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Abstract

In 2017, the U.S. National Institute of Standards and Technol-
ogy (NIST) conducted the most recent in an ongoing series of
Language Recognition Evaluations (LRE) meant to foster re-
search in robust text- and speaker-independent language recog-
nition as well as measure performance of current state-of-the-art
systems. LRE17 was organized in a similar manner to LRE1S5,
focusing on differentiating closely related languages (14 in to-
tal) drawn from 5 language clusters, namely Arabic, Chinese,
English, Iberian, and Slavic. Similar to LRE1S5, LRE17 offered
fixed and open training conditions to facilitate cross-system
comparisons, and to understand the impact of additional and
unconstrained amounts of training data on system performance,
respectively. There were, however, several differences between
LREI17 and LRE15 most notably including: 1) use of audio
extracted from online videos (AfV) as development and test
material, 2) release of a small development set which broadly
matched the LRE17 test set, 3) system outputs in form of log-
likelihood scores, rather than log-likelihood ratios, and 4) an
alternative cross-entropy based performance metric. A total of
25 research organizations, forming 18 teams, participated in this
1-month long evaluation and, combined, submitted 79 valid sys-
tem outputs to be evaluated. This paper presents an overview of
the evaluation and an analysis of system performance over all
primary evaluation conditions. The evaluation results suggest
that 1) language recognition on AfV data was, in general, more
challenging than telephony data, 2) top performing systems ex-
hibited similar performance, 3) greatest performance improve-
ments were largely due to data augmentation and use of more
complex models for data representation, and 4) effective use of
the development set was essential for the top performing sys-
tems.

1. Introduction

The National Institute of Standards and Technology (NIST) or-
ganized the 2017 Language Recognition Evaluation (LRE17) in
the fall of 2017. The LRE17 was the latest in the ongoing se-
ries of language recognition technology evaluations conducted
by NIST since 1996 [1]. The objectives of the evaluation se-
ries are 1) to stimulate and explore promising new ideas in ro-
bust text- and speaker-independent language recognition, 2) to
support the development of advanced technology incorporating
these ideas, and 3) to measure and calibrate the performance of
the current state of technology. Figure 1 shows the number of
target languages and participants in all NIST LREs organized to
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Figure 1: Target language and participant statistics of the NIST
LRE series.
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Figure 2: Heat map of the world countries showing the number
of LRE17 participating sites per country.

date. Although there seems to be a decrease in the number of
participants for LRE17 compared to LRE15, we saw more col-
laborations this year where several previous participants formed
new teams or joined existing teams.

The basic task in the NIST LREs is language detection, that
is, determining whether a specified target language is spoken in
a given test speech recording. Since LRE11 [2], the focus of
the language detection task has shifted towards differentiating
closely related languages that are sometimes mutually intelligi-
ble.

LRE17 was organized entirely online in a similar man-
ner to LRE15 [3], using a web platform deployed on Ama-
zon Web Services (AWS)'. The web platform supported a va-
riety of services including evaluation registration, software and
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Figure 3: LRE17 submission statistics.

data distribution, system output submission, submission valida-
tion/scoring, and system description/presentation uploads. The
online platform made LRE17 more readily accessible, and a to-
tal of 25 sites, forming 18 teams, from 11 countries registered
for the evaluation. Figure 2 displays a heatmap representing the
number of sites per country. It should be noted that all partici-
pant information, including country, was self-reported.

Similar to LRE15, LRE17 offered fixed and open training
conditions. In the fixed training condition, participants were
only allowed to use pre-specified “common” training data to
develop their systems and build target language models. On the
other hand, in the open training scenario, additional publicly
available or proprietary data was permitted for use in system
and model development. The inclusion of non-publicly avail-
able or proprietary data was new for LRE17. System output
submission for the fixed training condition was required for all
LRE17 participants to allow meaningful cross-system compar-
isons, while submission to the open training condition was op-
tional but strongly encouraged to help quantify the contribution
of unconstrained amounts of data on system performance. The
number of submissions per team in LRE17 is shown in Figure 3.
A total of 79 valid submissions were received, 56 of which were
for the fixed training condition, and the remaining 23 were for
the open training condition.

There were, however, several differences between LRE17
and LREI15. First, in addition to conversational telephone
speech (CTS) and broadcast narrow band speech (BNBS), audio
extracted from online videos (AfV) were used as development
and test material in LRE17. The test segments from CTS and
BNBS sources, extracted from longer recordings, were chun-
ked to contain approximately 3 s, 10 s, or 30 s of speech as
determined via an automatic speech activity detector. The test
segments from AfV used the entire recording, and had dura-
tions ranging from 10 s to 900 s. Second, a small, yet repre-
sentative, development set was released along with the training
set. This Dev set, which broadly matched the LRE17 test set,
could be used for both system training and development (e.g.,
hyperparameter tuning) purposes. Third, unlike in LRE1S5, sys-
tems were required to provide a vector of log-likelihood scores,
rather than log-likelihood ratios, which provided the opportu-
nity for a more in-depth system performance analysis (e.g.,
cross-year performance comparison). Fourth, the primary per-
formance metric in LRE17, which was an average of costs cal-
culated at two operating points, supported equal weighting of
data sources and segment durations. In addition, an alternative
performance metric, termed normalized cross-entropy (NCE)

[4], was adopted in LRE17. Finally, NIST released to LRE17
participants an i-vector based language recognition system to
serve as a reproducible state-of-the-art (as of LRE15) baseline,
as well as to lower the barrier to entry for those participants
having access to limited resources for building state-of-the-art
systems.

2. Data

In LRE17, performance was evaluated by presenting systems
with a series of test and target-language speech recordings.
There were a total of 14 target languages drawn from 5 lan-
guage clusters, namely Arabic, Chinese, English, Iberian, and
Slavic. Unlike in LRE15 that focused on distinguishing lan-
guages within each cluster, LRE17 used both intra- and inter-
cluster languages as non-targets. Table 1 shows the target lan-
guages (along with the language codes [5]) and corresponding
language clusters in LRE17.

’ Cluster ‘ Target Language (code)

Arabic | Egyptian Arabic (ara-arz), Iraqi Arabic (ara-
acm), Levantine Arabic (ara-apc), Maghrebi
Arabic (ara-ary)

Chinese | Mandarin (zho-cmn), Min Nan (zho-nan)

English | British English (eng-gbr), General American
English (eng-usg)

Slavic Polish (gsl-pol), Russian (gsl-rus)

Iberian | Caribbean Spanish (spa-car), European Spanish
(spa-eur), Latin American Continental Spanish
(spa-lac), Brazilian Portuguese (por-brz)

Table 1: LRE17 target languages and language clusters.

In this section we provide a brief description of the data
used in LRE17 for training, development, and test.

2.1. Training set

As noted previously, there were two training conditions in
LRE17, namely fixed and open. The fixed training condition
limits the system training to the following specific data sets,
which were made available to the participants by the Linguis-
tic Data Consortium (LDC): i) previous LRE data (as released
in LDC2017E22), ii) Fisher English corpus (LDC2004S13
[6], LDC2004T19 [7], LDC2005S13 [8], LDC2005T19 [9]),
iii) Switchboard (SWB) corpora (LDC97S62 [10], LDC98S75
[11], LDC99S79 [12], LDC2001S13 [13], LDC2002S06 [14],
LDC2004S07 [15]), and iv) LRE17 Dev set (LDC2017E23).

Figure 4 shows the number of speech segments available
in LDC2017E22 for each target language. Among all the lan-
guages, Levantine Arabic (ara-apc) had the most recordings
(3509), while Chinese Min Nan had the least (95). On average,
there were 1157 speech segments per target language. From
a total of 16,205 segments in LDC2017E22, 13,956 were se-
lected from CTS recordings, and the remaining 2249 were from
BNBS recordings. Figure 5 depicts the source type distribution
of the target language training data. Training data for most lan-
guages (all except for British English, General American En-
glish, Brazilian Portuguese, Polish, and Russian, and Chinese
Mandarin) were drawn from a single source type, which was
predominantly CTS.
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Figure 4: LREI7 training set counts per target language.

Switchboard and Fisher corpora were included here be-
cause they contain transcripts, making them suitable for training
acoustic models, e.g., deep neural network (DNN) models. In
addition to these, publicly available non-speech audio and data
(e.g., noise and non-vocal music samples, impulse responses,
filters) could be used for system training and development pur-
poses. Participation in the fixed condition was required. It is
worth noting that the use of pretrained models on data other
than what was designated above was also not allowed in the
fixed condition.

In the open training scenario, additional data, including pro-
prietary data and data that are not publicly available, was per-
mitted for use in system training and development. The inclu-
sion of non-publicly available data was new in LRE17. LDC
also made available selected data from the IARPA Babel Pro-
gram [16] to be used in the open training condition. Partici-
pation in this condition was optional but strongly encouraged
to help quantify the gains that one could achieve with uncon-
strained amounts of data.
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Figure 5: Distribution of source type (CTS vs BNBS) for train-
ing languages in LRE17 (LDC2017E22).
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Figure 6: Number of segments per target language in LRE17
Dev set (LDC2017E23) by source type.
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Figure 7: Number of segments per target language in LRE17
test set by source type.

2.2. Development and test sets

The speech segments in the LRE17 Dev and test sets were ex-
tracted from Multi-language Speech (MLS14) [17] and Video
Annotation for Speech Technologies (VAST) [18] corpora, both
of which were collected by the LDC to support speech technol-
ogy evaluations. MLS14 consists of CTS and BNBS record-
ings, while VAST contains AfV data. Original speech sessions
from MLS14 were split into nested (i.e., overlapping) 3 s, 10 s,
and 30 s cuts based on speech activity detection (SAD) marks.
Only one nested 30 s/10 s/3 s cut was selected per recording
session, and there were equal number of cuts in each duration
bin. Segments from the MLS14 corpus were encoded as p-law
(8-bit) sampled at 8 kHz in NIST SPHERE [19] formatted files,
while recordings from the VAST corpus were 16-bit FLAC files
sampled at 44 kHz.

Figures 6 and 7 show the source type distributions of the
LRE17 Dev and fest segments by language, respectively. It can
be seen from the figures that a majority of the segments were
drawn from one source type, which, like the training data, was
predominantly CTS (except for British English that is domi-



nated by BNBS). Also, both sets contain speech segments from
the AfV source type for all target languages. From a total of
3661 segments in LRE17 Dev set (LDC2017E23), 1999 were
selected from CTS recordings, 788 were from BNBS record-
ings, and the remaining 874 from AfV. As for the LRE17 test
set, from a total of 25,451 cuts, 15,018 were extracted from CTS
recordings, 2002 were from BNBS recordings, and the remain-
ing 3521 from AfV.

3. Performance measurements

As noted in Introduction, systems submitted to LRE17 were
required to provide a 14-dimensional vector of log-likelihood
scores, corresponding to the 14 target languages, for each test
segment. In terms of the conditional probabilities for the ob-
served data (O) given a target language model (L;), the log-
likelihood score (¢;) is defined as

The likelihood function in (1) is related to the posterior proba-
bility P(L;|O) via Bayes’ rule as follows

P(Li) exp(£:)
Np, ’
2, P(Lj) exp(ly)
J=

where P(L;) is the a priori probability of the language class ¢,
and N, is the number of target languages.

P(Li|0) = @)

3.1. Primary metric

In LRE17, pair-wise language recognition performance was
computed for all target-language/non-target-language pairs
(L7, Ln). This was done in terms of false-reject (missed detec-
tion) and false alarm (FA) probabilities, which were computed
separately for each target language and each target/non-target
language pair, respectively. The miss and false alarm probabil-
ities were then combined using a linear cost function according
to an application-motivated cost model, defined as

C(LT7LN) :C]Miss X PTargct X PILIiSS(LT)+
CFA X (1 - PTarget) X PFA(LT7LN)7 (3)

where Lt and Ly are target and non-target languages, respec-
tively. Here, C'azss5 (cost of a missed detection), Cra (cost of
a spurious detection), and Prarget (a priori probability of the
specified target language) are the application model parameters
and defined to have the following values:

CFA ‘ PTargct ‘
1 1 0.5
2 1 1 0.1

Parameter ID ‘ Cwiss

Table 2: LRE17 cost parameters.

Note that the first set of parameter values are those histori-
cally used in the past NIST LREs and provide equal weighting
to miss and false alarm errors, while the second set of parame-
ters are not similarly balanced. Therefore, to improve the inter-
pretability of the cost function, it was normalized by Cpefauit,
which is defined as the best cost that could be obtained with-
out processing the input data (i.e., by either always accepting

or always rejecting the segment language as matching the target
language, whichever gives the lower cost) as follows

CNorm (L7, Ln) = C(L1,LN)/CbDefault- 4

The default cost for both sets of parameters defined in Table 2
was set to Cpefauit = Cwmiss X Prarget. Rewriting the cost
model in (3) by combining all of the application model param-
eters yields

CnNorm (L7, Ln) = Pumiss(Lt) + 8 X Pra(Lr,Ln), (5)

where 3 is defined as:

_ CFA X (1 - PTa'rget)
CJ\/Iiss X PTa'rget

B

Actual detection costs were computed by applying detec-
tion thresholds of log(3) to log-likelihood ratios derived from
the log-likelihoods output by the system?.

In addition to the performance numbers computed for each
target/non-target language pair, an average cost performance for
each system was computed as

Cavg(ﬂ) = ]\}L{ ZPMZSS(LT)+
Lo

NLlf [BX 0D Prakr, Ly)] } ©)

Lp Ly

where Ny, is the number of target languages. The primary met-
ric for LRE17 was the average cost performance defined in (6),
computed using the two application model parameters given in
Table 2, that were then averaged:

Ca'u Ca,'v
Cprima’r‘y — 9(61) ; g(ﬁ2) . (7)

Unlike in previous LREs, in LRE17 the evaluation data was
divided into partitions based on the data source, i.e., MLS14
and VAST, for each language, resulting in a total 28 partitions
(2 x 14). In other words, for each language, the counts for each
corpus (MLS14 and VAST) were equalized. Cy,y Was calcu-
lated for each partition, and the final result was the average of
all the partitions’ Cavg’s. The average of basic Cavg scores for
the two set of parameters defined in Table 2 served as the pri-
mary metric to measure a system performance. Also, the mini-
mum detection cost, minCprimary, was computed by using the
detection thresholds that minimize the detection cost. Note that
for minimum cost calculations, the counts for each condition set
were equalized before pooling and cost calculation (i.e., mini-
mum cost was computed using a single threshold not one per
condition set).

NIST released to LRE17 participants a software package
that supported validation of the system outputs (to ensure they
conformed to formatting guidelines provided in the evaluation
plan) as well as calculation of the primary metric.

Log-likelihood ratios were computed as the difference be-
tween the target language log-likelihood and the sum of the

log-likelihoods of the non-target languages, i.e., LLR(L;) =
log [NL171 exp (¢; — £;)].
J#i




. 4 4 ) 4 ) 4 4

1 2

" b b st Y vectrs b e Jomb{ 2 o sore |

Figure 8: Block diagram of the NIST LRE17 baseline system.

3.2. Alternative metric

In addition to the cost metric Cprimary described in Section 3.1,
an alternative information theoretic performance measure was
also used to calculate the performance of language recognition
systems in LRE17. The alternative measure, termed Normal-
ized Cross-Entropy (aka confidence score) [4], has been used
by NIST since late 90’s to evaluate performance of speech-to-
text systems. In this section, we provide a brief description of
NCE as well as its interpretation for language recognition tasks.

The multiclass cross-entropy H.,ce measures the informa-
tion a language recognition system provides through the log-
likelihood scores and is defined as follows [20]

Np,
Hmce = — Z ]HE;L‘Z') Z IOgP(L1|Ot)7 (8)
i=1 I tes;

where .S; is the subset of indices for segments of target language
1, ||.S5]| is the number of segments of target language i.

For a do-nothing default system, the multiclass cross-
entropy is given by

Ny,
Hopaz = — »_ P(Li)log P(L;). ©)
i=1

If Hyce > Hmaa for an language recognition system, then it
does not improve upon the default do-nothing system. To facil-
itate the interpretation of the cross-entropy or mutual informa-
tion, a normalized version of H . is calculated as confidence
score which is defined as

Hmaac - Hmce
NCE= —. 10
Hmaz ( )

Given that the cross-entropy is non-negative, a perfect language
recognition system achieves a confidence score of 1 (i.e., it has
zero confusion), while a totally confused system can achieve a
confidence score of zero (or less). The idea of this normalized
cross-entropy measure is to allow for comparison of confidence
scores across different test sets by correcting for the effect of
prior probabilities, which tend to boost raw cross-entropy scores
when they are high.

It is worth noting that the confidence metric in (10) is being
considered for use as the primary metric in future LREs.

4. Baseline system

As noted in Introduction, NIST released a baseline language
recognition system to LRE17 participants. The system was de-
veloped using the NIST SLRE toolkit, and meant to 1) serve as
a baseline for the current state of technology in language recog-
nition which is reproducible by all participants, and 2) lower the
barrier to entry for those participants who may have access to
limited resources for building state-of-the-art systems.

A schematic block diagram of the system is depicted in Fig-
ure 8. It supports both frontend processing (e.g., SAD, fea-

] System \ BNF \ UBM\ T \ Wht/LDA| Cos/SVM

Dev Fisher | E22 | E22| E22 E22
+
SWBI1

Eval Fisher | E22 | E22| E22+E23 | E22+E23
+
SWBI1

Table 3: Summary of datasets used to train the various compo-
nents of the NIST LRE17 baseline system.

ture extraction and normalization) and backend modeling, e.g.,
Gaussian mixture model (GMM) training, i-vector extraction,
linear discriminant analysis (LDA), for language recognition.
It also provides tools for the extraction of DNN Bottleneck
features (BNF). For the BNFs, NIST also made available pre-
trained DNN models built using Kaldi [21] on a senone set with
nearly 8700 targets obtained from triSa stage in Kaldi’s fisher-
swbd example. The models were trained on speech data from
combined SWB1 and Fisher corpora (~2000 hours), using hid-
den layers (hidden units: 2048-2048-2048-2048-2048-80-1024)
with REctified Linear Unit (RELU) activation followed by a
renorm nonlinearity that scales the RMS of the vector of ac-
tivations to 1.0. The bottleneck layer (second to the output),
which has 80 hidden units, only uses the renorm nonlinearity.
A 21-frame context of 39-dimensional (13 static + A + A?)
mel-frequency cepstral coefficients (MFCCs), extracted using
the NIST SLRE toolkit, was used as input to the DNN. The
MFCCs were extracted from 25 ms frames every 10 ms us-
ing a 24-channel mel filterbank spanning the frequency range
100 Hz-4000 Hz.

For non-speech frame dropping, a statistical model based
SAD [22] was adopted. After dropping the non-speech
frames, segment level cepstral mean and variance normaliza-
tion (CMVN) was applied and followed by short-time cepstral
mean subtraction over a 3-second sliding window.

For i-vector extraction, the system used a 500-dimensional
total variability subspace (denoted as T in Table 3) trained on
all speech segments from LDC2017E22. A 2048-component
GMM-UBM with diagonal covariance matrices, also trained on
LDC2017E22, was used to compute the zeroth and first or-
der Baum-Welch statistics. Before dimensionality reduction
through LDA, the 500-dimensional i-vectors were whitened us-
ing within-class covariance normalization (WCCN), and unit-
length normalized. For backend scoring, the system supported
two commonly adopted techniques, i.e., cosine similarity mea-
sure, and support vector machines (SVM) with a Gaussian ker-
nel.

Two different configurations were used for the baseline sys-
tem, namely Dev and Eval. In the Dev configuration, the LRE17
Dev set (i.e., LDC2017E23) was excluded from system training,
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Figure 9: NIST LRE17 baseline system performance.
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and it was used as the test set, while in the Eval configuration,
the Dev set was included for training the whitening and LDA
transforms as well as the classifiers. A summary of the datasets
used to train the various components of the NIST LRE17 base-
line system is given in Table 3.

It is worth emphasizing that the configuration parameters
employed to build the LRE17 baseline system are commonly
used by the language recognition community, and no attempt
was made to tune the hyperparameters or data lists utilized to
train the models.

5. Results

In this section, we present results and performance analysis of
the baseline system as well as all LRE17 primary submissions,
in terms of minimum and actual Cprimary, and NCE.

Figure 9 shows the actual and minimum costs for the NIST
LRE17 baseline system obtained using Dev (blue/red bars) and
Eval (yellow/purple bars) configurations discussed in Section 4.
Two important observations can be made from this figure. First,
without using the LRE17 Dev set (i.e., LDC2017E23) in sys-
tem training, similar performances are observed on the Dev and
test sets. Second, including the LRE17 Dev set in training re-
markably improves the performance, in particular for the SVM
classifier.

Figure 10 shows the actual and minimum costs for all pri-
mary submissions in the fixed training condition. Here, the y-
axis upper limit is set to 0.5 to facilitate cross-system compar-
isons in the lower Cprimary region. It can be seen from the
figure that the performance gap among the top-5 teams is not
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Figure 11: Impact of fixed (left) versus open (right) training
on language recognition performance in terms of actual and
minimum cost.
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remarkable. It is also observed that score calibration was suc-
cessfully applied for almost all teams (i.e., the absolute differ-
ence between the minimum and actual costs is relatively small).

Figure 11 shows system performance by training condition
for the 7 teams that participated in both fixed and open tasks.
We observe limited improvement in the open training condition
over the fixed training condition. However, unlike in LRE15
where in some cases worse performance was observed for the
open training conditions, we see consistent, though small, im-
provement with additional data for all primary open submis-
sions.

Figure 12 shows the NCE performance measure (i.e.,
LRE17 alternative metric) for all primary submissions in both
fixed and open training conditions (higher score is better). Here,
the y-axis lower limit is set to O for better visualization of the
results in the higher NCE region. Overall, we observe a similar
performance trend as with the primary metric, in particular for
the top performing systems. There are, however, some changes
in the position of teams on the bar plot.

Figure 13 shows the results in terms of actual Cprimary
for the top four performing primary submissions under the fixed
training condition. We observe that costs vary widely for dif-
ferent target languages. For example, the detection cost for
spa-car is more than 10 times worse (larger) than the cost
for gs1l-rus. More generally, performance on the Slavic tar-
get languages (i.e., gsl-pol and gsl-rus) tends to be the
best, while performance on the Iberian target languages (in par-
ticular, spa-car, spa-lac) tends to be the worst. Another
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interesting observation from the figure is that the performance
trend for the top performing system (upper left panel) on some
target languages (e.g., spa—car, zho-nan, and ara-apc)
is different than the performance trend seen with the other three
systems.

Figure 14 shows the results in terms of actual Cprimary
based on test segment source type (i.e., CTS vs BNBS vs AfV),
where AfV represents itself as the most challenging source type
in LRE17. This is expected because 1) diverse sources of inter-
ference (background noise, music, competing speakers, etc) are
typically present in online videos, and 2) there is a dramatic do-
main mismatch between telephony data, which is very well rep-
resented in the training set, and AfV, which is sparse. Further-
more, small performance difference is observed between CTS
and BNBS segments. For telephony data, system performance
on CTS segments is somewhat worse than that on BNBS, and
we speculate this is due to which languages had predominantly
CTS test segments (for instance, target languages drawn from
Arabic and Iberian language clusters).

In Figure 15, we see performance for all primary fixed sub-
missions broken down by speech duration. There are equal
number of segments in each duration bin. Here, we only re-
port the results on the MLS14 portion of the test set because for
the VAST portion enitre recordings with varying speech dura-
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Figure 15: Performance by speech duration (MLS14) in terms
of actual cost for primary fixed submissions.
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Figure 16: Performance by speaker gender (MLS14) in terms of
actual cost for primary fixed submissions.

tions were used. It can be seen from the figure that performance
rapidly improves as speech duration increases from 3 seconds
to 10 seconds. The improvement is more substantial for an in-
crease in speech duration from 3 s to 10 s than 10 s to 30 s.

Figure 16 shows the results in terms of actual cost based
on speaker gender of test segments. Here, we only report the
results on the MLS14 portion of test set that included gender
metadata. Little performance difference is observed between
male and female speakers, and segments from male speakers
seem to be more challenging for language recognition than seg-
ments from female speakers. It is worth noting that these results
are in line with LRE15 observations.

6. Conclusion

This paper presented a summary of the 2017 NIST language
recognition evaluation, whose objective was to provide a plat-
form for evaluating the most advanced technology in language
recognition and to foster new ideas and collaboration. LRE17
attracted worldwide research organizations from academia and
industry, including 7 first time participants.

LRE17 introduced several new aspects, most importantly:
1) release of a small development set which broadly matched
the LRE17 test set, 2) use of audio extracted from online videos
as development and test material, 3) system outputs in form of
log-likelihood scores, rather than log-likelihood ratios, and 4)
an alternative cross-entropy based performance metric. NIST
also released a language recognition system to serve as a base-
line for the current state of technology, and to lower the barrier
to entry for the evaluation.

It was observed that, overall, language recognition on AfV



data was more challenging than on telephony speech. Addition-
ally, we saw that for some target languages (e.g., spa—car),
the top performing system has significantly better performance
than the rest of the systems. Another insight from this evalua-
tion is that unconstrained amounts of data (either publicly avail-
able or proprietary) under open training condition does not seem
to lead to substantially better performance. Our plan is to report
on additional analysis of system performance results in the near
future.

7. Disclaimer

These results presented in this paper are not to be construed or
represented as endorsements of any participant’s system, meth-
ods, or commercial product, or as official findings on the part of
NIST or the U.S. Government.

Certain commercial equipment, instruments, software, or
materials are identified in this paper in order to specify the ex-
perimental procedure adequately. Such identification is not in-
tended to imply recommendation or endorsement by NIST, nor
is it intended to imply that the equipment, instruments, software
or materials are necessarily the best available for the purpose.

The work of MIT Lincoln Laboratory is sponsored by the
Department of Defense under Air Force Contract FA8721-05-
C-0002. Opinions, interpretations, conclusions and recommen-
dations are those of the authors and are not necessarily endorsed
by the United States Government.
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