissions) are 
described below. 

7.3.1 VM Image Management 
Since VM-based software (e.g., Guest OS, Middleware, and Applications) shares physical memory of the 
virtualized host with hypervisor software, it is no surprise that a VM is the biggest source of all attacks 
directed at the hypervisor. In operational virtualized environments, VMs are rarely created from scratch, 
but rather from VM Images. VM Images are templates used for creating running versions of VMs. An 
organization may have its own criteria for classifying the different VM Images it uses in its VM Library. 
Some commonly used criteria include processor load (VM used for compute-intensive applications); 
memory load (VM used for memory-intensive applications such as Database processing); and application 
sensitivity (VM running mission-critical applications utilizing mission-critical data). For each VM image 
type, the following practices must be followed to provide the necessary security assurance. 

(1) Security profiles must be defined for VMs of all types, and VM Images that do not conform to the 
profile should not be stored in the VM Image server or library. Images in the VM Image library should be 
periodically scanned for outdated guest OS versions and patches, especially in situations where new OS 
version releases and/or patches are frequent. 

 
(2) Every VM Image stored in the image library should have a digital signature attached to it as a mark of 
 authenticity and integrity, signed using trustworthy, robust cryptographic keys.  
 
(3) Permissions for checking into and checking out images from the VM Image library should be enforced  
through a robust access control mechanism and limited to an authorized set of administrators. In the 
absence of an access control mechanism, VM image files should be stored in encrypted devices that can  
only be opened or closed by a limited set of authorized administrators with passphrases of sufficient  
complexity. 
 
(4) Access to the server storing VM images should always be through a secure protocol such as Transport 

Layer Security (TLS). 

7.3.2 VM Live Migration 

Live migration is a functionality present in all hypervisors that enables a VM to be migrated or moved  
from one virtualized host to another while the guest OS and applications on it are still running. This  
functionality provides key benefits such as fault tolerance, load balancing, host maintenance,  
upgrades, and patching. In live migration, the state of the guest OS on the source host must be replicated  
on the destination host. This requires migrating memory content, processor state, storage (unless the two  
hosts share a common storage), and network state.  
 
The most common memory migration technique adopted in most hypervisors is called pre-copy. In this  
approach, in the first phase, memory pages belonging to the VM are transferred to the destination host 
while the VM continues to run on the source host [6]. In the second phase, memory pages modified  
during migration are sent again to the destination to ensure memory consistency. During the latter phase, 
the exact state of all the processor registers currently operating on the VM are also transferred, and the  



migrating VM is suspended on the source host. Processor registers at the destination host are modified to  
replicate the state at the source host, and the newly migrated VM resumes its operation. Storage migration  
is provided by a feature that allows admins to move a VM's file system from one storage location to  
another without downtime. This storage migration can take place even in situations where there is no  
VM migration. For example, a VM may continue to run on the host server while the files that make up the 
VM are moved among storage arrays or Logical Unit Numbers (LUNs). 
 
In the process described above, the memory and processor-state migration functions are inherent aspects  
of hypervisor design. The storage migration function is an integral part of storage management and is 
applicable to both virtualized and non-virtualized infrastructures. The network state is maintained after a 
VM migration because each VM carries its own unique MAC address, and the migration process places  
some restrictions on the migration target (e.g., the source and target host should be on the same VLAN).  
Hence, from a security protection point of view, the only aspects to consider are proper authentication  
and a secure network path for the migration process [1]. 
 
During VM live migration, a secure authentication protocol must be employed; the credentials of the 
administrator performing the migration are passed only to the destination host; the migration of memory 
content and processor state takes place over a secure network connection; and a dedicated virtual 
network segment is used in both source and destination hosts for carrying this traffic. 

7.3.3 Fine-grained Administrative Privileges for VM Management 

The ability to assign fine-grained administrative permissions for the virtualized infrastructure enables the 
establishment of different administrative models and associated delegations [1].  

The access control solution for VM administration should have a granular capability, both at the 
permission assignment level and the object level (i.e., the specification of the target of the permission can 
be a single VM or any logical grouping of VMs based on function or location). In addition, the ability to 
deny permission to some specific objects within a VM group (e.g., VMs running workloads of a designated 
sensitivity level) despite having access permission to the VM group should exist.  

7.4 Security Assurance for Hypervisor Administration Functions (HY-BF5) 

Secure operation of administrative functions is critical for any server class software, and hypervisor is no 
exception to this. The outcome is a secure configuration that can provide the necessary protections against 
security violations. In the case of a hypervisor, impact of insecure configuration can be more severe than 
in many server software instances since the compromise of a hypervisor can result in the compromise of 
many VMs operating on top of it. While the composition of the configuration parameters depends upon 
the design features of a hypervisor offering, the latitude in choosing the values for each individual 
parameter results in different configuration options. Many configuration options relate functional features 
and performance. However, there are some options that have a direct impact on the secure execution of the 
hypervisor, and it is those configuration options that are discussed in this manuscript. 

The following are some security practices that are generic for any server class software. Although 
applicable to the hypervisor, these are not addressed in this manuscript: 



(a) Control of administrative accounts on the hypervisor host itself and least privilege assignment 
for different administrators 

(b) Patch management for hypervisor software and host OS 
(c) Communicating with the hypervisor through a secure protocol such as TLS or  Secure Shell 

(SSH) 
 

7.4.1 Centralized Administration 

The administration of a hypervisor and hypervisor host can be performed in two ways: 
• Having administrative accounts set up in each hypervisor host 
• Centralized administration of all hypervisors and hypervisor hosts through enterprise 

virtualization management software (EVMS). 
 
Centralized management of all hypervisor platforms in the enterprise through enterprise virtualization 
management software (EVMS) is preferable since security profiles for various hypervisor groups in the 
enterprise can be defined and easily enforced through EVMS. For any IT data center to operate 
efficiently, it is necessary to implement load balancing and fault tolerance measures, which can be 
realized by defining hypervisor clusters. Creation, assignment of application workloads, and management 
of clusters can be performed only with a centralized management software, making the deployment and 
usage of an enterprise virtualization management a critical necessity. Hence a security assurance 
framework for hypervisor administration is as follows: 
 
The administration of all hypervisor installations in the enterprise should be performed centrally using an 
EVMS. Enterprise gold-standard hypervisor configurations for different types of workloads and clusters 
must be managed and enforced through EVMS. The gold-standard configurations should, at minimum, 
cover CPU, Memory, Storage, Network bandwidth, and Host OS hardening, if required. 

7.4.2 Securing the Management Network 
Management of the hypervisor and its host is performed through administrative commands sent through a 
management console or command line interface (CLI). This capability can be provided by a dedicated 
management VM or by a hypervisor kernel module. Part of the network communication path that carries 
this management traffic is the software-defined virtual network inside the hypervisor host and it is 
necessary to ensure that a dedicated path is allocated for this. A commonly adopted approach is to allocate 
a dedicated physical network interface card (pNIC) for handling management traffic, and, if that is not 
feasible, a virtual network segment (e.g., VLAN) must be assigned exclusively for it. 

Protection for hypervisor host and software administration functions should be ensured by allocating a 
dedicated physical NIC or, if that is not feasible, placing the management interface of the hypervisor in a 
dedicated virtual network segment (e.g., VLAN) and enforcing traffic controls using a firewall (e.g., 
designating the subnets in the enterprise network from which incoming traffic into the management 
interface is allowed). 

8. SECURITY ASSURANCE FOR EXECUTION OF VM-RESIDENT PROGRAMS 

Providing protected execution for the lower-privileged software is an evolving hardware function and 
there are not enough threat data available for these functions. However, assurance requirements for this 



function can still be identified based on the execution model for VMs and hypervisor instructions in the 
virtualized server platform. 
 
There are two processor features available to reduce the impact of a malicious, higher privileged software 
such as the hypervisor on the confidentiality and integrity of lower privileged software. They are: 
• A secure region of memory called enclave can be created where the resource-owner marked security 

sensitive code in VMs can be altered to run. Code running in the enclave cannot be tampered with by 
the hypervisor or the host OS (in type 2 hypervisor). This feature is implemented in Intel’s Software 
Guard Extension (SGX) [7]. 

• Encrypt the entire VM’s memory so that the hypervisor cannot inspect its data. This is the approach 
adopted in AMD’s Secure Encrypted Virtualization (SEV) [8].  

It is not sufficient just to protect a portion or whole of VM’s memory while it is executing. The data 
structures that provide the execution state of VM and the general-purpose registers of the host CPU that 
contain the values that enable page table walkthroughs to get at the VM’s host memory address must also 
be protected. Hence the assurance requirements for secure VM execution can be stated as follows: 

(1) There should be hardware features to protect designated memory areas where VM 
application code runs. This will protect those applications from malicious or compromised 
hypervisors. 

(2) The Virtual Machine Control Block (VMCB) that contains data about the execution state of 
VMs and the general-purpose registers used by VMs (that contain entry memory addresses) 
must also be cryptographically protected to ensure secure VM execution even in the presence 
of a malicious or compromised hypervisor. 

9. SECURITY ASSURANCE FOR VIRTUAL NETWORK CONFIGURATIONS 

9.1 Assurance for Network Segmentation 
Both techniques discussed for network segmentation – VLAN and Overlay-based networking can span 
multiple IP subnets and hence can be deployed datacenter wide. However, since a VLAN ID is 12 bits 
long, the maximum number of segments that can be defined is 4096 (strictly 4094). On the other hand, 
VXLAN uses a 24-bit segment ID known as the VXLAN network identifier (VNID), which enables up to 
16 million VXLAN segments and hence the security assurance recommendation is stated as follows [5]: 

Large data center networks with hundreds of virtualized hosts and thousands of VMs and requiring many 
segments should deploy overlay-based virtual networking because of scalability (Large Namespace) and 
virtual/physical network independence. However, it is highly advisable that the overall traffic generated 
by overlay-based network segmentation (i.e., VXLAN network traffic in our context) is isolated on the 
physical network using a technique such as VLAN to maintain segmentation guarantees. In addition, 
overlay-based virtual networking deployments should always include either centralized or federated SDN 
controllers using standard protocols for configuration of overlay modules in various hypervisor 
platforms. 



9.2 Assurance for Network Path Redundancy Configuration 
The following operational parameters will provide the necessary assurance that the NIC teaming 
configuration intended for enhancing the availability of VM-based applications by providing alternate 
communication pathways will achieve their intended purpose. 

Each pNIC member of a NIC team should be driven by different drivers and placed on a separate PCI bus 
(if available). Further, the network path redundancy inside a virtualized host can be extended to the 
physical network by connecting each pNIC member of the NIC team to different physical switches. 

9.3 Assurance for Firewall Configuration 
In the firewall configuration for virtualized servers, the security assurance is dictated by the choice of the 
appropriate type of virtual firewall (subnet-level or kernel-based), expressiveness of the firewall rules and 
wherever applicable uniformity in rules for similar traffic flows. The following are the security assurance 
requirements [5]: 

(1)  In virtualized environments with VMs running I/O intensive applications, kernel-based virtual 
firewalls should be deployed instead of subnet-level virtual firewalls, since kernel-based virtual firewalls 
can potentially perform packet processing in the kernel of the hypervisor at native hardware speeds. 

(2) For both subnet-level and kernel-based virtual firewalls, it is preferable that the firewall allows for 
integration with a virtualization management platform rather than being accessible only through a 
standalone console. The former will enable easier provisioning of uniform firewall rules to multiple 
firewall instances, thus reducing the chances of configuration errors.  

(3) For both subnet-level and kernel-based virtual firewalls, it is preferable that the firewall supports 
rules using higher-level components or abstractions (e.g., security group) in addition to the basic 5-tuple 
(source/destination IP address, source/destination ports, protocol).  

9.4 Assurance for VM Traffic Monitoring  
The port mirroring technique involves increase in network traffic in the virtualized network inside the 
hypervisor traffic and must be implemented with care. Minimal assurance for implementing this can be 
stated as follows: 

A port mirroring feature should provide choices in specifying destination ports (either the virtual port or 
uplink port) so that it creates the flexibility to locate the network analyzer application in another VM on 
the same or different hypervisor or in any non-virtualized server in the data center. 

10. SECURITY ASSURANCE FOR BOOTING A VIRTUALIZED SERVER PLATFORM 

Configuration changes, module version changes, and patches affect the content of the hypervisor platform 
components such as BIOS, hypervisor kernel, and back-end device drivers running in the kernel. To 
ensure that each of these components that are part of the hypervisor stack can be trusted, it is necessary 
to check their integrity through a hardware-rooted attestation scheme that provides assurance of boot 
integrity. Checking integrity is done by cryptographically authenticating the hypervisor components that 
are launched. This authentication verifies that only authorized code runs on the system. Specifically, in the 
context of the hypervisor, the assurance of integrity protects against tampering and low-level targeted 



attacks such as root kits. If the assertion of integrity is deferred to a trusted third party that fulfills the role 
of trusted authority, the verification process is known as trusted attestation. Trusted attestation provides 
assurance that the code of the hypervisor components has not been tampered with. In this approach, trust 
in the hypervisor’s components is established based on trusted hardware. In other words, a chain of trust 
from hardware to hypervisor is established with the initial component (i.e., hardware) called the root of 
trust. This service can be provided by a hardware/firmware infrastructure of the hypervisor host that 
supports boot integrity measurement and the attestation process. Collectively, this is called a measured 
launch environment (MLE) in the hypervisor host.  

Some hardware platforms provide support for MLE with firmware routines for measuring the identity 
(usually the hash of the binary code) of the components in a boot sequence. An example of a hardware-
based cryptographic storage module that implements the measured boot process is the standards-based 
Trusted Platform Module (TPM), which has been standardized by the Trusted Computing Group (TCG) 
[9]. The three main components of a TPM are: (a) Root of Trust for Measurement (RTM) – makes integrity 
measurements (generally a cryptographic hash) and converts them into assertions, (b) Root of Trust for 
Integrity (RTI) -  provides protected storage, integrity protection, and a protected interface to store and 
manage assertions, and (c) Root of Trust for Reporting (RTR) - provides a protected environment and 
interface to manage identities and sign assertions.  The RTM measures the next piece of code following 
the boot sequence. The measurements are stored in special registers called  Platform Configuration 
Registers (PCRs).  

The measured boot process is briefly explained here using TPM as an example. The measured boot 
process starts with the execution of a trusted immutable piece of code in the BIOS, which also measures 
the next piece of code to be executed. The result of this measurement is extended into the PCR of the 
TPM before the control is transferred to the next program in the sequence. Since each component in the 
sequence in turn measures the next before handing off control, a chain of trust is established. If the 
measurement chain continues through the entire boot sequence, the resultant PCR values reflect the 
measurement of all components. 

The attestation process starts with the requester invoking, via an agent on the host, the TPM Quote 
command. It specifies an Attestation Identity Key (AIK) to perform the digital signature on the contents of 
the set of PCRs that contain the measurements of all components in the boot sequence to quote and a 
cryptographic nonce to ensure freshness of the digital signature. After receiving the signed quotes, the 
requester validates the signature and determines the trust of the launched components by comparing the 
measurements in the TPM quote with known good measurements. 

The MLE can be incorporated in the hypervisor host as follows: 

• The hardware hosting the hypervisor is established as a root-of-trust, and a trust chain is established 
from the hardware through the BIOS and to all hypervisor components. 

• For the hardware consisting of the processor and chipset to be established as the root-of-trust and to 
build a chain of trust, it should have a hardware-based module that supports an MLE. The outcome of 
launching a hypervisor in MLE-supporting hardware is a measured launch of the firmware, BIOS, and 
either all or a key subset of hypervisor (kernel) modules, thus forming a trusted chain from the 
hardware to the hypervisor. 



• The hypervisor offering must be able to utilize the MLE feature. In other words, the hypervisor should 
be able to invoke the secure launch process, which is usually done by integrating a pre-kernel module 
into the hypervisor’s code base since the kernel is the first module installed in a hypervisor boot up. 
The purpose of this pre-kernel module is to ensure the selection of the right authenticated module in 
the hardware that performs an orderly evaluation or measurement of the launch components of the 
hypervisor or any software launched on that hardware. The Tboot is an example of a mechanism that 
enables the hypervisor to take advantage of the MLE feature of the hardware. 

• All hypervisor components that are intended to be part of the Trusted Computing Base (TCB) must be 
included within the scope of the MLE-enabling mechanism so that they are measured as part of their 
launch process.  

The MLE feature with storage and reporting mechanisms on the hardware of the virtualized host can be 
leveraged to provide boot integrity assurance for hypervisor components by measuring the identity of all 
entities in the boot sequence, starting with firmware, BIOS, hypervisor and hypervisor modules; 
comparing them to “known good values;” and reporting any discrepancies. If the measured boot process is 
to be extended to cover VMs and its contents (guest OS and applications), a software-based extension to 
the hardware-based MLE implementation within the hypervisor kernel is required. The security assurance 
for ensuring a secure boot process for all components of a hypervisor platform can now be stated as 
follows [1]: 

The hypervisor that is launched should be part of a platform and an overall infrastructure that contains: 
(a) hardware that supports an MLE with standards-based cryptographic measurement capabilities and 
storage devices and (b) an attestation process with the capability to provide a chain of trust starting from 
the hardware to all hypervisor components. Moreover, the measured elements should include, at 
minimum, the core kernel, kernel support modules, device drivers, and the hypervisor’s native 
management applications for VM Lifecycle Management and Management of Hypervisor. The chain of 
trust should provide assurance that all measured components have not been tampered with and that their 
versions are correct (i.e., overall boot integrity). If the chain of trust is to be extended to guest VMs, the 
hypervisor should provide a virtual interface to the hardware-based MLE. 
 

11. SUMMARY AND CONCLUSIONS 

Server or Hardware virtualization is an established technology in data centers used for supporting 
enterprise IT resources as well as cloud services. The core entity in this technology is a set of software 
modules called the hypervisor. The hypervisor provides abstraction of the hardware resources, such as 
CPU, memory, and devices (the first two with some assistance with hardware extensions), and enables the 
running of multiple computing stacks called VMs, each with its own OS and applications, to be run on a 
single physical host. Such a physical host is called a hypervisor host or virtualized server. The network 
linking the multiple VMs within a hypervisor and with VMs located in other hypervisor hosts is a 
combination of a software-defined network (called virtual network) and the physical network 
infrastructure and constitute the virtualized server environment. 
 
Since hypervisors come in several architectural flavors (Type 1 vs Type 2, Full vs Para-virtualized), this 
manuscript identified five baseline functions for the hypervisor. Analyzing these baseline functions, 



together with functions of other components of the virtualized server environment (i.e., the hardware, the 
VMs, the Virtual Network), enabled identification of threats to these functions as well as threats 
originating from these functions. The threats were then used as the basis for developing appropriate 
security assurance measures for countering each threat. 
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