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We present a comprehensive framework and test methodology for the evaluation of human-machine inter-
faces (HMI) and human-robot interactions (HRI) in collaborative manufacturing applications. An overview
of the challenges that face current- and next-generation collaborative robot systems is presented, specifically
focused on the interactions between man and machine, and a series of objectively quantitative and subjec-
tively qualitative metrics are given to guide the development and assessment of interfaces and interactions.
A generalized set of guidelines for the design of HMI is also proposed to address these challenges and thereby
enable effective and intuitive diagnostics and error corrections when process failures occur. These guidelines
are aimed at aiding researchers in developing effective interface and interaction technologies, maximizing op-
erator situation awareness in human-robot collaborative manufacturing teams, promoting effective process
and system diagnostics reporting, and enabling faster responses to equipment or application errors.
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1 INTRODUCTION

The use of robotics in U.S. manufacturing is on the rise [Doyle 2015; Orcutt 2014] and is expected
to continue growing exponentially through the coming years [Wood 2014]. Although the number
of robots in manufacturing has been increasing steadily over several decades, the current growth
trend is notable given the number and variety of industries using robots. While the large-scale au-
tomotive and electronics industries continue to dominate the market on robotics use, the use of ro-
botics in smaller-scale applications is slowly rising [Marvel et al. 2015b]. Collaborative manufactur-
ing robots—relative newcomers to the robotics market—are expected to constitute a considerable
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percentage of this population growth, particularly among small- and medium-sized manufacturers
(SMMs), due to the cost benefits associated with the perceived inherent safety [Marvel 2014a].

Currently, the “collaborative” nature of collaborative robots is one merely of proximity. These
robot platforms are used in traditional automation applications and are largely operating indepen-
dently of the environments and events surrounding them. While this may suffice for contemporary
applications, it limits the potential of the technology. To be more impactful in SMM applications,
robots must assume roles of intelligent, assistive tools for skilled human labor. This necessitates
interactions beyond mere collision avoidance and touch sensitivity and will require advances in
system and process diagnostics, prognostics, and situation awareness (SA). Moreover, these robots
must possess the tools to effectively communicate all of this information to promote task efficiency,
fault avoidance, and error recovery.

To transition from the traditional paradigm of manufacturing robotics to a new generation of
user-friendly designs, two criteria must be met. First, it must be shown that the user-friendly
designs are actually more effective or efficient. While more advanced robotic functions may be
less oriented toward casual users, basic programming, maintenance, and production processes are
expected to benefit in terms of learning time, time to completion, and quality of results. Second,
it must be established that the operators’ responses to the technology are positive. Effectiveness,
efficiency, and user satisfaction form the basis for human-centered design principles, as described
in ISO 9241-210:2010 [ISO 2010], which outlines the specifications and recommendations for the
development of computer-based interactive systems (e.g., software, websites, mobile phones, and
vending machines). As a general rule, people will not move toward something new if they are not
attracted or inspired by it.

This report proposes a metrology-based framework for developing effective mechanisms for in-
formation exchange and collaboration in human-robot teams. This effort is motivated by the need
for a common basis for evaluating and comparing human-robot interactions and interfaces, which
thus enables the advancement of collaborative robot technologies. There exists a rift between the
cutting edge in HRI research and the current state of practice within industry. This article aims to
bridge this gap and provide researchers with the insights of industry’s needs when designing novel
HRI technologies, and to arm industry with the tools and techniques used in emerging systems.

It is important to draw a distinction between the interface and the interaction a user has when
working with a given system. Terms such as “human-machine interface” (HMI), “human-computer
interface” (HCI), or, more generically, “user interface” (UI) are used to describe the mechanisms
through which humans and machines communicate. Such interfaces can consist of monitors, lights,
keyboards, switches, joysticks, or any variety of sensors that share inputs and information between
the human user and the machine and its software. In contrast, the “user experience” (UX), or the
“human-robot interaction” (HRI) specific to the domain of robotics, is a means of describing the
nature and quality of the information being shared in addition to its impacts on both the user and
the system.

While this report highlights lessons learned across multiple domains of HRI, it aims to provide
guidelines specifically targeted at the manufacturing domain. Therefore, for the purposes of this
report, we use the standardized robotics vocabulary defined in ISO 8373:2012 [ISO 2012]. Section 2
outlines the communication challenges faced by current and next generation collaborative robot
systems. Section 3 discusses HRI in the manufacturing context. Section 5.3 outlines the metrics and
bases for effective system and process diagnostics communications in HRI, while Section 5 provides
a generalized framework to guide the development of HMI design for next-generation collaborative
robot systems. Section 6 concludes the article with closing observations and general comments.

Throughout this report, a number of sources for metrics, test methods, and rubrics are cited
to provide bases for the recommendations made in Section 5. In many cases, recent studies and
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Fig. 1. In sequential collaborations (top) humans and robots are in a shared process flow of a workpiece,
but are not necessarily co-located. Simultaneous collaborations (middle) see humans and robots working on
different parts of the workpiece at the same time. Humans and robots in supportive collaborations (bottom)
must work together to accomplish shared task goals.

surveys have used as their bases of evaluation the metrics established in older texts. In the process
of writing this report, it was decided that citations of the original sources of these metrics was
preferable to using the most recent instances of the metrics’ use. Though the newer studies provide
insightful instances of new interfaces, algorithms, and systems, the focus of this article is ultimately
on the test methods and metrics. As such, only the most relevant sources are cited.

2 COLLABORATIVE ROBOTICS IN MANUFACTURING

At the center of the discussion concerning effective HRI is the notion that there must be some level
of interaction between a human and a robot. This implies some level of collaborative functionality
between a human and a machine. There are effectively four degrees of human-robot collaboration
[Helms et al. 2002], three of which are illustrated in Figure 1:

(1) Separate: The human and robot tasks are kept apart; they do not share workspaces, tools,
or work pieces.

(2) Sequential: The human and robot tasks are consecutively completed. The workspaces,
tools, and work pieces may be shared, but there is a strict serialization of the tasks such
that any sharing is temporally separated.

(3) Simultaneous: The human and robot tasks are executed concurrently, and may involve
working on different parts of the same work piece, but are focused on achieving separate
task goals.

(4) Supportive: The human and the robot work together at the same time and with the same
work piece to complete a common task.

Historically, human-robot collaboration has been relegated to “separate” applications. The cur-
rent state-of-the-art in terms of human-robot teams may be classified as “sequential,” given that
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automation and human labor are frequently seen as successive links in the production chain. With
the recent introduction of collaborative industrial robots to the market, simultaneous collabora-
tions are now feasible, albeit not common. Future generations of collaborative robot systems are
expected to take “supportive” roles, but such functionality is beyond the capabilities of current
technology.

Enabling supportive collaborations requires advances in environmental and process sensing,
validated safety, SA models, and intuitive interfaces. Integrating robots into human teams will
provide unique challenges stemming from the anticipated lack of robotics experience or expertise
on the part of the human operators, issues regarding ease of use or programming, and general
distrust of robots and their capabilities [Groom and Nass 2007]. Interacting with a collaborative
robot must be as safe, natural, and effective as interactions with another human.

Robots currently marketed as being “collaborative” are designed specifically to be safe to operate
around human operators. Their requirements, defined in ISO/TS 15066:2016 [ISO 2016] and dis-
cussed in more detail in Section 3.3, are functionally disconnected from the degrees of collaboration
described above. To this end, it is worth pointing out the distinction between the terms “collabo-
rative robot” and “collaborative operation” from ISO 8373:2012. A collaborative robot is a “robot
designed for direct interaction with a human,” while a collaborative operation is a “state in which
purposely designed robots work in direct cooperation with a human within a defined workspace”
(emphasis added). Although current trends indicate a steady increase in collaborative robot sales
over the next several years, few of these robots will be integrated into collaborative operations.
Instead, these robots are likely to be installed as stopgap automation solutions in human-occupied
environments, specifically because they are safer and generally easier to use than their more tra-
ditional robot brethren [Marvel 2014a].

2.1 Robotic Diagnostics

The first-level interactions between operators and the robotics revolve around diagnostics of
robots and robotic processes. This defines the level of most human-robot interactions in industrial
settings. With the aforementioned forecast in robotics growth, the challenge of integrating collab-
orative robots into historically manual processes will drive the development of new technologies
that enable more seamless and efficient hardware interoperability. With the steady adoption of
just-in-time manufacturing processes and Internet of Things [Atzori et al. 2010] integration, how-
ever, the increased interconnectivity of machine tools, robots, and automation systems presents
new potential failure points and new challenges in terms of guaranteeing performance and mini-
mizing downtime due to said failures. Failures must be diagnosed quickly, and the necessary steps
to correct for failures must be presented to ensure minimal loss of productivity.

With constant health monitoring of hardware and process performance, performance degrada-
tion may be identified early and failures avoided altogether. However, the requisite system and
process performance data must be presented in clear and meaningful ways for such information
to be useful. As the complexity of integrated systems increases, providing meaningful feedback to
operators in the event of system or process failures becomes increasingly challenging.

As with any machine tool, robotic systems are integrated with fault identification and diagnostic
tools for the hardware and software. Different mechanisms have been proposed for capturing and
evaluating robot system health, ranging from basic state representations [Heddy et al. 2015] to
observer-based [Caccavale and Walker 1997] and model-based diagnostic tools [Liu and Coghill
2005]. Most monitor basic key performance indicators such as robot dynamics, kinematics, joint
torques, joint temperatures, cycle times, and integrity of redundant communication, sensor, and
safety channels.
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On the whole, hardware failures of robotic systems are a rare occurrence. Over a sufficiently
long period of time, brakes may fail, encoders degrade, and the accuracy and repeatability of the
robot as a whole decline. However, such degradation occurs over years and is typically preceded
by a steady reduction in efficiency. Short-term process failures, in contrast, are driven by damage
to tooling and by logic errors caused by sensing and software malfunctions. Such errors are not
inherently detectable by the robot’s controller, but may be inferred from deviations from nominal
performances (e.g., increasing times to perform assemblies, upward trends in the number of cycle
failures, or significant deviations of incurred forces, torques, or joint currents). When these failures
occur it is paramount that the root causes are identified and corrected quickly, efficiently, and
correctly.

2.2 Human Roles in Modern Robotic Collaborations

In collaborative human-robot teams, the roles of the human operator are typically limited to su-
pervision/operation, programming, and integration/maintenance. All of these are largely to be
considered separate collaborations. Programming, for instance, is a front-loaded effort. Once a ro-
bot begins production, the programming element is concluded until the robots are retasked, or an
error arises and the programmer is required to return to find and fix a logic error.

Similarly, integration and maintenance are one-off interactions performed as needed. Integra-
tion occurs before programming begins, and maintenance is overwhelmingly preventative or re-
active in nature. Preventative maintenance entails doing routine actions to prevent common faults
by lubricating joints, periodic cleaning/replacing components and tools, and so on. Reactive main-
tenance occurs when something breaks and may either be done in situ with the workcell taken out
of production, or the equipment is replaced with a spare and the faulty equipment is taken offline
for refurbishing.

Supervision and operation entails observing the state of the equipment and processes and step-
ping in periodically for inspection, task assignments, or process maintenance (e.g., clearing a work-
cell of debris). This is a perpetual level of involved interaction. As such, the role of the operator
is that which is typically associated with HRI, whereas the programming, maintenance, and in-
tegration roles are impacted more by HMI. Each of the three roles requires different degrees and
content of real-time feedback. In the next section, we will discuss the interfaces and natures of
interactions between humans and robots. The nature of HRI is expected to fundamentally change
as robot technology evolves, and the current characterization of human roles may someday be an
outdated archetype. Providing the evaluative tools for optimizing HRI and HMI will drive innova-
tion, and it is expected the metrics discussed in this survey will also evolve as a result.

With the latest generation of industrial robots with collaborative safety functions, hand-guiding
an active robot can be a safe and viable solution for human-robot teaming. In some modern fac-
tory environments, the use of collaborative robots is focused on assisting the human operator for
material handling operations [Gambao et al. 2012; Michalos et al. 2018; Shi et al. 2012]. In such
applications, the robot acts as an assisted lift device or dynamic fixture, enabling operations such
as collaborative inspection, manipulation, assembly, and finishing.

Recent studies indicate that dramatic shifts from purely manual processes to mixed manual-
automated tasks may have a negative impact on the human workforce. Specifically, the human
workers may express performance impacts, including speed and process flexibility, as a result of
having to work with robots [Weiss and Huber 2016]. To minimize the potential negative impacts of
integrating human-robot teams, it has been found that maintaining the “human” aspects of social
interaction, autonomy, and problem solving are important for operator buy-in and positive user
experience [Welfare et al. 2019].
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3 HRI IN MANUFACTURING

Robotic systems for manufacturing have experienced an interesting evolution in terms of appli-
cations since their introduction over half a century ago, while the underlying technologies have
largely remained unchanged. Although the capabilities, controllers, and interfaces for robot sys-
tems have changed significantly, the industrial robot model has not. Robots remain collections of
actuated drive units (pneumatic, hydraulic, or electric) connected via rigid links to move special-
ized tooling around a large work volume.

Despite this lack of advancement, the idea that a robot is a standalone entity that operates inde-
pendently within the environment is an outdated archetype. With agile manufacturing, evolving
paradigms of “smart” factory environments, and the advancement of Internet of Things into man-
ufacturing methods, the tools, systems, and processes have become increasingly interconnected
and interdependent.

To develop the requisite test methods and metrics, it is first necessary to establish what effective
communications actually entail and to identify the interfaces through which humans and robots
interact. Beginning with first principles, one must identify (1) the intended interactions between a
human and a robot and (2) the purpose of the information exchanged between humans and robots.
Both elements are largely determined by the application domain and the roles of the individual
people and robots [Driewer et al. 2007] and must be adapted to different contexts. While much of
the published literature on effective HRI focuses primarily on social, teleoperated, and theoretical
contexts, key performance indicators in manufacturing are driven from the perspective of produc-
tivity and throughput [Kangru et al. 2018; Thomas 2018; Weiss et al. 2019, 2013, 2018; Zhu et al.
2018].

3.1 Human-machine Interfaces

Industrial robot controllers typically come with teach pendants (hand-held control boxes devel-
oped by the robot manufacturer) that serve as the principal interface for calibrating, moving, and
programming the robots. Some modern collaborative robot designs forego the teach pendant en-
tirely and rely on advanced sensing, joint compliance, and artificial intelligence to enable human-
guided task learning. Ancillary equipment such as light towers and sirens may be connected to
the robot to give visual and audible cues of robot state. In workcells where the robot is the only
complex machine, the robot’s controller may also double as the controller for connected tools and
feeder equipment (e.g., conveyors and loaders). However, if integrated into a larger system of inter-
connected, controlled tools, the controller may be configured to be slave to a master programmable
logic control (PLC) used for controlling process flow and maintaining workplace safety.

For maintenance and programming functions, the primary interface is the robot’s teach pendant,
which provides direct access to the robot’s logic. Content provision may be complicated, however,
in multi-robot workcells consisting of heterogeneous robot systems (i.e., workcells consisting
of robot systems from different manufacturers). For multi-robot workcells consisting of a single
manufacturer’s products, a singular interface is learned for system integration, programming, and
feedback. Heterogeneous robot configurations pose unique challenges due to the lack of vendor
support for integrating dissimilar operating systems and control interfaces. Providing for such
robot-robot collaborations will be necessary for future flexible manufacturing solutions. Efforts to
expand standards for machine tool feedback mechanisms (e.g., MTConnect [Vijayaraghavan et al.
2008] and EtherNet/IP [Brooks 2001]) to be fully inclusive of robot systems, or for developing
common command interfaces (e.g., LabVIEW for Industrial Robotics [National Instruments 2016]
or the Industrial build of the Robot Operating System [Edwards and Lewis 2012]) are anticipated
to be highly impactful as enabling technologies for easing integration burdens.
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In contrast, operational feedback is more likely to come via an integrated PLC, which fuses
information from multiple data sources. While the PLC may offer some functional control for
process optimization, it tends to be a limited interface for collaborative operations. Thus, the roles
of the operator are usually relegated to sequential or simultaneous collaborations.

Alternative interfaces and tools are required to move beyond simple coexistence and toward sup-
portive collaborative roles where the robots will be intelligent, assistive tools for operators. What
is needed is an interface specifically designed to increase efficiency and productivity for both the
robots and the operators. Such a tool would enable a single, skilled worker capable of performing
better and more productively than they would be unassisted. Such an interface would increase
basic production capabilities, drive in-line quality control, and provide real-time feedback and sit-
uation awareness for improved prognostics and health monitoring of equipment and processes.
However, it is not the operator’s needs, but rather cost reduction, that drives many HMI design
decisions [Shneiderman 1998]. As such, the recommendations for stakeholder-influenced, iterative
interface design processes from ISO 9241-210 are not always heeded when the HMI is being built.

3.2 Interactions in Human-robot Teams

Most of the available literature regarding effective HRI is based on field studies involving teleop-
erated robot applications such as urban search and rescue (USAR) and medical operations. Under-
standing the fundamental differences between teleoperated robot applications and collaborative
manufacturing applications is key to digesting and making HRI recommendations based on such
field studies.

Within the realm of manufacturing applications, it is assumed that robots and humans are co-
located, which naturally provides contextual clues not present in teleoperated human-robot teams.
In a study by Murphy and Burke [2005], for instance, it was determined that over 60% of the remote
operator’s time is spent establishing and maintaining SA. The authors go on to state that human-
human teams are nearly an order of magnitude more effective at accomplishing complex tasks
than human-robot teams due largely to issues with establishing SA.

In search and rescue applications, the role of robots is largely reduced to being a source of
information for task operators, while physical work is a relatively lower priority. This information
gathering is impacted by several factors, including time delays, sensing and display limitations,
training, and restrictions on information bandwidth.

3.3 Collaborative Robot Safety

Any interactions between operators and robots are expected to be safe. Current safety guidelines,
defined internationally in ISO 10218-1:2011 [ISO 2011b] for robots, and ISO 10218-2:2011 [ISO
2011a] for robot systems, require traditional industrial robots remain separate from operators.
However, collaborative robots, as mentioned earlier, are designed with direct interaction in mind.
The safety features of these robots are dictated by ISO/TS 15066:2016 [ISO 2016], which defines
four collaborative safety modes:

• Safety-rated monitored stop, which is effectively a software-based “pause” function for col-
laborative robot programs.

• Hand-guiding, which enables an operator to directly steer the motions of the robot while
in automatic mode.

• Speed and separation monitoring (SSM), which seeks to keep a safe separation distance
between the operator and an active robot.

• Power and force limiting (PFL), which seeks to ensure operator safety in circumstances
where the operator and active robot make physical contact.
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There have been efforts to capture, characterize, and report the operational functionality of these
safety requirements (e.g., Marvel [2013]; Marvel and Norcross [2017]; Zanchettin et al. [2016] for
SSM, and [Falco et al. 2012; Matthias et al. 2014] for PFL). Many such efforts, however, are limited by
the technological shortcomings of sensor systems designed to detect, identify, and model humans
[Marvel and Norcross 2017]. From a metrology perspective, the assessment of SSM is contingent
on the separation distance, dsep , and speed of approach,vr , between the closest part of the human
and the closest part of the active manipulator.

In contrast, the measurement of PFL is contingent on the type of impact occurring between
the robot and the human. Impacts are classified as either transient or quasi-static, depending on
the conditions of the impact. Quasi-static cases involve part(s) of the body being compressed by
the robot against a rigid surface for a period ≥0.5 s. Transient impacts are short duration (<0.5 s)
in which either the robot or the human can recoil from the contact. In both cases, force (N) and
pressure (N/cm2) are measured at the point of contact (both of the human and of the robot), but
are compared against different limits depending on the body region. Force and pressure limits are
lower for quasi-static impacts than those of transient impacts. Provided these values are lower
than the limits established in ISO [2016], the impact event is considered “safe.”

3.4 A Basis for More Effective HRI

The modern workforce is becoming increasingly technologically adept, and, with this, more dis-
cerning about the technologies with which they interact on a daily basis. In this information age,
it is expected that relevant information will be presented in real-time and in formats that make
it easy to digest said information quickly. In many ways, manufacturing technology has failed to
evolve along these lines, and it is not uncommon for generational differences to result in a sense of
malaise when working with the machinery. Most manufacturing machinery is focused on opera-
tions, whereas the current trend in consumer equipment is human-centricity. Rather than empha-
sizing human awareness by keeping operators informed, trained, or “in-the-loop,” or maintain-
ing application or automation flexibility [Wickens et al. 2004], the traditional performance-based
archetypes of robot repeatability and accuracy still drive HMI designs.

It is expected that much of the indirect interactions between the operator and robot will be
accomplished via some form of HMI, such as a computer monitor, teach pendant, or other visible
indicators such as light towers. Direct interactions will be based on physical interactions with
the HMI or the robots themselves. At no point should SA be compromised, however, and the
HRI is expected to provide contextual information regarding task and robot state (i.e., system
diagnostics). In general, HRI should support (or at worst be agnostic to the support) of human-
robot, human-human, robot-human (i.e., the robot’s awareness of the human), and robot-robot
awareness [Drury et al. 2003]. This awareness is accommodated by shared visual information that
is used to accommodate the following activities:

• Build shared mental models and facilitate team coordination;
• Coordinate team activities through targeted and non-targeted (i.e., generalized) communi-

cation;
• Increase the efficiency of team communication; and
• Perform the task.

These activities are enabled in effective HRI via well-designed HMI and intelligent software. Peo-
ple are better aware of problems with a process if they are actively participating in that process, as
opposed to casual observers or maintenance crews coming in after an error has already occurred
[Wickens et al. 2004]. This phenomenon, known as the generation effect, impacts the SA of op-
erators who are not actively involved with a robotic process. HRI must therefore accommodate
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Table 1. Response Robotics HRI Metrics [Steinfeld et al. 2006]

Subject Category Metrics

Team

Quantitative performance
Effectiveness
Efficiency

Subjective rating Effort quality

Utility of mixed initiative

% Robot assistance requests
% Human assistance requests
Number non-critical human interruptions
Asset utilization of “functional primitives”
[Rodriguez and Weisbin 2003]
Interactive effort [Olsen and Goodrich 2003]

Operator

Situation awareness Situation awareness global assessment technique
[Endsley 1995a]

Workload
NASA-Task Load index (NASA-TLX, [Hart and
Staveland 1988])
Physiological measures

Mental model accuracy

Conceptual
Movement
Spatial
Modality

Robot

Self awareness
Intrinsic limitations
Self-monitoring and modeling
Fault detection, isolation, recovery

Human awareness
Human-oriented perception
Human modeling and monitoring
Human sensitivity

Autonomy Neglect tolerance [Olsen and Goodrich 2003]

operator engagement if it is expected the operator will be an effective, contributing member in the
human-robot team.

4 PERFORMANCE METRICS

To determine whether or not a given robot interface is effective, one must first have metrics by
which said interface may be assessed. In this section, we categorically highlight many of the
metrics and test methods used to assess and assure the effective application of robots to collabo-
rative tasks.

Efforts to assemble metrics for HRI often focus on a specific task domain. For example, Steinfeld
et al. [2006] compiled a collection of common metrics for evaluating HRI for response robotics. In
this model, the HRI metrics are separated into three broad categories: team performance, opera-
tor performance, and robot performance (Table 1). While these metrics are specifically targeting
systems consisting of a single operator and robot, many are scalable to multi-robot, multi-human
scenarios, and all are applicable to manufacturing robotics. Such collections of metrics are fairly
common in the field of HRI and touch on multiple sub-fields of research that will be discussed in
detail in the coming sections.

While many of these metrics are subjectively qualifiable, the end goal is to also provide objec-
tively quantifiable measures that can be used to evaluate collaborative robot HRI without rely-
ing on post-process surveys and assessments. The reasons for this are two-fold. First, subjective
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measures, while useful for capturing the operator’s perspectives of robot interactions, require feed-
back that is difficult to decompose and generalize. People are not necessarily the best judges of
their own performance, and repeatability of results may be compromised by external factors not
captured in surveys (including the validity of the survey itself). Objective measures, while not nec-
essarily capable of modeling emotions, stress, or effort, are also less likely to be influenced by such
factors. Second, such assessments take time out of an otherwise busy work day to complete. Given
also that most subjectively qualitative measures may be recorded only as post-factor assessments,
they may also suffer from the participants simply wanting to leave. As such, there is likely to be
pressure to promote timeliness over thoroughness, which may negatively compromise the final
results of evaluations. Objectively quantitative measures, in contrast, may be captured automat-
ically and in real-time. Ultimately, both quantitative and qualitative measures are necessary, and
the goal of this report is to provide both whenever feasible.

4.1 The Use of Surveys in HRI Research

It is common for HRI studies to use some form of survey or questionnaire to capture user prefer-
ences. Frequently, these surveys are custom-designed for the specific study being conducted. As
such, the surveys—and typically the subsequent results—are not broadly applicable across stud-
ies. Occasionally, however, surveys are specifically designed to be used as repeatable instruments.
These surveys are intended to capture specific elements of the HRI inquiry and may be combined
with additional surveys to provide insights across multiple metrics.

For example, an analysis of 125 papers and extended abstracts from the joint 2019 Association of
Computing Machinery (ACM) and Institute of Electrical and Electronics Engineers (IEEE) Interna-
tional Conference of Human-Robot Interaction provided an insight into the current trends of sur-
vey utilization. Of these papers, 84.8% used subjective surveys to capture participant preferences.
Of these, 94.8% used surveys customized for the respective studies. This reliance on customized
surveys by such a significant percentage of HRI research can make it difficult to extrapolate mean-
ingful metrics for generic HRI use cases. To this end, the focus of this article is largely limited to
the survey instruments that are intended for broad applicability.

The use of pre-established survey instruments from the 2019 ACM/IEEE HRI Conference ac-
counted for 19.0% of all subjective measures. In all, there were 23 such instruments used for a total
of 43 citations. Of these instruments, however, only 5 were used more than once, meaning 41.9%
of all cited survey instruments were used only by a single paper. This is in contrast with the 2015
ACM/IEEE HRI conference proceedings, in which only 19 of the 165 papers (11.5%) cited estab-
lished survey instruments. Over these 19 papers, there were 33 citations of instruments used, of
which only 3 surveys were used by more than 1 paper. As such, a little more than 84% of all cited
survey instruments in 2015 were used only by a single paper.

Some of these single-use citations from the 2019 proceedings were specific for certain domains
such as individual feelings toward nature [Shibata 2016] or assessments of specific groups of people
(e.g., elderly care [Wang 2005]). It is worth noting that many of these survey instruments include
measurements of similar concepts or reactions to technology. For example, Table 2 provides an
overview of the metrics used by a number of the cited survey instruments from the 2019 ACM/IEEE
HRI Conference. While a number of metrics are covered by a single survey, many are represented
across multiple surveys.

While some of these surveys are quite dated, many of these older evaluation tools continue to be
used due to two principal factors: (1) they have been validated, and their strengths and weaknesses
are known, and (2) the aspects that they attempt to capture are still highly relevant to modern HRI.
Some recent studies have attempted to augment existing surveys with additional questionnaires,
but these augmentations have a tendency to be highly application-specific.
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Table 2. Subsample of Subjective Factors Captured in Cited Survey Instruments

Measure Survey(s)

Adaptiveness Almere Model [Heerink et al. 2010]

Animacy Godspeed [Bartneck et al. 2009]

Anxiety Almere Model; Fear of Negative Evaluation Scale [Ishikawa et al. 1992];
Multidimensional Robot Attitude Scale [Ninomiya et al. 2015];

Negative Attitude toward Robots Scale (NARS) [Nomura et al. 2006];
Social Avoidance and Distress Scale (SADS) [Ishikawa et al. 1992]

Arousal Self Assessment Manikin Instrument [Bradley and Lang 1994]

Anthropomorphism BEHAVE-II [Joosse et al. 2013]; Godspeed; Multidimensional Robot
Attitude Scale

Attitude Towards Technology Almere Model; BEHAVE-II

Attractiveness/Appearance BEHAVE-II; Multidimensional Robot Attitude Scale

Believability Multi-Dimensional Measure of Trust (MDMT) [Ullman and Malle 2018]

Competence Almere Model; Robot Social Attributes Scale (RoSAS) [Carpinella et al.
2017]; MDMT

Complexity System Usability Scale [Brooke 1996]

Confidence in Use System Usability Scale; MDMT

Control/Choice Multidimensional Robot Attitude Scale; NARS

Cumbersome System Usability Scale

Discomfort RoSAS; NARS; SADS

Dominance Self Assessment Manikin Instrument

Ease of Learning System Usability Scale; Multidimensional Robot Attitude Scale

Ease of Use System Usability Scale; Almere Model; Multidimensional Robot
Attitude Scale

Effort NASA TLX; Multidimensional Robot Attitude Scale

Environmental Facilitation Almere Model; Multidimensional Robot Attitude Scale; SADS

Ethics MDMT; Negative Attitude toward Robots Scale

Familiarity Multidimensional Robot Attitude Scale; NARS

Frustration NASA TLX

Inconsistency System Usability Scale

Intelligence Godspeed

Intent/Interest in Using Almere Model; Multidimensional Robot Attitude Scale; System
Usability Scale;

Learning Required Multidimensional Robot Attitude Scale; System Usability Scale

Likability Almere Model; BEHAVE-II; Godspeed; NARS

Mental Demand NASA TLX; SADS

Need Help Using System Usability Scale

Performance NASA TLX

Physical Demand NASA TLX; Simulator Sickness Questionnaire [Kennedy et al. 1993]

Pleasure NARS; Self Assessment Manikin Instrument; SADS

Presence NARS; SADS

Quality of Integration System Usability Scale

Safety Godspeed

Sociability/Warmth Almere Model; RoSAS; NARS; SADS

Social Influence Almere Model; Multidimensional Robot Attitude Scale; SADS

Temporal Demand NASA TLX

Trust Almere Model; BEHAVE-II; MDMT; NARS

Usefulness Multidimensional Robot Attitude Scale

Variety Multidimensional Robot Attitude Scale
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Table 3. Quality in Use Model for Software
Assessments [ISO 2011c]

Category Metrics

Effectiveness Effectiveness
Efficiency Efficiency

Satisfaction

Usefulness
Trust
Pleasure
Comfort

Freedom from Risk
Economic
Health and safety
Environmental

Context Coverage
Completeness
Flexibility

4.2 Software Quality

While robot systems are physical constructs, the mechanics and HRI are driven by software. Many
of the metrics assessing the effectiveness of HRI are therefore actually evaluating the performance
of software. Standards for evaluating software quality were introduced in ISO 9126-1:2001 [ISO
2001], which has since been superseded by ISO/IEC 25010:2011 [ISO 2011c]. ISO/IEC 25010 presents
two models for evaluating quality: quality in use and product quality. The quality in use model
evaluates the overall impacts and outcomes resulting from the use of a given system on different
stakeholders. Such metrics include effectiveness, efficiency, overall satisfaction with the system,
freedom from risk, and the degree to which these metrics hold for specific contexts (Table 3).

The product quality model is used to characterize a given system based on its properties, in-
cluding functional suitability, performance efficiency, compatibility, usability, reliability, secu-
rity, maintainability, and portability (Table 4). Each of these characteristics areas define sub-
characteristics that are assessed as having their requirements met satisfactorily or unsatisfactorily
(or assessed on a Likert-like scale) as experienced by primary, secondary, and indirect users. Some
topical areas such as functional suitability, reliability, and usability may be easily evaluated by the
lay user, but many of the remaining characteristics and sub-characteristics may require subject ex-
perts to evaluate properly [Valenti et al. 2002]. Moreover, evaluations from different stakeholders
are not easily combined or directly comparable due to the stakeholders’ individual priorities and
perspectives for assessing different system qualities. Such quality metrics are therefore subjective
and non-repeatable.

4.3 Interfaces

There is a natural tendency to gravitate toward contextually nebulous terms such as “easy to use”
or “intuitive” to describe HMI. While there exist a number of best practices for guiding the devel-
opment of such interfaces—many of which will be discussed in this section—there is not a uni-
versal metric by which one interface may be directly compared with another. Moreover, because
terms such as “easy to use” are ultimately subjective in nature, the practice of interface design is
frequently addressed as being more of an art than a science, though it is heavily influenced by
scientific studies such as psychology [Card et al. 1983] and physiology [Wickens et al. 2004]. As
such, most metrics regarding the performance of interfaces are focused on the user. There is a
balance that must be struck with the desire to have an interface that is easy or intuitive to use, but
also provides a rich (i.e., full-featured) user experience.
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Table 4. Product Quality Model for Software Assessments [ISO 2011c]

Category Metrics

Functional Suitability
Completeness
Correctness
Appropriateness

Performance Efficiency
Time behavior
Resource utilization
Capacity

Compatibility
Coexistence
Interoperability

Usability

Appropriateness recognition
Learnability
Operability
User error protection
UI aesthetics
Accessibility

Reliability

Maturity
Availability
Fault tolerance
Recoverability

Security

Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability
Analyzability
Modifiability
Testability

Portability
Adapability
Installability
Replaceability

One of the earlier HMI evaluation methodologies was proposed by Roberts and Moran [1983] to
evaluate the impact of the interface/tool—specifically, a text editor—itself. The methodology breaks
the evaluation into four metrics: learning time, expert use time, error cost, and functionality (see
Table 5). Learning time reflects the time necessary to first learn how to use the system, while
expert use time captures the amount of time to perform some task assuming mastery of the tool.
Error cost measures the time penalty when errors are made, and functionality is a measure of how
full-featured the system is, and is calculated as

f unctionality =
|F |
|S | , (1)

where F ⊂ S is the set of functions supported by the system of the larger set of all functions
S . These metrics provide a fair (albeit incomplete) basis for comparing interfaces with similar
goals and may be broadly applied to the collaborative robot use case. Capturing functionality,
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Table 5. Interface Evaluation Metrics Proposed for Text Editors [Roberts and Moran 1983]

Metric Measurement

Learning Time Time (in seconds) for novices to learn how to perform basic editing tasks
using the system

Expert Use Time Required time (in seconds) for an expert to perform the basic editing tasks
using the system

Error Cost Time cost (in seconds) associated with making, discovering, and correcting
for errors, and then resuming productive work

Functionality Percentage of the complete taxonomy of tasks supported by the system

however, is not straightforward. In terms of industrial robot interfaces, the functional goals of robot
systems are broadly scoped and are as varied as the number of unique designs, configurations,
and applications of said robot systems. As such, attempts to define command taxonomies (e.g.,
Robot Operating System [Edwards and Lewis 2012] and the Canonical Robot Command Language
[Proctor et al. 2016]) occasionally run the risk of gravitating toward the extremes of the spectrum
ranging from too cumbersome and specific, to too small and generic. Defining a comprehensive,
functional definition of robots, however, is beyond the scope of this report and is left as an exercise
for a formal working group.

While such metrics are useful for capturing the overall effectiveness of the interface, they do
not always address the specific aspects that contribute to the user experience. Many of the aspects
that make a particular interface more intuitive for someone over a different interface could be
considered a matter of personal taste. However, there are several best practices identified that,
when ignored, tend to negatively impact the user experience. Many such design principles for user
interfaces (UIs) are outlined in texts specifically designed for practitioners (e.g., Johnson [2014];
McKay [2013]). The quantifiable aspects of these principles are outlined in this article presently.

The two primary purposes of a UI are information presentation and system/process control.
During normal manufacturing operations, information presentation will be the dominant func-
tion of the interface, but this information is provided (“presentation”) with the assumption that it
will be leveraged for doing something useful (“response”). There are two metrics associated with
these presentation-response expectations. The first is whether the response was correct (assuming
that a correct response exists). The correctness value can be quantified in several ways, including
(1) the number of erroneous responses, e; (2) the frequency of incorrect responses, e

τ
over some

time period, τ ; (3) the mean time to an incorrect response, τer ror ; (4) the measurable distance (if

the response is numerically based), r̂r , from the given response, r , to the correct response, r̂ ; or
(5) some measurable consequence or cost, c , of an error (e.g., number or severity of manufacturing
part errors, monetary value of waste, or system downtime). Comparing two different UI implemen-
tations as a function of the response correctness provides a quantifiable performance indicator of
the interfaces.

The second metric is the amount of time lapsed between the initial display of information and the
moment the operator confirms their response to the stimuli. Depending on the response desired,
timing performances should be theoretically bounded to the timeframe outlined in Table 6. These
timeframes provide lower limits, t̃ , to the amount of time required for a given stimulus-response
cycle. Large deviations from t̃ indicate either the interface design is not optimal for the application
or the presentation of information is incorrect for the expected response.

There exist a number of timing indicators that may demonstrate the interface design may not be
optimal for the given task. For instance, if the layout of controls is broadly distributed, operators
may require additional time to complete certain tasks. Fitts’ Law [Fitts 1954]—which has been
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Table 6. Important Timeframes for Human Responses

Range (s)

Perception and Cognitive

Function UI Timeframe

0.01–0.5

Perception of number of 1 to
five items (0.05 s/item)

Quickly counting fewer than five items [Card
et al. 1983]

Perception of cause and
effect

Allowable delay in hand-eye coordination [Card
et al. 1983]

Flinch reflex (0.015–0.4 s) Minimum reactive motion response to stimuli
[Davis 1984]

0.5–1.0

Attentional “blink” (0.5 s) Required wait time after presenting important
information before presenting more [Card et al.
1983]

Reaction time for unexpected
events (0.2–1.0 s)

Time after presentation of visual information
that it is retained physically [Card et al. 1983]

6.0–30.0
Unbroken concentration on a
task

Completing one step of a multi-step task [Card
et al. 1983]

100.0+
Critical decisions in
emergency situations

All information required for a decision is
provided/found within this time [Johnson 2014]

successfully applied across a variety of different input mechanisms—states the time, tpos , to move
the hand to a target of size S that is a given distance, D, away is

tpos = lM log2

(D
S
+ 0.5

)
, (2)

where lM = 100[70 ∼ 120] msec/bit. Farther distances result in longer hand traversal time and
more time searching for the appropriate control. As a general best practice, objects of interest
should be placed prominently in the center of the field of view to minimize search time. Both data
and control representations should be compact and visual (e.g., using iconography), with controls
offering a select number of predefined potential responses rather than open-ended fields for text or
variable manipulation. Similarly, controls and feedback mechanisms should be proximally placed
near where current focus is. Examples of this practice include placing messages where operators
are already looking, marking errors in red (text or boxes) or with symbols [Johnson 2014].

Another large influencer of performance timing are the gains earned through repeated use of an
interface. The Power Law of Practice [Snoddy 1926] effectively outlines that, as one becomes more
accustomed to the interface, the time tn to perform a task on the nth trial follows a power law

tn = t1n
−α , (3)

where α = 0.4 (0.2 ∼ 0.6). Specifically, repetitions of the same task should take less time given
practice and competence. If no such gains are observed, it is possible the UI design or layout is
interfering with the operator’s performance.

While it may be convenient to associate poor interface performance only with the design
choices, the presentation of information, if not appropriate for the application or expected re-
sponse, may also negatively impact performance. The goal-oriented human thought cycle [Card
et al. 1983] is fairly straightforward:

(1) Form a goal,
(2) Choose and execute actions necessary to make progress toward that goal,
(3) Assess the impacts of the selected actions, and
(4) Repeat steps 2 and 3 until the goal has been achieved.
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People notice things more when they are specifically related to the specified goals and may be
susceptible to change blindness [Simons and Levin 1997] or inattentional blindness [Simons and
Chabris 1999] unless pertinent information is intentionally brought to the person’s attention. Like-
wise, information may be ignored if it is deemed unrelated to the specified goals. The Gestalt the-
ory of perception [Wagemans et al. 2012a, 2012b], for instance, gives a holistic perspective of the
temporal and spatial relationships inferred by the presentation of visual objects. This Hebbian-
like association of objects clustered or moving together enables people to draw conclusions in
the absence of structure or information and fill in gaps in the context. As such, if information is
not presented in a way that promotes this association (e.g., cluttered displays, spatially disparate
indicators, or poor management of foreground/background messages), related information may
become disassociated.

Similarly, information that is not presented in an intuitive or easily consumed manner may
take longer to process. For example, while spoken language is naturally generated and understood
verbally, writing and reading take more effort [Sousa 2006]. As such, best practices include using
clear and consistent words or phrases, using simple typefaces with large fonts, and presenting
information on clean backgrounds [Johnson 2014].

Even these practices may not be sufficient if the information itself is difficult to understand or
respond to. If higher-level cognitive processes are required for a response, the Uncertainty Princi-
ple [Card et al. 1983] states that the decision time t increases with uncertainty about the judgment
or decision to be made:

tdec = FCH , (4)

where H is the information-theoretic entropy of the decision and FC = 150 (0 ∼ 157) msec/bit. For
n equally probable alternatives [Hick 1952],

H = log2 (n + 1) . (5)

For n alternatives with different probabilities of occurrence, pj ,

H =
∑

i

pi log2

(
1

pi
+ 1

)
. (6)

While the time frames given in Table 6 can be considered targets under ideal circumstance, the
operator’s performance under real-world conditions is expected to be considerably longer. To this
end, simpler, goal-oriented interface designs may improve task performance, but only at the ex-
pense of information completeness and process flexibility.

4.4 Communication Efficacy

A principal function of any user interface is the communication of relevant information to the
machine operator. Similarly, the same interface must enable clear communication with the robot.
This two-way communication is critical for effective HRI [Fong et al. 2006]. However, determining
the efficacy of communications, or whether relevant information has been conveyed effectively,
in real-time, is difficult. While communication efficacy is influenced by the quality of information
being shared, it is ultimately reliant on the recipient to confirm that important data have been
received and understood. The ability to establish common ground is complicated by the operator’s
assumption that a robot (particularly one that shares some human traits) will behave and respond
as a human would [Jensen et al. 2017]. Methods and metrics for establishing common ground and
situational awareness are described in more detail in Section 4.6. In this section, we focus instead
on the metrics for determining whether information was communicated in a way that maximizes
productivity with minimal loss of detail or relevance.
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Historically, such information has been expressed either in text or via a sequence of lights.
Yet, with advancements in processor and display technologies, information sharing is becoming
increasingly visual. Moreover, with the robot’s innate ability to move, information and meaning
can also be conveyed through poses and gestures. Comparing the efficacy of information exchange
through these various means can be a challenge.

When assessing the communication performance in the opposite direction (i.e., the human con-
veying information to the robot), one must be aware that the means by which information can be
shared and expressed are nearly always significantly limited. Queries must be made in a way that
the robot can understand and respond to; commands require explicit specificity to be executable;
and requests for process status must be directly supported by programmed intelligence. All of this
is system-, task-, and environment-specific, and anything that is not explicitly supported by the
programmed sensing capabilities of the robot will be ignored. As such, confusion on the part of
the robot system will be the result of syntax errors, not semantic or contextual ambiguity.

Ultimately, the only metric by which effective communication can be broadly and generically
measured is communication time, tcomm . This is the amount of time required for a message to be
generated, transmitted, and its meaning understood by the targeted recipient. This applies equally
to text-based, verbal, and non-verbal communications, but capturing this time for non-text mes-
sages is nontrivial. As such, discussion in this section is exclusively focused on displayed messages
for communication. Mechanisms for evaluating verbal and non-verbal (e.g., gestures, display lights,
or sirens or warning tones) communications are not presented given the difficulty in capturing and
characterizing interactions with operators.

Disruptions in communication adversely impact process (or work) performance, so the elements
of communication delay, efficiency, and interruptions. Obviously, communications must be re-
ceived on time if they are to be effective. Delays in transmission or comprehension reduce the
remaining time to address issues before the loss of parts, equipment, or profit accrue. Tradition-
ally considered a function of data quality, the measurement of timeliness is discussed in more detail
in Section 4.5. Technological factors that may negatively impact communication effectiveness in-
clude transmission delays, jitter, and bandwidth [Steinfeld et al. 2006]. Such factors are relatively
easy to isolate, characterize, and minimize.

An efficient message is one that is concise and to the point. Minimizing message length also min-
imizes the time necessary to transmit information, but may adversely effect communication time
if the messages are not clear. As will be discussed in Section 4.5, there is a mathematically prov-
able minimum amount of information necessary to convey information. This absolute minimum,
however, is distinct from the minimum amount of information necessary to convey information
clearly and without requiring additional processing time to translate (see Section 4.7 for the discus-
sion on mental effort). An example of this distinction would be sending an error code (an absolute
minimum amount of information) versus sending an error code accompanied by a brief descrip-
tion. As the operator becomes adept with the system, the descriptive text may eventually become
superfluous.

Assuming the messages are expressed using the jargon or symbolism appropriate for the appli-
cation and end-users, it can be assumed that the words themselves are already of an optimal length
without sacrificing meaning [Piantadosi et al. 2011]. Thus, the content of the generated messages
should be the principal focus of attention rather than the wording. When communicating critical
information, we can borrow from the health-care field and formulate messages containing four
principal components [Leonard et al. 2004]:

(1) a synopsis of the situation,
(2) the relevant background of the system or process,
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(3) a diagnosis of the situation, and
(4) a recommendation of steps to move forward.

Messages using this structure provide all of the information for an operator to correctly respond
to issues as they arise.

In providing all information without delay, it is possible to disrupt process cadences by send-
ing too many low-priority messages when they are not critical [Rennecker and Godwin 2005].
Interruptions, or unscheduled events that cause work to be stopped, disrupt processes and nega-
tively impact organization. They may also be effectively used to avert more costly interruptions
(e.g., operator injuries or equipment failures) down the line. Confusing the high- and low-priority
events may overload the cognitive abilities of operators to filter out the events that require imme-
diate attention from those that can be safely addressed later. It is recommended the latter category
be rescheduled or reformatted to minimize the impacts on productivity [O’Conaill and Frohlich
1995]. Factors that may influence the magnitude of impact—either positive or negative—include
the number, frequency, length, and relevancy to the current task [Rennecker and Godwin 2005]. It
is also suggested that different individuals’ control motivations may result in different responses
to external interruptions and may actually take steps to initiate or avoid process interruptions
[Rennecker and Godwin 2005].

Tools for documenting, parsing, and evaluating such communication interactions have been
developed (e.g., Burke et al. [2004]) that require expert analysis manual tagging to parse and label
video logs. Such logs can provide the basis for post-factor analysis to assess back-and-forth flows of
information, disruptions of process flow, situational awareness (see Section 4.6), mental effort (see
Section 4.7), and task performance (see Section 4.10). As advances in natural language processing,
machine learning, and machine vision improve, it is anticipated such tools may be automated.

4.5 Information Quality

Robotic systems are constantly giving feedback, mostly in the form of robot’s physical state (e.g.,
cycle times, Cartesian pose of the tooling, and joint angles and temperatures). Most of this feed-
back is not consumable by an operator. In a thoroughly integrated workcell, additional operator-
centric feedback may be conveyed to express the state of the manufacturing process. For feedback
from a robot system to be useful to an operator, it must consist of timely, actionable intelligence.
Specifically, feedback must be given when it is most relevant to a desired response, and it must con-
sist of enough information that both the meaning and the expected response to the feedback are
clearly understood. Good quality information from the robot to the operator enables the operator
to make more informed decisions. Similarly, for situations where user input is required (e.g., Fong
et al. [2003]; Kaipa et al. [2016]), high-quality feedback from the operator improves the robot’s
performance.

One of the largest contributing factors of the usefulness of reported information is the quality
of said information. High-quality information contributes to the operator’s situation awareness
(see discussion in Section 4.6), whereas low-quality information detracts from it. “Low quality”
information may be identified as insufficient or incorrect feedback during a collaborative task,
but overloading the operator with superfluous information or providing unclear feedback can also
be detrimental. The metrics for information quality—or “data quality”—vary somewhat according
to application domain, but a generally agreed-upon model [Knight and Burn 2005] consists of
20 primary attributes, shown in Table 7.

In general, the principal factors that contribute to information quality are believability, value-
added, relevancy, accuracy, interpretability, understandability, and accessibility [Wang and Strong
1996]. However, the weights of these attributes may shift based on the needs of the application
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Table 7. Dimensions of Information Quality Reported by Knight and Burn [2005]

Category Attribute Description

Accuracy

Accuracy Correctness of information
Believability Credibility of information

Completeness Information required for a given task is not missing
Objectivity Impartiality of information
Reliability Trustworthiness of the information
Reputation Quality of regard for information source
Quantity Volume of information available for use

Relevancy

Relevancy Applicability of information to the task
Timeliness Presentation of information in a favorable amount of

time
Usability The information’s ease of use

Usefulness Contribution of the information to the task
Value-added Benefit gained by the information’s use

Representation

Conciseness Information is minimally represented yet complete
Consistency Repeatable format and compatibility with prior

information
Efficiency Ease by which the task’s information needs are met

Understandability Ease by which information is comprehended

Accessibility

Accessibility Ease of information retrieval
Availability Speed of information retrieval
Navigation Ability to find and link to information

Security Access to information is correctly restricted

Italicized attributes indicate elements that are purely subjective in nature [Batini et al. 2009].

and operational environment. Almost all of these factors are operator-dependent and defined with
respect to the task. This is consistent with the discussions in Section 4.3 and Section 4.6: The
subjective preferences and internal processing of information by the operator contribute greatly
to the performance of the task. As such, factors such as how the data are formatted [Miller 1996]
may ultimately influence the operator’s perspectives on data quality.

All of the attributes described in Table 7 may be assessed through subjective operator surveys.
Given this subjective nature, quantifying data quality may be rather difficult. One approach to
quantification is to simply assemble and assess feedback from multiple qualitative sources. Pipino
et al. [2002], for instance, focus on metrics for objectively assessing data quality (as defined by
the 20 attributes in Table 7) based on subjective perception assessments from all applicable stake-
holders. Feedback from stakeholders are enumerated (e.g., per a Likert scale) and then evaluated
by simple mathematical operations such as basic ratios of undesired results over the total results
(i.e., (outcomeundesir eable/outcometotal ) − 1) for factors such as completeness or consistency, min

and max operations, and weighted averages. However, it should be noted that many attributes
have quantifiable elements that provide objective analogues for the subjective measurements. The
survey by Batini et al. [2009] provides an excellent overview of the data quality literature leading
up to 2009.

For information to be of any value, it must be accurate. Depending on the nature of the in-
formation, accuracy may be measured in a variety of ways. For instance, if the information not
only needs to be correct but also delivered to the correct recipient, accuracy may be measured
as the number of correctly delivered data packets [Jeusfeld et al. 1998]. Otherwise, if there is a
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quantifiable element to the data, accuracy may be measured as the L2 norm of data errors, E,

accuracy = ‖E‖. (7)

Alternatively, a more common metric is to measure the syntactic accuracy (e.g., see Batini and
Scannapieco [2006], De Amicis and Batini [2004], English [1999], Falorsi et al. [2003], Loshin
[2001], Pipino et al. [2002], Scannapieco et al. [2004], Su and Jin [2006], and Wang [1998]), which
is effectively the ratio of the size of the set of correct responses, C , to the size of all responses
received, N (i.e., the quantity of information):

accuracy =
|C |
|N | . (8)

The believability (or credibility) of the information being provided is often a second-guessing of
the information accuracy. Without redundant sources of information or extensive testing to prove
correctness of the information source, users may have a metered level of distrust with the data.
This is particularly true when the user is unfamiliar with the equipment, process, or sources of
information. Are the presented data accurate or subject to noise? Is it an absolute value or based
on some baseline value? For example, some distance-measuring sensor systems express signifi-
cant degradation of accuracy as a function of distance from the sensor. Without having intimate
knowledge of the system’s limitations, there is no reason to believe one measurement is more or
less accurate than another.

To this end, believability is often considered a subjective measure in the absence of additional
information. However, from the literature, one objective means of assessing believability is to
assign default values to all incoming information and measure changes against this baseline. As
such, the believability may be represented as either a raw count of the number of default values
[Jeusfeld et al. 1998], |D |, or as a percentage of all non-default information:

believability = 1 − |D ||N | . (9)

This measure of believability may be considered a re-instantiation of the measure of completeness,
which compares against a baseline consisting of null responses, S [Batini and Scannapieco 2006;
De Amicis and Batini 2004; Lee et al. 2002; Loshin 2001; Pipino et al. 2002; Scannapieco et al. 2004;
Su and Jin 2006; Wang 1998]:

completeness =
|S |
|N | . (10)

An alternative measure of completeness, however, evaluates the quantity of information actually
received compared with the quantity of information expected, X [Jeusfeld et al. 1998; Lee et al.
2002]:

completeness =
|N |
|X | . (11)

Related to—but sometimes antithetical—the measure of completeness is the evaluation of infor-
mation conciseness, which is assessed in terms of the length of the information sent compared with
the concepts shared. For example, if two messages contain the same amount of information, but
the first message conveys the information with 10% fewer bytes than the second message, then
it is considered more concise. Measuring conciseness in this manner is not an absolute, however,
so it has also been proposed to evaluate conciseness as the quantity of highly complex data struc-
tures, messages, or pages of information [Batini et al. 2009]. Similarly, efficiency is measured as a
function of the amount of information required (e.g., number of data values, message length, or
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number of instructions), R, versus the total amount of information received [Pipino et al. 2002]:

efficiency = min
(N
R
,
R

N

)
. (12)

In the context of system and process diagnostics, functional performance information is ex-
pected to be conveyed in a timely, actionable manner. As such, factors such as timeliness play an
important role in information quality. Timeliness, as measured by Ballou et al. [1998], is impacted
by both how up-to-date (or currency) the information is as well as the expected useful shelf life (or
volatility) of said information. The currency of information is measured simply as

currency =
(
tdelivery − tinput

)
+ age, (13)

where tdelivery is the timestamp at which the information was delivered to the operator, tinput is
the timestamp at which the information was requested (either manually or automatically), and aдe
is the length of time separating the generation and transmission of the information. The timeliness
of the information is thus measured as

timeliness =

(
max

[
1 − currency
volatility

, 0

])s

, (14)

where s is a sensitivity factor of the volatility ranging from marginally sensitive, (s < 1), to highly
sensitive, (s > 1). An alternative metric measures timeliness as a percentage of informative mes-
sages received within the required time frame,A [English 1999; Loshin 2001] (i.e., tA ≤ volatility):

timeliness =
|A|
|N | . (15)

Relevancy and usefulness are interconnected when evaluating information quality. The relevancy
is a measure of the applicability of the information received and is Boolean in nature in that the
information is considered relevant if any part of it is used. The usefulness of the information,
however, is a measure of unused/non-applied information,U , or, conversely, the percentage of the
information that is applied:

usefulness = 1 − |U ||N | . (16)

Another possible measure of evaluating relevancy and usefulness is to take the two as a combined
value and estimate it as a measure of response time [Shah and Breazeal 2010]; specifically, evalu-
ating the communication by the lapse in time between when the information was expressed and
when a response was observable.

In the context of information quality, consistency refers to the adherence of guidelines for in-
formation formatting or representation. Such guidelines may specify data formats or ranges of
expected values. The measure of consistency, therefore, would be a function of the number of
values that are semantically valid, Q [Pipino et al. 2002; Wang 1998]:

consistency =
|Q |
|N | . (17)

An alternative approach would be to measure the diversion itself from the semantic guidelines
(i.e., coding violations) as a distance from the expected value [Jeusfeld et al. 1998].

Finally, the quality of information access is a functionality of four measurable attributes: ac-
cessibility, availability, navigation, and security. Accessibility, or the ease of information retrieval,
may be measured simply as the amount of time (or steps) required to identify and retrieve needed

ACM Transactions on Human-Robot Interaction, Vol. 9, No. 4, Article 25. Publication date: May 2020.



25:22 J. A. Marvel et al.

information. An alternative metric, similar to the measure of timeliness, evaluates accessibility in
terms of time against a set deadline, tdeadline [Eppler and Muenzenmayer 2002]:

accessibility = max

(
0, 1 −

tdelivery − tinput

tdeadline − tinput

)
. (18)

Separate from the retrieval time, availability is measurable as the time required for the sys-
tem to respond to (i.e., initiate the retrieval process) the request for information [Eppler and
Muenzenmayer 2002]. The measure of how difficult it is to discover what information to retrieve
(or how to retrieve it), navigation, is characterized by the number of hierarchical steps [Eppler and
Muenzenmayer 2002], the cost of missteps, and the number of circuitous routes possible to get to
the same information. And security refers to the strength of the credentials required to access the
information, or, conversely, the number of weak credentials present in the system [Eppler and
Muenzenmayer 2002].

Assuming the quality of incoming data can be measured (i.e., by means of quantifiable errors),
Ballou et al. [1998], using their information manufacturing model, give additional quantifiable
measures for data quality and value to the customer. They define the data quality for output y =
f (x1, . . . ,xM ), given M data unit inputs x , as some function of the measure of deficiencies in input
variables (component), and the measure of errors introduced by processing the data (effectiveness ∈
[0, 1]):

qualityout (y) = f (component, effectiveness), (19)

where component is the measure of the deficiencies of input variables

component =

∑M
i=1wiqualityin (xi )∑M

i=1wi

, (20)

where

wi =
����� ∂ f∂xi

����� |xi | , (21)

are the weights of the individual data components. Value to the customer (v) is generally defined
as a function of the intrinsic value v0, timeliness , and qualityout . An example of such a function
is given as

v = v0

(
w (qualityout )a + (1 −w ) tb

)
, (22)

wherew ∈ [0, 1] is the customer’s trade-off importance weight between quality and timeliness, a is
a sensitivity to quality, and b is a sensitivity to timeliness. Here,v0,w , a, and b are all user-defined.

4.6 Situation Awareness

The study of SA is broad and the available literature extensively vast. Many efforts to define and
measure SA have focused on specific domains (e.g., military operations and response efforts) that
are beyond the context of this article. Rather than providing a full survey of the topic here, we
direct the reader to more comprehensive texts for evaluating SA by Endsley and Garland [2000],
and for design strategies for SA by Endsley and Jones [2016]. Instead, this section is dedicated
specifically to the measurement of SA within the context of manufacturing, and any analogues
drawn from these other domains will be indicated as such.

For the sake of consistency with the established literature, we adopt the widely cited three-level
SA model presented by Endsley in 1995 [Endsley 1995b], as shown in Figure 2. In this model, Level
1 SA represents the capacity to perceive and measure elements within the operational environment
(e.g., people, work objects, and obstacles). Level 2 SA indicates the comprehension of the elements’
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Fig. 2. The three nested levels of SA as described in Endsley [1995b]. Each successive layer extrapolates
greater awareness based on the previous layer’s understanding of the world.

meaning within the operational context. And Level 3 SA demonstrates the ability to predict with
some level of accuracy the elements’ states (e.g., location and orientation) in the future. The stacked
nature of this model states that Level 3 SA is impossible without also having Level 1 and Level 2
SA. If, at any point, Level 1 SA is lost, Level 2 and Level 3 SA are also forfeited.

HMI and HRI that fully support SA are marked as having fewer errors or requiring few corrective
actions. Loss of SA is typically associated with missing critical information [Jones and Endsley
1996] and is attributed to poor system performance [Stanton et al. 2001]. While ultimately still
being susceptible to black swan events [Taleb 2007], effective interfaces and interactions express
greater safety and performance robustness against such unforeseeable situations.

In industrial settings, human-factors SA topics are traditionally focused on ensuring safety in
the face of uncertainty (e.g., Cormier et al. [2015]). However, the support of the human operator’s
SA in manufacturing environments is equally important to maximize optimal process efficiency
and minimize downtime. For instance, it has been observed that operators in autonomous man-
ufacturing environments are more passive when they monitor the processes and equipment and
are thus less responsive to system/process failures [Endsley and Kiris 1995]. To combat this, it has
been proposed that reducing the autonomy of the system to actively engage the operators will
summarily increase operator SA [Kaber and Endsley 2004]. This position is often in direct conflict
with the desire to maximize autonomy to increase robot effectiveness and enable a single opera-
tor to support multiple machines (e.g., Crandall et al. [2005]). In such circumstances, however, the
target is not SA in collaborative tasks, but is instead the maximization of equipment utility. The
effectiveness of a robot’s autonomy (“neglect tolerance”), J , is measured as a function of neglect
and interaction time, the complexity of the environment (Q), and the interface (I ) [Crandall et al.
2005]:

J (I ,Q, t ) =

{
JN

(
I ,Q, tof f

)
neglected

JS (I ,Q, ton , tN ) otherwise
. (23)

Here, JN is the performance curve of the robot while the robot is operating autonomously, and JS
is the performance curve of the robot while it is being interfaced with by the operator. The timing
profiles, t , consist of the time elapsed since the operator turned their attention toward the robot
(ton ), the time elapsed since the operator turned their attention away from the robot (tof f ), and
the length of time the robot had previously been neglected (tN ).

A number of metrics have been proposed to measure the SA of an individual during an
event. Born principally for military and aviation applications, assessment metrics such as the
Situation Awareness Rating Technique (SART) [Taylor 1990], the Situational Awareness Rating
Scale (SARS) [Waag and Houck 1994], and Situation Awareness Global Assessment Technique
(SAGAT) [Endsley 1988, 1995a] are subjective in nature with experiences recorded as post-factor,
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Table 8. The SA System Metrics from Salerno et al. [2005]

Dimension Metric Definition/Purpose

Confidence
Precision Percentage of correct alerts
Recall Probability of detection

Purity
Misassignment Percentage of evidence incorrectly associated
Evidence recall Percentage of detected events

Cost Utility Cost utility Percentage of cost savings
Timeliness Time Time between event and alert

pseudo-quantitative measures on unidimensional scales. Such metrics are generally well-regarded
with advantages and disadvantages to their applications [Charlton 2002; Jones 2000].

Quantitative measures are less common given the highly personal and subjective nature of SA.
As such, such metrics attempt to infer SA by measuring correlated, externally observable variables.
For instance, the Situation-Present Assessment Method (SPAM) [Durso et al. 1998] attempts to
quantify SA in real-time by measuring response delays as a function of the subject knowing where
to look for information within the environment. Similarly, it is believed that, as a person’s SA
increases, the amount of additional information needed to complete a task decreases [Salerno et al.
2005]. A data-to-information ratio equates data consumption with the value of the operator’s SA
of objects or events:

Data-to-Information =
Number of Observations

Number of Events
. (24)

In addition to this data-driven evaluation, Salerno et al. [2005] define several performance-based
metrics for evaluating the systems specifically designed to generate and maintain SA for emer-
gency situations (see Table 8). Such metrics include the measurement of “confidence”—essentially,
a measurement of false-positive and false-negative errors—which is the juxtaposition of “precision”
(classification accuracy)

Precision =
Number of Correct Detections

Number of Detections
(25)

and “recall” (detection accuracy)

Recall =
Number of Correct Events Detected

Number of Events in Ground Truth
. (26)

For systems that trigger event notifications based on the accumulation of flagged data, the “pu-
rity” (or quality) of the data classification is measured as the scale of noise in data flagging (a
“misassignment rate”) and recall at the evidence level. The misassignment rate is calculated as

Misassignment Rate =

∑M
i=1 I (mi )∑M
i=1 S (mi )

, (27)

where M is the total number of events detected, I (mi ) is the amount of data incorrectly tagged for
event mi , and S (mi ) is the total amount of data associated with the event mi . And evidence recall

is evaluated as

Evidence Recall =

∑M
i=1C (mi )∑M
i=1 E (mi )

, (28)
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whereC (mi ) is the amount of data correctly tagged to belong to eventmi , and E (mi ) is the collec-
tion of data in the ground truth for eventmi . There are also metrics to measure the time required by
the system to bring an event to the operator’s attention (“timeliness”) and consequences of missing
or incorrectly identifying events (“cost utility”). Here, cost utility is defined as

Cost Utility =

∑M
i=0Cost (mi )∑N
j=0Cost

(
nj

) , (29)

where the Cost (·) function is the cost (positive or negative) of a given event, m1 . . .mM are all
events detected, and n1 . . .nN are the events that should generate operator notifications.

In terms of designing for SA, Endsley and Jones [2016] provide a comprehensive account of the
threats to maintaining SA across multiple application domains and the principles to consider when
creating UIs (primarily military and aviation applications, but also applicable to manufacturing
tasks) to minimize the likelihood and impacts of these threats. The principal threats, they argue,
are:

• focusing attention on specific features or aspects, while losing track of surrounding events
or processes;

• relying on limited, volatile memory for activities that exceed the storage lifespan;
• stressors such as workload, anxiety, and fatigue, which limit the ability to process incoming

information;
• information being presented at a faster rate than at which it can be processed;
• less-important information overriding more important information that needs the opera-

tor’s attention;
• too many sources of information, which make it difficult to process everything and maintain

SA;
• relying on incomplete or incorrect understandings of how to interpret incoming informa-

tion;
• automated features that disengage operators, making it less likely to catch and correct er-

rors.

Endsley and Jones further provide 50 design principles to combat these threats and support SA for
specific requirements such as displaying process uncertainty, minimizing complexity, and raising
alarms. These principles include organizing the presentation of data around operator goals rather
than the technology, supporting operator comprehension by providing Level 2 SA information
directly, providing information about sensor reliability, and keeping the interfaces goal-oriented by
limiting the number of additional (potentially distracting) features. Factors supporting the design
of automation systems are discussed further in Section 5.2.

In contrast to SA for human operators, Steinfeld et al. [2006] argue that SA for robots is reduced
to two forms of awareness: human awareness and self awareness. Human awareness consists of
the robot’s ability to recognize, characterize, and adapt to humans. Human recognition refers to
the functions relating to the identification, localization, and tracking of people. Human charac-
terization, in contrast, attempts to capture human actions, intention, and attention. And human
adaptation includes recognizing and adjusting to human behaviors and feedback.

The robot’s self awareness is an internal assessment metric by which the robot monitors and
evaluates its state. Such states include measures of the robot’s limitations and capabilities (e.g.,
Shneier et al. [2015]), monitoring its own system health and process performance, and identifying
and recovering from fault [Steinfeld et al. 2006]. Because of the complex interactions with machine
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tools and other robots, however, it is expected that there would be a level of external redundancy
in system health monitoring, process performance, and fault detection.

Both the human and self awareness measures from Steinfeld et al. [2006] are qualitative in
nature, but may be quantitatively assessed using external observers to verify the identification
and modeling of humans and robots. In the case of human awareness, human-oriented perception
is the combination of identification and localization of people in the workspace as measured
against some ground truth [Shackleford et al. 2016]. Identification , id, is measured as an accuracy
measure,

identi f ication =
|dc |
|dtot |

, (30)

where dc is the number of correct “human” classifications/detections, and dtot is the number
of all detections made. Localization is the average accuracy of the robot determining where in
three-dimensional Cartesian space the detected humans are:

localization =

∑dc

i ‖дi − pi ‖
dc

, (31)

where pi and дi are the measured and ground truth locations of the ith detected person,
respectively.

In cases where no ground truth is available, however, a more probabilistic approach may be
required to assess the system’s confidence in its identification and localization accuracy. There are
myriad probabilistic approaches within the literature for identifying and locating people, each of
which have their own measures for evaluating the confidence of the assessment. Often, this is a
measure of a quality of fit, typically bounded by the number of features, conditions, or constraints
satisfied by the identification/localization algorithm. This can be reported as a simple ratio of
observed versus expected features or constraints:

conf idence =
observed

expected
, (32)

or as a confidence interval in the form of (μobserved ,σobserved ) if the observations themselves are
probabilistic in nature. In such cases, the mean and standard deviation of observed conditions may
either independently or collectively influence the reporting of measurement confidence (e.g., a
given measurement may be assigned a low confidence if the number of observed conditions is low
or the standard deviation is large). Measurement uncertainty (i.e., noise) distributions may also
be leveraged to the same effect and have the added benefit of being useful for compensating for
measurement noise using statistical estimators (e.g., Kalman filters).

The robot’s quantifiable self awareness is a function of its ability to measure and model itself
and consists largely of assessments of action performance and fault handling. Action performance,
as a basic level of functionality, is essentially positioning and trajectory accuracy and repeatability.
Additional software and sensors may be integrated for higher-level performance assessment and
validation (e.g., see Section 4.10), but such capabilities are task-specific and not typical of a stock
robot platform. Nominally, accuracy and repeatability are measured as a function of the relative
Euclidean distance between the nominal and measured barycentric positions, p̂i and pi , respec-
tively. Positional accuracy [ISO 1998] is measured as

AP (i ) = ‖p̂i − pi ‖, (33)
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and the orientation accuracy [ASTM 2014] may be measured as

AO (i ) = cos−1 ���
trace

(
R̂iR

T
i

)
2

�	
 , (34)

where R̂i and Ri are the 3×3 rotational matrices defining the nominal and measured poses, respec-
tively. The repeatability may be measured as

RP = ĀP + 3σP , (35)

where

ĀP =

∑n
i AP (i )

n
(36)

and

σP =

√∑n
i

(
AP (i ) − ĀP

)
n − 1

. (37)

Fault handling, unlike action performance, is a post-factor analysis of the robot’s ability to detect,
isolate, and recover from errors. Fault detection is an instantiation of syntactic accuracy given in
Equation (8):

detection =
|Cf ound |
|N | , (38)

whereC is the number of faults correctly identified, and N is the total number of faults identified.
Similarly, fault isolation is a quantification of the number of errors that are correctly diagnosed
and localized, Cdiaдnosed :

isolation =
|Cdiaдnosed |
|N | . (39)

And fault recovery is a measure of the number of conditions correctly moved from an error state
to an error-free state, Ccorr ected :

correction =
|Ccorr ected |
|Cdiaдnosed |

. (40)

4.7 Mental Effort

Within the manufacturing context, the goals of HRI are targeted at reducing mental and physical
fatigue, increasing sense of control or contribution to the task, and ultimately reducing any inter-
action dynamics that might negatively impact production goals. The metrics for measuring such
subjective impacts are largely qualitative in nature and tend to target impacts on the individual by
assessing cognitive or stress loads. One widely applied qualitative metric [Hart 2006] is the Na-
tional Aeronautics and Space Administration (NASA) Task Load Index (TLX) [Hart and Staveland
1988], which performs a post-factor rating of the levels of cognitive and physical demands placed
on the participants during a given task. These demands (shown in Table 9) are rated on different
Likert scales and combined with “Source of Workload” weights and are intended to characterize
both the task and the level of personal effort exerted to complete the task.

Alternative metrics include the Workload Profile (Table 10 [Tsang and Velazquez 1996]) and the
Subjective Workload Assessment Technique (SWAT, Table 11 [Reid and Nygren 1988]). The Work-
load Profile evaluates multiple quality/demand elements of several mental dimensions on sliding
scales in the range of 0 (no demand) to 1 (full effort), while the SWAT metric has participants select
from among three possible responses for time, mental effort, and stress-load dimensions. Based on
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Table 9. The Qualitative Metrics of the NASA-TLX [Hart and Staveland 1988] Ask Participants
to Rank Mental Demands along Multiple Dimensions

Title Scale Description

Mental Demand Low–High Level of mental and perceptual activity required to
complete the task.

Physical Demand Low–High Level of physical activity required to complete the task.
Temporal Demand Low–High Amount of pressure felt as a result of the pace of the task.

Performance Good–Poor Assessment (either internal or external) of the quality of
work performed toward the task goals.

Effort Low–High Amount of work exerted (mentally or physically) to
achieve the level of performance.

Frustration Low–High Level of internal stress (insecurity, discouragement,
irritation, stress, or annoyance) felt during the task.

Table 10. The Qualitative Metrics of the
Workload Profile [Tsang and Velazquez 1996]
Ask Participants to Rate Their Experiences to

the Different Dimensions on the Scale of 0
(No Demand) to 1 (Full Attention)

Dimension Task Quality

Processing

Stage

Perceptual/Central
Response

Processing

Code

Spatial
Verbal

Input
Visual

Auditory

Output
Manual
Speech

a study by Rubio et al., the NASA-TLX is recommended for assessing impacts on individuals, while
evaluations of cognitive demands are better evaluated using Workload Profile [Rubio et al. 2004].

As with any qualitative rubric, the subjective measures of the NASA-TLX, Workload Profile, and
SWAT metrics may be influenced by any number of external stimuli that may vary as a function of
time. Moreover, such metrics are not applicable when assessing the effectiveness of robotic tools
or coworkers, since they do not feel fatigue or stress. Quantitative physiological measurements
may be used to generate approximations of mental effort and fatigue in lieu of the more-common
feedback models, but the mechanisms for taking such measurements are invasive and are not
conducive with safety and performance requirements of a manufacturing environment.

As such, alternative quantitative metrics may be required to add context to (or be used in lieu of)
the qualitative measures. Such metrics are effectively aimed to capture observable activity within
a particular group and may be as simple as measuring the sharing of information (e.g., the number,
frequency, and modality of messages exchanged [Guazzini et al. 2012]), capturing the lengths of
time spent in the shared workspace or task, proximity of humans and robots throughout the task
[Guazzini et al. 2012], or evaluations of collaborative team size and rates of change [Klug and
Bagrow 2016; Palla et al. 2007].
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Table 11. The Qualitative Metrics of the Subjective Workload Assessment Technique [Reid and Nygren
1988] Evaluates Tasks by Selecting from among Three (“Low,” “Medium,” “High”) Responses

Load Dimension Response

Time

Often have spare time. Interruptions or overlap among activities occurs
infrequently or not at all.
Occasionally have spare time. Interruptions or overlap among activities
occur infrequently.
Almost never have spare time. Interruptions or overlap among activities
are very frequent or occur all the time.

Mental Effort

Very little conscious mental effort or concentration required. Activity is
almost automatic, require little or no attention.
Moderate conscious mental effort or concentration required. Complexity
of activity is moderately high due to uncertainty, unpredictability, or
unfamiliarity. Considerable attention is required.
Extensive mental effort and concentration are necessary. Very complex
activity requiring total attention.

Stress

Little confusion, risk, frustration, or anxiety exists and can be easily
accommodated.
Moderate stress due to confusion, frustration, or anxiety noticeably adds
to workload. Significant compensation is required to maintain adequate
performance.
High to very intense stress due to confusion, frustration, or anxiety.
High extreme determination and self-control required.

Mental effort may be approximated by observing the nature and experience (E) of a team of size
M for a given project R worked on by user i

E =
1

M

∑
i

|Ri | − 1, (41)

diversity

D =
|⋃i Ri |∑

i |Ri |
, (42)

and number of leaders (team members who contribute more than others in team k , where Li j is 1
if user i is the lead of team j, zero otherwise)

Lk =

Mk∑
i=1

min
���
∑

j

Li j , 1
�	
 , (43)

of teams [Klug and Bagrow 2016] based on the number of projects/tasks a person works on, Ri .

4.8 Physical Effort

In Section 4.5, reliability and trustworthiness were introduced as a qualitative metric of informa-
tion quality as assessed by the operator. A study by Sadrfaridpour et al. [2016] introduced a “trust
model” metric of reliability based on the human’s performance, ph , compared with the robot’s
performance, pr , at time t . The purpose of this model is to identify when the operator’s activity is
disproportionate with the robot’s. The underlying theory is that a sign of trust between human and
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machine is when the two are equally active at the same time, rather than relying on turn-taking
or an unequal distribution of work. This trust model is calculated as

trust (t ) = c1trust (t − 1) − c2 |ph (t ) − pr (t ) | − c3 |ph (t − 1) − pr (t − 1) | + rr ecover , (44)

where c1, c2, and c3 are user-defined, positive constants, and rr ecover is a trust recovery rate. At
time t the robot’s performance is assessed based on its current level of activity normalized by its
maximum possible activity. Here, 0 ≤ pr (t ) ≤ 1, where 0 indicates the robot is idle, while 1 means
the robot is moving at maximum permissible speed.

In contrast, the human’s performance is based on their physiological capacity to work:

ph (t ) =
fmax (t ) − fthr esh

finit − fthr esh
, (45)

where fmax is the maximum applicable muscle force, which diminishes over time, and finit is the
maximum force applicable at rest. The fatigue and recovery model of fmax , borrowed from Fayazi
et al. [2013]:

fmax (t ) = fmax (t − 1) − cf fmax (t − 1)
f (k − 1)

finit
+ cr ( finit − fmax (t − 1)) , (46)

where cf and cr are the fatigue and recovery constants unique to every person, respectively, and
f (t ) is the applied force at time t . The value, fth , is the threshold force applicable by a muscle and
is equal to the smallest possible values of fmax , calculated as

fthr esh = finit
cr

2cf

��−1 +

√
1 +

4cf

cr
�
 . (47)

As a model of trust, this metric has a number of issues, not least of which being that it assumes
both human and machine must be actively working to illustrate a level of trust. For example, turn-
taking in a shared work environment, or a person holding down a workpiece while the robot
performs some operation on it, or instances where the robot works separately from the human
due to safety concerns (e.g., the robot moves a part to a separate work station to perform a quick
welding operation) do not relate in any way to the human’s trust of the machine. However, the
measures of ph and pr do provide useful insights into the physical effort exerted by both humans
and machines and are thus worth mentioning as a measure of teaming performance.

An alternative model of muscle exertion is presented by Peternel et al. [2016] as an index value
at time t :

vindex (t ) = 1 − e−
∫

д (t )
c dt , (48)

whereV (t ) ∈ [0, 1] is the index value, д (t ) ∈ [0, 1] is an estimate of the current activity dynamics
(e.g., an applied force or stiffness model or directly measured via Electromyography sensors), and
C is an encoding of an individual’s specific muscle parameters:

c = −
дr ef tr ef

log (1 − 0.993)
. (49)

Here, дr ef is a reference effort to measure the amount of time, tr ef , that a given muscle could
endure.

These models of effort are occasionally used to assess ease-of-use for force-guided human-robot
collaborative tasks such as material handling (e.g., Flixeder et al. [2016]; Fujii et al. [2016]; Villani
et al. [2018]) and manipulation of components (e.g., Ficuciello et al. [2015]). In many instances,
however, interactions between humans and robots are strictly non-contact for safety purposes. In
such applications, verbal or gesture-based queues are used to communicate with the robots. For
these, physical effort would effectively reduce to vocal strain [Zhao et al. 2018] and ergonomics
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[Aromaa et al. 2018]. Alternative interfaces such as augmented or virtual reality may have addi-
tional physical effort factors associated, including neck strain from the weight of displays [Garrett
et al. 2018] and cybersickness from extended use [Kennedy et al. 1993; Rebenitsch and Owen 2016].

4.9 The Human Response

The effectiveness of a robot’s design, the performance of the interface, and the quality of infor-
mation shared can all be for naught if the person working with the robot reacts negatively to the
robot. A significant portion of the acceptance of the human-robot teaming may ultimately depend
on personal preference, which is notoriously difficult to quantitatively capture a priori. Factors
such as likability and the perception of intelligence cannot be accurately measured objectively
at all. As such, it is necessary and unavoidable to include subjective measures that capture the
operators’ feelings toward the robotic equipment with which they are working.

The challenge, however, is to determine the minimum subset of reaction and impression at-
tributes that succinctly capture the human experience. Recall from Section 4.1 the discussion of
multiple surveys/questionnaires in Table 2. In that table, 41 different subjective measures are pre-
sented, each of which are captured in different ways by different surveys. Some of these attributes
are similarly captured in other subjective metrics discussed earlier, yet many are specific in tar-
geting the human response.

One of the more popular subjective measures for measuring operator reactions to robots is from
the Godspeed Questionnaire Series (GQS) developed by Bartneck et al. [2009]. The GQS captures
human responses across a sliding scale for five categories: anthropomorphism (how human-like
is a robot’s appearance or behavior), animacy (how lifelike is a robot’s appearance or behavior),
likeability (positivity of first impressions), intelligence (acting or reacting intelligently), and safety
(awareness of hazards to the human). These categories, shown in Table 12, are based on an ex-
tensive survey of sociology and psychology metrics and capture a user’s personal assessment of a
robot’s capacity to interact with people. While ultimately focused exclusively on assessing how a
robot looks or acts, the GQS is a useful tool for determining whether the person responds positively
or negatively to design choices for the evolution of the robot and its interface(s).

In contrast with the GQS’s evaluation of appearance, realism, and intelligence, metrics of trust
take the assessment of robot competence one step further to determine whether the person work-
ing with the robot has faith in the robot’s capabilities. In Section 4.8, a proposed objective mea-
sure was presented in Equation (44) that equated simultaneous activity levels with inferences of
trust. However, this is just one aspect of trust and does not necessarily correlate with an individ-
ual’s comfort level or faith in the abilities of the robot to perform as expected. For example, the
Multi-Dimensional Measure of Trust [Ullman and Malle 2018] asks users to rate robots on their
perceived capabilities, ethics, sincerity, and reliability as factors of trustworthiness. The Almere
model [Heerink et al. 2010], in contrast, specifies trust as a factor of personal integrity and re-
liability. Joosse et al. [2013] refer to trust as a measure of credibility as measured by the Source
Credibility Scale [McCroskey et al. 1973] from 1973, which captures credibility as a function of
competence, character, sociability, extroversion, and composure. In contrast, the Negative Atti-
tudes Toward Robots [Nomura et al. 2006] scale measures a person’s trust in robots in general,
reducing interactions to hypothetical situations and encounters, social influences of robots, and
the attribution of emotions (Table 13). Another metric of trust measurement was proposed by Muir
that establishes trust as a combination of predictability, dependability, faith, competence, respon-
sibility, and reliability [Muir 1994]. For a more comprehensive discussion on trust metrics and the
impacts that different factors have on trust, we refer the reader to the survey by Cho et al. [2015].

Also worth noting here is the System Usability Scale developed by Brooke [1996]. Within the
HRI research domain, this is frequently used in lieu of the product quality model from [ISO 2011c]
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Table 12. Human Response Categories from the Godspeed
Questionnaire Series [Bartneck et al. 2009]

Category Subcategory

Anthropomorphism

fake vs. natural appearance
machine-like vs. human-like behavior
unconscious vs. conscious behavior
artificial vs. lifelike appearance
moving rigidly vs. moving naturally

Animacy

dead vs. alive appearance
stagnant vs. lively actions
mechanical vs. organic movement
artificial vs. lifelike appearance
inert vs. interactive behavior
apathetic vs. responsive behavior

Likeability

user likes vs. dislikes appearance
perceived friendly vs. unfriendly
perceived kind vs. unkind
perceived pleasant vs. unpleasant
perceived awful vs. nice

Intelligence

incompetent vs. competent
ignorant vs. knowledgeable
irresponsible vs. responsible
unintelligent vs. intelligent
foolish vs. sensible

Safety
anxious vs. relaxed
agitated vs. calm
inactive vs. surprised

for measuring usability. The System Usability Scale is a 10-item survey that assesses operator
preferences along the lines of intent to use, function integration, ease of learning, and system con-
sistency. As with the NASA-TLX, the System Usability Scale is not specific to robotics. Moreover,
it finds broad use and applicability in both industrial and non-industrial applications.

4.10 Task Performance

When integrating any new robot system for a specific application, one must take into account the
impact of the system and its interface on the task performance. From a subjectively qualitative
perspective, task performance can be inferred based on survey responses to inquiries regarding
team cohesion (i.e., how everyone felt the team performed as a collaborative unit), distribution of
workload, quality of work, and so on. Such evaluations may be useful for assessing whether the
task (and the team members) benefit from the collaborative teaming.

Given that the purpose of integrating automation into a task is to increase product quality and
process effectiveness, efficiency, and throughput, the quantitative metrics for evaluating the im-
pacts on task performance are associated with manufacturing performance indicators. From a re-
source perspective, the effectiveness and efficiency of the team (and, subsequently, the individual
contributors and robotic equipment) are indelibly tied to these performance indicators. Effective-

ness, or the quantification of how well the task is completed, may measure any number of different
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Table 13. The Negative Attitudes toward Robots Scale from Nomura et al. [2006]
Assesses Attitudes along Three Hypothetical Categories

Subscale Item

S1: Negative attitude toward
situations of interaction with
robots

I would feel uneasy if I was given a job where I had to use
robots.
The word “robot” means nothing to me.
I would feel nervous operating a robot in front of other
people.
I would hate the idea that robots or artificial intelligences
were making judgments about things.
I would feel very nervous just standing in front of a robot.
I would feel paranoid talking with a robot.

S2: Negative Attitude toward

Social Influence of Robots

I would feel uneasy if robots really had emotions.
Something bad might happen if robots developed into living
beings.
I feel that if I depend on robots too much, something bad
might happen.
I am concerned that robots would be a bad influence on
children.
I feel that in the future society will be dominated by robots.

S2: Negative Attitude toward
Emotions in Interaction with
Robots

I would feel relaxed talking with robots.
If robots had emotions, I would be able to make friends with
them.
I feel comforted being with robots that have emotions.

manufacturing factors, but ultimately reduces down to two basic elements: (1) the number of com-
pleted operations (assembly, packaging, inspection, etc.), ot , and (2) the number of damaged, lost,
or scrapped parts (i.e., waste), ow . The two can be combined into a single equation as

effectiveness =
a (ot − ow ) − (1 − a) ow

ot
, (50)

where 0 ≤ a ≤ 1 is a user-defined weight specifying the company preference of quantity versus
quality. In contrast, efficiency measures the performance as a function of resource utilization for
a given operation. Common metrics for this include the average time required to complete a task
over a given period of time, tcomp ,

tavд =
tcomp

ot
, (51)

or its inverse, throughput:

throughput =
ot

tcomp
. (52)

Optimizing for the time element consists of either minimizing tavд or maximizing throughput.
Either of these are sufficient for capturing efficiency in many application domains (e.g., response
robotics [Steinfeld et al. 2006]). However, in manufacturing, we must also take into account the
minimization of waste as a factor for efficiency. As such, we define our measure of efficiency as

efficiency =

(
1 − ow

ot

) (
ot

tcomp

)
=
ot − ow

tcomp
. (53)
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Fluency, as described in Hoffman [2019], provides an additional metric for timing efficacy and
synchronization between human-robot team members. Fluency includes both subjective survey
questions and objective timing measurements. The objective measures consist of human idle time
HI DLE , robot idle time RI DLE , concurrent activity time CACT , and functional delay FDEL .

For a specific collaborative task instance 〈H ,R〉 over some arbitrary time period, the n periods
of human activity are denoted as

H ≡ {hi }ni=1 ≡ {(shi
,dhi

)}ni=1. (54)

Here, period i is denoted as hi , which starts at time shi
and has duration dhi

. The robot’s sequence
of activity overm periods is represented as

R ≡ {r j }mj=1 ≡ {(sr j
,dr j

)}mj=1, (55)

where sr j
marks the start of the j th period sequence, and dr j

is its duration. The total task time is
represented as

T = max
(
shn
+ dhn

, srm
+ drm

)
, (56)

where the human always starts the first activity at time t = 0.
Using the above descriptions, the percentage of the total task time where the human was not

active, HI DLE , can be described as follows:

HI DLE = 1 − 1

T

n∑
i=1

dhi
. (57)

Similarly, RI DLE , the percentage of total task time where the robot is not perceivably active, can
be described as

RI DLE = 1 − 1

T

m∑
i=1

dri
. (58)

It should be noted that the “perceivable” nature of RI DLE can be interpreted multiple ways depend-
ing on the environment and the nature of the interaction.

Concurrent Activity, or CACT , the percentage of total task time during which both agents are
active concurrently, can be calculated as

CACT =
1

T

⎡⎢⎢⎢⎢⎣max
(
0, sh1 + dh1 − sr 1

)
+

n∑
i=1

(max (0, sr i−1 + dr i−1 − shi ) +max (0, shi + dhi − sr i ))
⎤⎥⎥⎥⎥⎦ .

(59)
Functional Delay, FDEL , is described as the accumulated time between the completion of one

agent’s action and the beginning of the other agent’s action and is represented as a ratio of total
task time. The mathematical representation of FDEL makes a simplifying assumption that actions
do not accumulate more than once and is described as

FDEL =
1

T

n∑
i=1

(
sri
− shi

− dhi

)
. (60)

As detailed in Hoffman [2019], the rates of these measures can vary when dealing with small
values ofm and n, and it may be more appropriate at times to evaluate these metrics as an average
agent turn. In general, the user of these metrics should be aware of the variance in lengths of the
time periods before choosing to provide the metrics as an average or as a series.

From a business perspective, arguably the single-most important metric for evaluating the ef-
fectiveness of any system is the return on investment (ROI). Traditionally, the measure of ROI
has been a tool for evaluating material purchasing decisions as an assessment of the timeline to
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recuperate investment costs for purchase and integration (cost) as a function of expected financial
gains (gain) over a given period of time (e.g., one year). ROI is calculated as

ROI =
дainterm − cost

cost
, (61)

where дainterm is the gross profit, and cost is the combination of equipment cost, integration
fees, and expected/amortized expenses (e.g., maintenance and training). For some, however, the
perspective of ROI has shifted slightly to be purely a function of profit margins over the foreseeable
life of the equipment, дaintotal :

ROI = дaintotal − cost . (62)

Neither metric is inherently superior to the other, and selection of one or the other is ultimately
at the discretion of the end-user. It is also worth mentioning that certain costs may be assessed
differently depending on the institution. For example, some companies may only consider charges
associated with actively producing goods in the computation of ROI, whereas support costs (e.g.,
programming or maintenance) may be accrued as overhead.

If implementing an entirely new task, one must isolate the HRI/HMI from the the task, itself. This
is made challenging, however, given the impacts of HRI/HMI on key task performance indicators
such as mean time to failure,

t f ail =

∑f
i=0 tf ail,i

f + 1
, (63)

(where f is the number of failure events, and tf ail,i is the time to failure for event i), setup time,
tsetup , and cycle time, tcycle . For a thorough measurement, variability must be introduced into
the process by experimenting with different interfaces and interactions. This is not conducive to
manufacturing environments, however, nor are the results of the experimentation generalizable.
One may, however, estimate the effects by reducing the complexity of the task to known variables
and inversely measuring the influence that adding the complexity had on the task performance.
For example, in a multi-robot configuration [Marvel et al. 2018], a reduction in complexity would
reduce a multi-robot setup to a single-robot setup. A subset of the metrics for the evaluation of
the single- versus multi-robot setup are given in Table 14. As an example, consider the impact
of process timing. How long would it take a single robot to complete a given task (including the
time necessary for tool changes, reconfigurations, and the use of fixtures)? How long would a
multi-robot configuration require to complete the same task? The difference is the net gain.

For the human-robot case, one would assess the task from the human-only perspective versus
the robot-only perspective. Human-centric perspectives are typical for both assistive (e.g., Tapus
and Mataric [2008]) and response (e.g., Burke et al. [2004]) robotic applications and technologies.
In the manufacturing domain, the introduction of robots into a historically manual process (or,
conversely, increasing the role of human operators in automated processes) would be directly
impacted by the HRI and HMI. The cost of integrating human-robot collaborative teams is thus
evaluated as an ROI calculation.

In terms of evaluating HRI/HMI effectiveness, however, the impacts on ROI are almost impossi-
ble to accurately quantify given the predictive nature of the equation. How, then, does one measure
the impact of HRI/HMI on the performance of a task? The measure is necessarily reflective: One
compares the performance of the system leading up to the change and then measures the perfor-
mance after the change (e.g., see the discussion of the metrics from Roberts and Moran [1983] in
Section 4.3). As such, a more effective metric would be to evaluate the impact of HRI and HMI on
the compounded overall equipment effectiveness (OEE) [Godfrey 2002]:

OEE = availability × performance × quality. (64)
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Table 14. Partial Collection of Metrics for Measuring Multi-robot Assembly Performance
from Marvel et al. [2018]

Metric Category Measurement

Efficiency

Complexity
Complexity of task strategy
Impact of using alternative task strategies
Single- vs. multi-robot task complexity

Effort

Programming time duration
Optimization/tuning duration
Commissioning vs. use timing
Single- vs. multi-robot program timing
Single- vs. multi-robot cost

Quality
Ratio of task successes to failures
Mean time to failure

Timing Process

Average time to complete a single task
Maximum time to complete a single task
Minimum time to complete a single task
Standard deviation of task times
Impact of using alternative task strategies
Sensitivity to parameter changes
Time spent performing task vs. other motions
Time required for single- vs. multi-robot configurations to
complete tasks

Here, availability is the percentage of scheduled time the equipment is available to operate

availability =
scheduled time − lost time

scheduled time
, (65)

performance is the percentage of operational speed of the equipment

performance =
actual machine speed

design machine speed
, (66)

and quality is the ratio of good to bad parts produced

quality =
number of good parts

total parts produced
. (67)

The HRI/HMI may impact any of these three elements in different ways, so the impact on OEE
is highly variable as a function of the interactions between human and machine. For instance, im-
provements made to the timely display of quality diagnostics information may reduce equipment
downtime, thus increasing total equipment availability. Similarly, in supportive human-robot col-
laborations, variations in the operator’s confidence in the machine’s capabilities and responsive-
ness may impact total production throughput, impacting performance.

If the HRI/HMI is the only element that has changed, OEE is an effective tool to capture the
impact of the collaboration. Otherwise, these metrics are merely indirect indicators of HRI/HMI
effectiveness toward task performance, and changes may be correlative rather than causal for
improvements in OEE. Drawing parallels to the actual collaboration between user and machine, an
analog OEE metric may be calculated to determine the extent and effectiveness of the interactions
for task performance.
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Thus, for HRI/HMI efficacy, we can define the OEE of the interface as

OEEH MI =
availabilityH MI × performanceH MI

×qualityH MI .
(68)

Here, we define availabilityH MI as

availabilityH MI =
scheduled time − lost time

scheduled time
, (69)

where scheduled time is the number of hours allocated to perform the task, and lost time is the
amount of time spent instructing or correcting the machine’s actions or behavior. We define
performanceH MI as

performanceH MI =
collaboration speed

solo speed
, (70)

where collaboration speed is the amount of time required to collaboratively perform a task through
the HRI/HMI, versus solo speed, which is the amount of time required to perform the task alone
(either the operator or the machine). And we define qualityH MI as

qualityH MI =
interactions − corrections

interactions
, (71)

where interactions are the number of times the operator interacts (physically or audibly) with the
machine during the period of observation, and corrections are the number of times the operator
had to correct the machine’s behaviors as a response to the interactions.

5 MANUFACTURING HRI/HMI DESIGN FRAMEWORK

In the previous sections, we introduced and discussed the nature and metrics of HRI and HMI.
In this section, we seek to compose a general guidance framework for influencing the design and
evaluation of collaborative, manufacturing robot HMIs to maximize their effectiveness for HRI.

While the framework discussed in this section may be used for iteratively improving interfaces
and interactions to enable more effective collaborations, this is not the guiding intention. Rather,
this framework is intended to reestablish how the research and development communities ap-
proach interface designs. In a collaborative team, the HRI and HMI must be leveraged to establish
trust. The operator must trust that the robot will not cause harm, that it will behave predictably,
that it will follow the guidance of the operator (short of causing harm to personnel, equipment, or
processes), and that its responses to uncertainty will be safe and reasonable.

As with any evaluation methodology, the recommendations and subset of suggested metrics
that follow should be considered a “superset” and may not be applicable for all HRI and HMI de-
signs, applications, and integrations. A subset of test methods and metrics will thus constitute the
actual evaluation of a given technology implementation. However, by providing a canonical col-
lection of metrics, we aim to provide a means by which different technologies can be consistently
and repeatably assessed. In this section, guidelines will be provided to aid in the selection and
interpretation of relevant metrics.

5.1 Interactions between Metrics

It has been seen previously that different metrics may be interpreted in different ways. For instance,
the equation for credibility (Equation (9)) can also be interpreted as a measure for completeness
(Equation (10)). Similarly, we have seen multiple metrics and test methods for effectively measuring
the same thing (e.g., timeliness in Equations (14) and (15)). To this end, when one is developing
a test methodology for evaluating the effectiveness of HRI and validation of HMI, one should
exercise care that the metrics are accurate, useful, and unique.
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A number of common hazards associated with metrics and test methods include:

(1) Metrics that can be used and interpreted a multitude of different ways do not bring new
information or may be subject to misinterpretation/misidentification.

(2) Metrics used in one domain may be meaningless or inappropriate for other applications
(e.g., the number of verbal exchanges as a means of evaluating communication efficacy
may not capture the full extent of interactions in noisy environments).

(3) Some measurements may negatively influence or interfere with other metrics (e.g., con-
stantly asking participants to rate their experiences may distract from the evaluations of
teaming performance in human-robot tasks).

(4) Subjective metrics/questions may be worded in a way that could lead subjects’ behaviors
or influence responses to subsequent measures.

(5) Questions that are phrased positively or negatively may also influence responses. As such,
questions are best phrased neutrally or have the same questions asked numerous ways,
including both positively and negatively to negate the influence of framing.

(6) The use of certain measurement tools may impact how people behave (e.g., cameras and
wearables, which could make people uncomfortable or self-conscious of performance).
The mechanisms by which sensing is shared (or hidden) may also impact the subjects’
behaviors or performance (e.g., live displays of camera feed may make some people feel
self-conscious).

(7) Some task metrics and data collection mechanisms may fatigue subjects, which could neg-
atively impact results. For example, questionnaires that survey study participants too fre-
quently may elicit responses reflective of the participants’ reactions to the test, not to the
robot or teaming conditions. Similarly, attempts to gain real-time feedback of qualitatively
subjective measures may be more of a nuisance to the participants than an asset.

It is also worth noting that seemingly related metrics are not necessarily directly correlated.
For example, a reduction in mental effort does not necessarily imply a more effective interface
or higher task efficiency. Recall the discussion in Section 4.3 regarding interface metrics. Assume
15 different manufacturing tasks can be reduced to a single button click on a control panel based
on simple classifications of process conditions. Given these 15 tasks are all that are expected to
be supported, one can deduce from Equation (1) that the functionality is 1.0. Similarly, learning
and expert use times are minimal. However, what if each button is located on a separate tab of a
virtual control panel? The cognitive load is minimal, but the majority of the operator’s time may
be spent interacting with the inefficient interface, simply scrolling through tabs to find the appro-
priate button(s) to press. Similarly, the task could be so mundane that maintaining the operator’s
attention could be a significant challenge.

To this end, not all metrics are universally applicable or relevant. Evaluating HRI technologies
is therefore highly dependent on unique properties of the tasks, interactions, and interfaces that
shape the nature of the teaming between humans and machines. These aspects are summarized
in Table 15 and discussed presently. As will be repeated in the next section, it is recommended
that, when selecting test methods and metrics, major stakeholders should be consulted and their
preferences documented to aid in the prioritization of evaluation criteria. These preferences can
then also be used to judge when their respective needs are met and the designed interfaces and
interactions are ready for deployment. One possible mechanism for capturing these stakeholder
preferences is described in Weiss and Schmidt [2010].

When selecting metrics for evaluating HRI technologies, one must first establish what the goals

of the interactions/interfaces are to be. Quantitative measures should reflect the performance goals
of the task (such as OEE, ROI, and process key performance indicators), while qualitative measures
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Table 15. Factors of Consideration When Selecting Metrics and Test Methods

Factor Quantitative Properties Qualitative Properties

Task Goals Task performance metrics Expected influencing factors for
the user

Interaction Method Quantifiable factors of usability Factors that reflect operator
preferences

Environmental Factors Impacts of environment on
human/robot/team performance

Impacts of environment on
human/team comfort and
well-being

should assess the potential impacts on the operator (including ease of use and quality of work).
For example, if an interface is intended to facilitate system maintenance, quantitative measures for
accuracy and response times are likely to be highly relevant, as are qualitative measures for usabil-
ity and information/data quality. In contrast, if the interaction is intended to provide instruction
or material support, quantitative measures such as learning time and efficiency and qualitative
measures such as effort and operator awareness may be of higher priority.

Second, metrics should be commensurate with the means by which people will be interacting with

the robots. This includes a consideration of how the interfaces are expected to be most frequently
used. Quantifiable metrics include those that measure the aspects of the interfaces and interactions
for which the manufacturers and integrators are responsible. These factors include safety, utility of
mixed initiatives, and the number of features available. Qualitative measures should reflect those
aspects of frequent use that impact the operator’s comfort when working with the robots. Such
factors may include overall workload and effort, reliability, trust in the system, anxiety, and the
ability to understand presented information.

Third, metrics should be relevant to the operational and environmental conditions in which
the systems will be used. For example, measuring audio quality is superfluous in noisy environ-
ments, while situation awareness is highly relevant to areas that are frequented by human traffic
or hazardous work items. Quantitative metrics should be selected to accurately measure how the
environmental and operational conditions can impact the performance of the human-robot team-
ing. These include safety, operator/robot awareness, and task/process time. In contrast, qualitative
measures should be selected to evaluate the impacts of the environment on the operator’s well-
being. This can include measures for situation awareness, mental and physical effort, and ease of
use.

5.2 HRI Design Recommendations

Although direct data does not yet exist for human-robot teams in manufacturing, a survey of
the literature elicits some clues as to how effective HRI in manufacturing should work. Several
recurring themes emerged in analyses of teleoperated human-robot teams that are equally appli-
cable in co-located human-robot collaborations in industrial settings.

Just as the nature and intended application of interactions and interfaces impacts the selection
of metrics and test methods, they also impact the overall design of the systems to be used. Whether
effective or not, HRI designs are frequently custom-built for specific applications in specific envi-
ronments. This is true for assistive robot technologies used in the home as well as collaborative
robots used in manufacturing. However, such tasks and environments are highly variable between
and within a facility.

While reviewing the test methods and metrics frequently used within HRI/HMI research, many
truisms emerged that should be considered when designing new human-robot team systems. Many
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of these recommendations are specific to design considerations that, while not necessarily directly
tied to all of the performance metrics described previously, do impact the user’s experience and
the quality of information provided.

(1) Whenever possible, include the major stakeholders throughout the design process of
the HMI, as prescribed in ISO 9241-210:2010 [ISO 2010]. Operator roles, as discussed in
Section 2.2, and considerations for safety (Section 3.3) should influence the selection of
stakeholders. For general-purpose interfaces, such user-oriented interactions may not
be possible. However, for purpose-built interfaces, ISO 9241-210:2010 provides valuable
instructions for designing human-centered interfaces.

(2) Per the discussion in Section 4.3 regarding goal-oriented though cycles and change blind-
ness, use automation of functions sparingly and target operations that require routine
actions [Endsley and Jones 2016]. Such limitations require greater engagement of the
operator and reduce operator response time in the event of critical situations (Table 6).

(3) Graphically provide the operator with timely, actionable information about the status of
the robot and the task to establish situational awareness quickly and efficiently [Murphy
and Burke 2005; Murphy et al. 2004; Riddle et al. 2005; Scholtz et al. 2004]. Graphical
representations of information allow for faster digestion of useful information (Table 6).
In general, visual presentation of information often results in the most timely reactions
with fewer operator errors, while text slows the reactions of operators and may lead to
more errors [Perrin et al. 2008]. Similarly, information should be presented in “natural”
or “familiar” ways, as uncommon/novel or uncomfortable interfaces may prove less ef-
fective [Perrin et al. 2008]. Ultimately, it is vitally important to provide transparency in
the automated tasks such that it is clear what the robots are doing and what they are try-
ing to achieve [Endsley and Jones 2016]. Refer to Section 4.6 for more detail on assessing
neglect tolerance and awareness.

(4) Enable human in-the-loop interference to ensure safety, mitigate unanticipated prob-
lems, and directly manipulate the world [Endsley and Jones 2016; Goodrich and Olsen
2003; Murphy and Burke 2005]. Refer to Section 2.2 for a discussion of the different po-
tential access and interface requirements given the different roles of operators. Similarly,
the HRI should reduce the amount of effort necessary for directly controlling the robot
[Goodrich and Olsen 2003] (see Section 4.7 and Section 4.8 for discussions of mental and
physical effort). This includes reducing the amount of attention and time required to
address issues with the robot as opposed to focusing on the collaborative task. Easy or
intuitive interfaces for robot control in manufacturing include hand-guiding techniques
or canned recovery procedures.

(5) Reduce the level of additional training to use the robot whenever changes are made to
the interface or task [Casper and Murphy 2003; Murphy and Burke 2005] (see Section 4.3
for a discussion on evaluating learning time). Given that operators tend to be cognitively
overloaded (see Section 4.4) and are unlikely to be willing/able to take on additional
responsibilities, accommodating changes made to the system should require little or no
additional learning.

(6) Related to the previous point, prioritize or facilitate communications, tasks, and nego-
tiations between collaborators to manage operator attention (to prevent cognitive over-
load) and to ease the burden on human operators to “spread the word” to other humans
or robots [Gold 2009; Goodrich and Olsen 2003; Johnson 2014; Murphy and Burke 2005;
Murphy et al. 2004; Riddle et al. 2005; Scholtz et al. 2004].
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(7) Enable a single operator to effectively interface with or control multiple robots [Goodrich
and Olsen 2003]. Specifically accommodating this functionality typically enforces system
design criteria that benefit operator awareness and process flow. See Section 4.6 for in-
formation regarding enabling and assessing situation awareness in such circumstances.

(8) Enable the fusion of multiple (perhaps unreliable) sensors to provide information in an
integrated form [Scholtz et al. 2004]. While merely providing more information is not
necessarily guaranteed to improve task performance or situation awareness, it has the
potential to benefit the operator in instances of uncertainty. See Section 4.3 for a dis-
cussion of the uncertainty principle and Section 4.6 for an overview of the impacts of
uncertainty on situation awareness.

(9) Similarly, allow the operators to manipulate the way they receive information or control
the robot (e.g., granularity and fidelity of information flow and level of control) [Goodrich
and Olsen 2003]. This will enable the operator to have more direct control over how
information is presented to support situation awareness, reduce learning time, and filter
out unnecessary, potentially distracting data flows.

(10) Enable intuitive manipulation of the robot-world relationship (e.g., representation of
poses/configurations, and manipulate registrations between coordinate systems) [Gold
2009; Goodrich and Olsen 2003; Scholtz et al. 2004]. Again focused on maintaining situa-
tion awareness, requiring the operator to mentally transform their world view to match
that of the robot can increase cognitive load and may contribute to operational errors
that could impact process performance or operator safety.

With these tenets in mind, it is evident that a collaborative robot may have multiple interfaces for
interacting with human operators using different contextual modalities and providing information
in different ways. There are no global prescriptions for what these modalities should entail, as their
requirements and limitations will be subject to application limitations, environmental constraints,
and user preferences. Natural language processing, for instance, is not effective in noisy environ-
ments, and hand gestures are not effective when equipment or work items requiring both hands
to lift or control are used. Similarly, different people have different preferences or needs for button
layout, accommodations for disabilities or protective equipment (e.g., gloves, visors/goggles, and
ear protection), formatting data, color schemes, and so on. As such, the capacity for adaptability
and customization may be key for on-the-fly optimizing an HMI for specific users or job functions
(e.g., Micire et al. [2011]).

Given the functionality of diagnostics and software control, physical interfaces are dictated by
the application domain. The display is the principal component and should be featured promi-
nently. Keyboards may be needed for some inputs, but numerical keypads may be a preferable
complexity reduction if the only keyed inputs are numbers. Ultimately, however, programming
robots and correcting for errors is often easiest through direct manipulation of the end-effector.
Interfaces such as force control or robot-mounted six-axis joysticks allow the user to more
intuitively move the end-effector into place without concern about contextual (orientation or
translation) changes based on where the operator happens to be standing.

5.3 Performance Metrics

To be a meaningful tool, a set of metrics must provide sufficient coverage of the key performance
indicators (KPIs) of the systems under test. Though industry has a number of KPIs—many of
which are focused on the plant level [Lindberg et al. 2015]—the model of metrics coverage in this
article is based on individual, team, and task performance. Within the context of human-robot
teaming, demonstrating completeness is made challenging given the variability and scope of the
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collaborative tasks in factory environments. In Section 5.3, several metrics were introduced that
could be used to assess and assure the performance of HRI in industrial HRI. In this section,
we attempt to provide a minimum viable subset of these metrics to help guide and evaluate the
development of HRI and HMI technologies.

To enable effective collaboration [Marvel 2014b], robots must be able to:

(1) temporally and spatially coordinate their motions,
(2) comprehend the task to which they have been assigned,
(3) communicate high-level, task-relevant information,
(4) have situation awareness about themselves, their environment, their task, and the humans

with whom they are working, and
(5) maintain safety in the face of uncertainty.

These properties establish the framework within which the metrics and test methods are expected
to function. Each aspect, however, has a multitude of criteria that must be captured. For example,
the paper published by Ma et al. [2018] specifies that the primary components of teaming include
(1) communication, (2) coordination, and (3) collaboration. Communication is expected to convey
awareness, intent, and state. Coordination involves not just temporal and spatial synchronization,
but also the maintenance of common understanding, altering one’s own actions to direct the task
progression, and predicting the actions of the other members of the team. Collaboration, according
to Ma, is specifically focused on the maintenance and support on shared knowledge, intention, and
goals.

HRI performance is assessed at both an individual (operator and robot) and team level [Steinfeld
et al. 2006] and frequently involves measures of both physical and mental interaction to estimate
the impacts of active communications (e.g., response time, proximity, duration of contact, and
information quality). From a group dynamics perspective, other important factors of interaction
include elements of trust [Boies et al. 2015; De Jong et al. 2016; MacArthur et al. 2017], which is
influenced by proximity and contact [Armstrong 2008; Hall 1963] and speed of approach [Butler
and Agah 2001]. It is not coincidental that these measures are also the factors of safety as discussed
in Section 3.3. Additional metrics of trust include the elements of utility of mixed initiative in teams
[Freedy et al. 2007].

Another key factor of HRI performance is the assessment of how effective human-robot teams
are at completing their tasks. Task-based KPIs of HRI performance typically include economic
factors such as ROI and product quality, as justification is often necessary for choosing one manu-
facturing process over another. Time-based factors include OEE, throughput, mean time to failure,
setup time, and cycle time [Kangru et al. 2018; Weiss et al. 2013; Zhu et al. 2018].

Given these KPIs, a sufficiently complete HRI metric must include the following:

(1) team performance,
(2) individual performance (operator and robot), and
(3) task performance.

The team performance must include metrics of team composition, cohesiveness (effectively, how
well the human-robot team performs), and trust. Individual performance must include measures of
situation awareness (for the self, partner, process, and environment), task contribution, effort, and
safety. And task performance must include both economic and process performance indicators.

From an HMI perspective, the KPIs are effectively focused on the robot and the task. For the
robot, the performance metric is completeness of features of the interface. The robot’s interface
will be task-specific and thus is attributed to the task’s HRI KPIs. Similarly, process diagnostics and
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feedback are also task-specific and effectively capture the quality of information being exchanged
between the human and the robot.

5.3.1 Objectively Quantifiable Metrics. A number of quantitatively objective measures have
been presented in the preceding sections that, although disparate in their respective foci, pro-
vide a comprehensive perspective of HRI and HMI system effectiveness when combined. From
these available metrics, we selected what we consider to be a minimal subset that best captures
the quantifiable aspects most directly tied to HRI performance and present these in Table 16. These
metrics reflect the impacts that HRI and HMI have on the performances of the team, individual
contributors, and the process as a whole. In many cases, we encountered multiple metrics that ef-
fectively measure the same elements (possibly with a different label), but we also note that the data
collection for some metrics also directly benefits the measures for other metrics. For instance, the
measures for information timeliness (Section 4.5, Information Quality) are also largely reflected
in the measure for communication time (Section 4.4, Communication Efficacy). Of all the possible
quantitative measures available, the subset of measures given in Table 16 are largely measurable
automatically, with many measurable in real-time. Moreover, because it is assumed that the collab-
orative dynamic was chosen deliberately, metrics that are biased toward pure manual or automatic
operations (e.g., neglect tolerance) are not included.

Interface design may impact a collaborative effort in four possible ways. Foremost, the per-
formance of the manufacturing process may be impacted by the initial decision to incorporate
human-robot collaborative teams. ROI and OEE are dependent on not only the decisions and de-
signs leading up to the initial implementation of the interfaces and interactions, but also the extent
to which feedback and control are supported through the HRI and HMI. With limited or uncertain
information flow, the optimum performance for a given process may actually limit the performance
of the collaborative team. That said, given the nature of human-robot collaborative interactions,
poor HRI and HMI obviously impact the performance of the team as a whole. From there, inter-
faces and interactions may influence the performance of the human operators and robot systems
individually.

5.3.2 Subjectively Qualifiable Metrics. While much emphasis has been placed on the quantifi-
able measurements, the qualifiable human perspective should not be ignored. Although not ex-
haustive, highlights of these metrics, shown in Table 17, are intended to encapsulate the perspec-
tives of major stakeholders of human-robot collaborative teams and provide bases for systematic
and procedural improvements regarding the quality of the interfaces and interactions. Virtually all
of the qualitative measures are accumulated through surveys to which respondents may provide
feedback along a Likert scale. Thus, data may be compiled, tabulated, and reported in a quasi-
quantitative manner. Such results may be weighted accordingly based on stakeholder priority and
anonymized to account for confidentiality of feedback.

The volume of subjective measures and survey tools available is large, and the metrics employed
by most research in HRI are rarely validated, and are customized for the specific application the
researchers intend. It may be difficult to select the measures that most accurately capture the nature
of the intended interactions between humans and machines. To this end, we refer the reader back
to Table 1 for selecting which survey tools meet their particular needs.

That said, many of the metrics identified in these surveys are irrelevant to most manufacturing
applications and environments. While these metrics may be important when selecting robots for
domestic applications, factors such as animacy, pleasure, and sociability should be ignored for
the industrial use case. Moreover, relatively few survey tools have been thoroughly evaluated for
validity. As such, we cannot recommend that most survey tools be included in a standardized suite
of measurement tools.
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Table 16. Set of Quantitative Metrics for Objectively Measuring the Performance of HRI and HMI

Subject Category Metrics [references] (Equations) Section

Team

Performance
Effectiveness (Equation (50)) 4.10

Efficiency (Equation (53)) 4.10

Utility of
mixed

initiative

% Robot assistance requests [Steinfeld et al. 2006] 4.2
% Human assistance requests [Steinfeld et al. 2006] 4.2
Number non-critical human interruptions [Steinfeld

et al. 2006]
4.2

Communication time 4.4

Operator
Situation

awareness

Reaction time (measured against timeframes in
Table 6)

4.6

Precision [Salerno et al. 2005] (Equation (25)) 4.6
Recall [Salerno et al. 2005] (Equation (26)) 4.6

Robot

Self awareness
Self-monitoring and modeling (e.g., Equations (33)

and (35))
4.6

Fault detection, isolation, and recovery
(Equations (38), (39), and (40))

4.6

Human
awareness

Human-oriented perception (Equations (30) and (31)) 4.6

Features Functionality [Roberts and Moran 1983] 4.3

Safety

Separation distance [ISO 2016] 3.3
Approach speed [ISO 2016] 3.3

Pressure [ISO 2016] 3.3
Force [ISO 2016] 3.3

Process

ROI
Gain/profit 4.10

Equipment/software cost 4.10

OEE
Equipment availability (Equation (65)) 4.10

Performance (Equation (66)) 4.10
Quality (Equation (67)) 4.10

Interface
Learning time [Roberts and Moran 1983] 4.3

Expert use time [Roberts and Moran 1983] 4.3
Error cost [Roberts and Moran 1983] 4.3

Timing
Setup time [Kangru et al. 2018] 4.10
Cycle time [Kangru et al. 2018] 4.10

Mean time to failure (63) 4.10

Diagnostics

and feedback

Information accuracy [Wang 1998] (Equations (7)
and (8))

4.5

Information accessibility (Equation (18)) 4.5
Timeliness (Equation (14)) 4.5
Usefulness (Equation (16)) 4.5

Consistency (Equation (17)) 4.5

5.4 Example Case Studies

To illustrate the application of the metrics presented in Section 5.3, three case studies with varying
degrees of human-robot interaction are presented from examples in the literature. Two case studies
are borrowed from the 2012 survey of HRI in the automotive industry by Shi et al. [2012] and a
third from the collaborative robot safety ontology paper by Marvel et al. [2015a]. Each case study
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Table 17. Set of Qualitative (or Quasi-quantitative) Metrics for Subjectively Measuring
the Performance of HRI and HMI

Subject Category Metrics [references] Section

Team

Team

composition

Team cohesion 4.10
Workload distribution 4.10

Diversity 4.7
Leadership distribution 4.7

Team
performance

Quality of work [Steinfeld et al. 2006] 4.10

Operator
Workload

NASA-TLX [Hart and Staveland 1988] 4.7
Workload Profile [Tsang and Velazquez 1996] 4.7

System Usability Scale [Brooke 1996] 4.9
Situation

awareness
SAGAT [Endsley 1995a] 4.6

Operator
performance

Quality of work [Steinfeld et al. 2006] 4.10

Robot
Human

awareness

Human modeling and monitoring [Steinfeld et al.
2006]

4.6

Human sensitivity [Steinfeld et al. 2006] 4.6
Robot

performance
Quality of work [Steinfeld et al. 2006] 4.10

Process

Interface
Software quality [ISO 2011c], Table 4 4.2

Quality in use [ISO 2011c], Table 3 4.2

Diagnostics

and feedback

Accuracy 4.5
Availability 4.5
Reliability 4.5
Usability 4.5

Understandability 4.5
Value added 4.5

is described in detail, and the relevant metrics specified in Section 5.3 are identified based on the
nature and degree of interaction.

5.4.1 Case Study: Low-interaction Welding Workcell. The state of practice within industry has
historically demonstrated little, if any, actual interaction between humans and robots. This was
primarily due to safety concerns. Workcells were monoliths of automation activity, where human
operations were limited to specific stations on the periphery of the cell.

In the first case study from Shi et al. [2012], such a configuration is considered for HRI evaluation
(Figure 3). In this example, a single human operator works with three industrial robots to complete
a welding operation. Here, a human operator enters a safeguarded loading station, loads auto
body parts into fixtures on a rotary table, and exits the station to initiate the robots’ spot-welding
motions. The robots do not move until the operator has both (1) exited the loading station and
(2) pushed a button to start the robots’ programs. Once the program begins, the table rotates into
the welding configuration, and the two welding robots spot-weld the parts together. As the welding
operation is being executed, the operator can load an additional fixture with parts for the next
welding cycle. When the welding cycle concludes, a third robot removes the welded sub-assembly
for transfer.
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Fig. 3. In the low-interaction study, the operator interacts indirectly with the robots through a fixtured
rotary table [Shi et al. 2012].

In this example, there is no direct interaction between the human and the robots. The rotary
table acts as an intermediate interface, accommodating the part transfer from the human to the
robots. As Shi et al. note:

The hardware plays a role to prevent the direct interaction between the human
and the robot by (1) enabling the human work outside the robot working envelope
and (2) enabling the human to perform their own tasks asynchronously with the
robot. However, the hardware transfer device, such as the rotary table or the input
conveyor, adds cost, takes additional space, and makes the workcell less flexible
for new product changes. [Shi et al. 2012]

Here, the collaboration is sequential, but the robots’ actions are completely separate from the oper-
ator’s tasks. Once the parts are loaded and the operator leaves the station, the human’s role of the
task is completed. This is very much a solitary application, so the team metrics (task performance
and utility of mixed initiative) do not apply. Similarly, due to the absence of any direct interaction
to impact the performance of the human or the robot, either physical or cognitive, the individual
performance metrics are similarly irrelevant. This leaves only the process performance metrics as
relevant here for the evaluation of HRI and HMI.

Depending on the operator’s role in the control of the robots, the interface and diagnos-
tics/feedback metrics may or may not be noteworthy. If the operator is responsible for starting,
configuring, and/or monitoring the robot’s programming or mechanical components, the inter-
face and diagnostics/feedback metrics are critical for measuring the effectiveness of these limited
interactions outside of the welding operations. However, if the operator who works with the ro-
bot during normal operations is not the same person responsible for maintaining the robots, these
metrics are pertinent only for the maintenance operation. In either case, the ROI, OEE, and process
timing metrics are important as KPIs for the workcell.

5.4.2 Case Study: Medium-interaction Grinding Workcell. With the 2012 revision ISO 10218 [ISO
2011a, 2011b] and the 2016 publication of ISO/TS 15066 [ISO 2016], direct interactions between
humans and robots became viable solutions for manufacturing tasks. These interactions, however,
see limited utility due to lingering impacts of the safety culture. As such, many tasks involving
direct HRI in manufacturing are infrequent and of short duration.

In Marvel et al. [2015a], a hypothetical workcell is presented that involves the hand-off of as-
sembled parts from the human operator to a robot for surface finishing at a stationary grinding
station (Figure 4). In this example, the human operator is responsible for the assembly of parts,
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Fig. 4. In the medium-interaction case study, the operator interacts directly with the robot by means of a
parts hand-off, but the grinding task is undertaken by the robot alone [Marvel et al. 2015a].

while the robot performs the grinding actions. This workcell combines the dexterity of a human
operator with the repeatability of a robot. As a time- and cost-saving factor, the transition between
the assembly and grinding processes is enabled by a direct hand-off from the human to the robot.

Away from the workcell, the human performs an assembly operation, completing a new sub-
assembly. Once the assembly process is finished, the human takes the subassembly to the transfer
station—the only location through which the human may interact with the robot—and activates
the robot’s program by stepping onto a pressure-sensitive mat. The robot moves to a predefined
location within reach of the operator and waits for the operator to place the assembled part into
its gripper. Once the part is in place, the operator signals the robot to close its gripper, which then
actuates and corrects for minor positioning and orientation errors. The robot does not move again
until the operator leaves the transfer station, stepping off of the pressure-sensitive mat. The robot
then moves the part to the grinding station for surface finishing.

In this example, the only direct interaction between the human and the robot occurs during the
hand-off event. The remaining operations separate the actions of the robot and the human such
that they do not influence the other’s performance. As such, the focus of this particular case study
is on the hand-off activity.

During the hand-off, there is no direct communication between the human and the robot save
that of the presence detection via the pressure sensitive mat. As such, for the team’s metrics, utility
of mixed initiative and team composition are not pertinent, leaving only the team’s performance
metrics (effectiveness, efficiency, and quality of work).

The hand-off process is driven by the operator and the robot’s actions—save the time to move
into position for the hand-off—have little impact on the operator’s performance. As such, while the
operator’s metrics of situation awareness and performance are immaterial, the workload metrics
are relevant for assessing the task’s effect on the operator.

However, the operator’s actions can directly impact the robot’s performance. For instance, load-
ing errors or delays may impact the robot’s ability to perform the subsequent grinding task, so the
robot’s performance is critical to monitor. The ability to detect such issues necessitates the evalu-
ation of self and human awareness. Because the robot’s actions are not expected to change during
the course of the operation, the evaluation of features is not pertinent. Similarly, because there
is no direct physical interaction planned, the evaluation of pressure and force for safety are not
required, though separation distance and approach speed are both important for maintaining a
safe working environment.

ACM Transactions on Human-Robot Interaction, Vol. 9, No. 4, Article 25. Publication date: May 2020.



25:48 J. A. Marvel et al.

Fig. 5. In the high-interaction study, the operator interacts directly with the robot via a hand-guiding inter-
face [Shi et al. 2012].

Moreover, given the limited interaction between the robot and the human, the assessment of
the hand-off process is similar to that of the welding operation discussed previously. Specifically,
the interface and diagnostics/feedback metrics are necessary only if the operator is responsible
for programming and maintenance. Otherwise, only the ROI, OEE, and process timing are the
important KPIs.

5.4.3 Case Study: High-interaction Assembly Workcell. While the use of direct human-robot
interaction is still relatively minor, the frequency and duration of interactions are trending upward.
This is due largely to the steady introduction and refinement of new collaborative robot safety
functions. One of the more common applications of high interaction is collaborative assembly of
large parts using hand-guiding. In Shi et al. [2012], one such use case is presented as an intelligent
lift-assist robot for large, awkward, and/or heavy components (Figure 5).

In this example, the human operator directly controls the motions of the robot by means of a
physical interface (e.g., a force/torque transducer or a six-degree of freedom joystick). This inter-
face has the performance equivalence of a jogging function on a teach pendant, but the robot is
running in automatic mode rather than a teach mode. This interface also enables the operator to
control the robot’s tooling. During these operations, the human must intentionally maintain robot
activation (e.g., by means of a three-position enabling device), and the robot’s speed is limited for
safety purposes. With the exception of a “return to start” function activated upon the release of
the enabling device, the robot is under the direct control of the operator at all times. During this
return action, the human operator may work simultaneously near the robot on other tasks.

Because this operation requires the direct collaboration, physical contact, and synchronization
of the operator and the robot, the robot and the human impact each other’s performance and
therefore the team’s performance as a whole. Even when the robot is not under the operator’s
direct control, both are co-located and can influence one another. As such, all metrics for the team,
operator, and robot are important for evaluation. Even if the operator is not responsible for the
programming or maintenance of the robot, the nature of interaction requires a usable interface and
clear diagnostics and feedback for both process efficiency and the maintenance of a safe working
environment. Therefore, all process metrics are similarly relevant.

6 CONCLUSIONS AND FUTURE WORK

In this report, we presented an overview of HRI and HMI design considerations and the means by
which their effectiveness can be assessed. The purpose of this effort is to advance innovations by
providing a series of metrics by which HMI and HRI may be equally evaluated for their respective
functions. By creating such a rubric, researchers and developers may optimize their designs for the
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user experience, enabling faster industry adoption, more intuitive interaction, and clearer process
and system feedback. And by leveraging both quantitative and qualitative metrics, developers may
target HMI and HRI improvements for both the broader user base as well as specific end-users.
From the user’s perspective, these metrics also provide a means by which they may select inter-
faces, configure interactions, or provide meaningful feedback to their technology providers such
that their needs may be met.

Ongoing work at the U.S. National Institute of Standards and Technology is focused on the val-
idation of the metrics and test methods for assessing human-robot teaming performance and to
provide a quantitative measure for “intuition” of interfaces and interactions. These efforts include
surveys of application domains in which human-robot teaming is particularly effective, HRI bench-
marking and repeatability studies, and the execution of human trials for the control and situation
awareness of robot actions using a spectrum of interface technologies. The goals of these contin-
ued efforts are to establish baseline test methodologies by which industry and academic partners
may assess and drive forward advancements in HRI/HMI design.

DISCLAIMER

Certain commercial equipment, instruments, or materials are identified in this article to foster un-
derstanding. Such identification does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the materials or equipment identified
are necessarily the best available for the purpose.
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