A NIST Testbed Approach to Verifying mmWave Wireless Communication Signals

Kate Remley, Dylan Williams, and Rob Horansky

January 18, 2018

Presented at the 3rd NSF mmWave Research Coordination Network Workshop

Tucson, AZ

NIST Approach to mmWave Modulated-Signal Measurements

NIST Approach to mmWave Modulated-Signal Measurements

Testbed Approach – User Step

Step 2: User characterizes their acquisition instrument with transfer standards

Simple Environment: Anechoic Chamber and Spatial Fields

• Free-field (anechoic chamber)

Quantities of interest:

- RF signal: mag/phase and EVM (conducted)
- Signal at RX antenna: mag/phase and EVM (field)
- Off-axis EVM (spatial characteristics of field)
- Reference field

WLAN figure: Google, not licensed

Characterization:

Antenna gain

S parameters

Antenna pattern

Beamforming gain

Simple Environment: Anechoic Chamber and Spatial Fields

• Free-field (anechoic chamber)

Quantities of interest:

- RF signal: mag/phase and EVM (conducted)
- Signal at RX antenna: mag/phase and EVM (field)
- Off-axis EVM (spatial characteristics of field)
- Reference field

Antenna Characterization:

- Antenna gain
- Antenna pattern
- Beamforming gain
- S parameters

Extension to More Realistic Settings

Reference Modulated Fields

- Known signals emanating from characterized antennas
- Received signals: separate instrument/antenna nonidealities from channel characteristics
- Unconstrained environments (statistical model)

Figure available from Google for download, not licensed

Extension to More Realistic Settings

Reference Modulated Fields

- Known signals emanating from characterized antennas
- Received signals: separate instrument/antenna nonidealities from channel characteristics
- Unconstrained environments (statistical model)

What the Traceable Testbed Approach Accomplishes

- No need to make assumptions to de-embed user instrument
- Allows comparison of systems over various metrics and conditions:

The approach is based on rigorous propagation of uncertainties from fundamental to more complicated, realistic set-ups

Reverberation Chambers for Isotropic or Reflective Environments: Time Response

Future Directions: Traceability for Spatial Measurements of mmWave Signals in Reverberation Chambers

Loaded Reverberation Chamber

- Total Isotropic Sensitivity
 - **NVNA Calibration:**
 - Power
 - Phase (comb generator)
 - S parameters

Hybrid Chamber

- Angle of Arrival
- Beam-Forming Gain