Gas-filled spherical resonators: Theory and experiment

Michael R. Moldover
Thermophysics Division, National Bureau of Standards, Gaithersburg, Maryland 20899

James B. Mehl
Physics Department, University of Delaware, Newark, Delaware 19716

Martin Greenspan® ‘
12 Granville Drive, Silver Spring, Maryland 20901

(Received 9 August 1985; accepted for publication 20 October 1985)

Gas-filled spherical resonators are excellent tools for routine measurement of thermophysical
properties. The radially symmetric gas resonances are nondegenerate and have high Q°’s
(typically 2000-10 000). Thus they can be used with very simple instrumentation to measure the
spwd of sound ina gas w1th an accuracy of 0. 02% We have made a detalled study of a prototype

LIST OF SYMBOLS u

phenomena whlch must be understood to use gas-ﬁl]ed sphenca.l resonators to measure the
thermodynamic temperature and the universal gas constant R. The resonance frequencies f, and
half-widths g, were measured for nine radially symmetric modes and nine triply-degenerate
nonradial modes with a precision near 10~ f. The data were used to develop and test theoretical
models for this geometrically simple oscillating system. The basic model treats the following
phenomena exactly for the case of a geometrically perfect sphere: (1) the thermal boundary layer
near the resonator wall, (2) the viscous boundary layer (for nonradial modes), (3) bulk
dissipation, and (4) the coupling of shell motion and gas motion. In addition, the following
phenomena are included in the model through the use of perturbation theory: (5) ducts through
the shell, (6) imperfect resonator geometry, and (7) the seam where the two hemispheres
comprising the shell are joined. Some estimates of the effects of (8) roughness of the interior of the
shell have also been made. Much of the lower pressure f,, and g,, data can be explained by our
model of these phenomena to within + 5X 10~ f,, when a single parameter c,/(¥,)!/*isfittoa
single resonance frequency at a single pressure. In this parameter, c, is the ideal-gas speed of
sound and F, is the resonator volume. If this volume were known, the prototype resonator could
be used to measure the speed of sound of a gas with an accuracy approaching + 0.0005%.
Improvements in resonator design which will circumvent difficulties discovered in this work are
expected to lead to much better agreement between theory and the measured £, and g,,.

PACS numbers: 43.20.Ks, 43.20.Rz, 43.85.Dj

Y, (6,4) = spherical harmonic

= acoustic particle velocity in fluid

¢ = speed of sound in gas « P™(8)cos mp, m>0
Con = speed of longitudinal waves in shell materials «P-™(@)sin mp, m<0
GG, = specific heats per umt‘ mass. o Z,, = s th solution of dj,, (z)/dz =0
D, = 1/p = coefficient of viscous diffusivity o — (9P /3T)
D, =K /(p C,) = coefficient of thermal diffusivity B (or) = specifica clousti c admittance
';, = ;’,/(21’) = frequency ) ¥ = C,/C, = specific heat ratio
o - fr’;;u;l{); + 18, = complex resonance 8, 2D, /w = viscous boundary layer thickness
Ja(2) = nth-order spherical Bessel function 5, = y2D,/w = thermal boundary layer thickness
k =w/c 8 =45, + /P
Ky =a/c, 7,9, = shear, bulk viscosity coefficients
K = thermal conductivity Ap = Lamé constants
n, = unit vector in radial direction P = gas density
P = acoustic pressure Pat = shell density
P = absolute pressure g = Poisson’s ratio
S = entropy per unit mass T = acoustic temperature
T = absolute temperature

*)National Bureau of Standards, retired.
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INTRODUCTION

Gas-filled spherical resonators comprise mechanical
systems whose properties are easy to model with extraordin-
ary accuracy. Thus they are now being used for a measure-
ment of the universal gas constant R, where an accuracy
approaching a few parts in 10° is expected.’ This measure-
ment provides a motivation for understanding the resonance
frequencies to an accuracy of one part in 105, Other applica-
tions are less demanding. These applications include “rou-
tine” accurate measurements of the speed of sound in gases,
particularly at low reduced temperatures where other meth-
ods of measurement of virial coefficients fail.>~> Spherical
resonators have also been used for monitoring the composi-
tion of binary gas mixtures.®’ They are being developed for
acoustic thermometry' and have applications to photo-
acoustic spectroscopy.® Spherical resonators can be used as
enclosures for calibration of microphones via reciprocity
and it is plausible that spherical resonators can be used for
the measurement of the thermal conductivity of gases.

The intent of this article is to provide a self-contained
summary of our understanding of and experience with
spherical resonators. This Introduction will be followed by a
formal presentation of our theoretical model of the spherical
resonator. The formal theory includes an exact solution of
the “three-mode” problem for a spherical resonator. That is,
the coupling of the pressure field, the temperature field, and
the shear velocity field is formulated exactly, and a boundary
condition which includes all viscous and thermal effects as
well as the effects of nonzero shell admittance is derived. The
theory of the shell admittance includes the effects of radi-
ation from the outer surface of the shell and internal losses
within the shell. While the focus of the theory section is on
applications to gas-filled resonators, most of the results are
applicable to liquid-filled resonators.

The major results of the formal theory are referenced in
later sections for the benefit of the reader who prefers a more
descriptive approach. The next major section is a description
of our prototype resonator. This is followed by a short dis-
cussion of the dominant physical phenomena required to
model gas-filled spherical resonators in the regime where
they are most frequently applied. We then proceed to a de-
scription of a representative set of experiments which illus-
trate these phenomena. In the concluding section, some
further improvements are suggested.

The significant practical advantages of spherical resona-
tors apply to the radially symmetric gas resonances. These
resonances have exceptionally high Q ’s (see Ref. 9) and they
are nondegenerate. For these modes, the gas motion is per-
pendicular to the inside surface of the resonator’s shell; thus
the motion is not subject to viscous damping at the gas-shell
boundary. When our 1-liter resonator is filled with argon (or
air) at ambient temperature and at pressures in the range
0.1-1.0 MPa, the lowest five radial resonances have Q’s
ranging from 2000—10 000. The high Q ’s of the radially sym-
metric modes permit the use of small, inefficient transducers
embedded in the resonator’s shell which perturb the resona-
tor geometry in a minor and predictable way.

The nondegenerate nature of the radially symmetric
modes is significant for two reasons. First, one can show that
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the resonance frequencies are insensitive to geometrical im-
perfections in the first order of perturbation theory. Thus a
resonator which has been constructed with ordinary ma-
chine-shop tolerance can be used for extremely accurate
speed of sound measurements without making any dimen-
sional measurements other than the volume of the resonator.
(The volume itself can be easily obtained with high accuracy
from measurements of resonance frequencies when the reso-
nator is filled with a reference gas such as argon.) Second,
measurements of the resonance widths of these nondegener-
ate modes can be interpreted directly in terms of the proper-
ties of the gas. When degeneracies are present, the apparent
width of unresolved or partially resolved modes depends
upon details of the resonator’s geometry and the trans-
ducer’s properties as well as the gas’ properties.

tailed analytic calculations of the pertubations to the reso-
nance frequencies from physical phenomena which can be
described by an acoustic admittance at the gas—shell bound-
ary. The most important of these are (1) the thermal bound-
ary layer near the resonator wall, (2) the viscous boundary
layer (for nonradial modes), and (3) finite elastic com-
pliance of the resonator shell. We shall also mention the
smaller perturbations to the resonance frequencies resulting
from holes drilled in the shell, including a vent hole and a
duct leading from the interior to a transducer, imperfect res-
onator geometry, the seam where the two hemispheres com-
prising the shell are joined, and finally roughness of the inte-
rior of the shell (such as that left from machining).

At the pressures of interest here (0.1-1.0 MPa), dissipa-
tion in the gas resulting from thermal conductivity and vis-
cosity (and relaxation in polyatomic gases) is important.
The ratio of the acoustic pressure to the static pressure is
always less than 10~ thus nonlinear effects are not impor-
tant. At the lowest pressures and highest frequencies dis-
cussed here, the ratio of the mean free path to the wavelength
of sound becomes as large as 5 X 10~¢. Nevertheless, correc-
tions to hydrodynamics remain quite small.'® (The effects of
incomplete thermal accommodation of the gas with a spheri-
cal shell have been observed™!! at lower pressures near 10
kPa.)

Very large perturbations occur when a resonator is filled
with a gas under conditions approaching condensation.
These were recently discussed in detail elsewhere.!2

One can show that, under most conditions, the acoustic
radiation from the exterior surface of a gas-filled resonator,
either through a gas or through supports, is negligible.

QOur theory of spherical resonators will be tested by mea-
surements of the frequencies and half-widths of nine radial
and nine nonradial (triply-degenerate) modes when our 1-
liter aluminum resonator is filled with argon at seven pre-
sures spanning the range 0.1-1.0 MPa and at a temperature
near 296.31 K. Under these conditions, most of the auxiliary
quantities needed to test the theory (thermal conductivity,
viscosity, and first acoustic virial coefficient 4,) are well
known from independent measurements. The measure-
ments have a frequency resolution exceeding 1 part in 10°. If
our understanding were complete and if our measurements
were free of systematic error, all 252 frequencies and 252
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half-widths would be fitted by two parameters: co/(V,) '/
and A4,. (Here, ¥, is the volume of the resonator at 296.31 K
and zero pressure, ¢, is the speed of sound in argon at 296.31
K and zero pressure, and A, is the second acoustic virial
coefficient of argon at 296.31 K.) For five of the radially

symmetric modes, this appears to be true at the level of 10

parts in 10°. The evidence we present suggests that it will be
possible to construct new resonators for which theory and
_ experiment agree near the level of 1 part in 10°.

I. ACOUSTICAL MODEL FOR THE SPHERICAL
RESONATOR

In this section, we describe the acoustical model of the
spherical resonator. The model includes a calculation of the
response of the gas and the shell to excitation by a steady
sinusoidal stimulus, and also includes calculation of the fun-
damental resonance parameters which appear in the re-
sponse function. It is convenient to assume that all of the
“small” quantities of linear acoustics are proportional to e“*,
and to obtain solutions in the form of linear combinations of
appropriate eigenfunctions. In the following development,
we assume the eventual inclusion of a source term whose
strength and frequency remain constant long enough for the
system to reach a steady state.

Let the acoustic field be described by a velocity potential
¥ (r). In the lowest order of approximation, with all dissipa-
tive effects neglected, the acoustic pressure and particle ve-
locity are related to W (r) by

p(r) = —iwp¥(r) n
and

u(r) = V¥(r), (2)
where ¥ (r) is a solution of

(V2 + 0*/c*) ¥(r) =0. 3)
The boundary condition can be conveniently stated in terms
of a specific acoustic admittance

2y (ﬁ) Blax,) ¥(r), (4)

on c

where £ (w,r,) is defined to be the normal component of

pecu/p at position r, on the boundary. It is convenient to seek
solutions of Eq. (3) in the form of linear combinations of

R sufyiii
(VP + k%) Wy(r) =0 (3)

and the boundary condition (4). The effects of geometric
imperfections will be considered later in this section. For an
ideal spherical geometry, the eigenfunctions are

Wpgm (1) < jiy (kps?) Y, (6,8), (6)

where the k,, are determined by the boundary condition at
r = a. For the case where £ is independent of position, the
boundary condition is

kaj, (ka) = —i (wa/c) B(w) j, (ka), €))

which can always be solved numerically for the £,,a. In the
limiting case of a uniform, rigid, fixed shell with perfectly
insulating walls, the specific admittance is zero, and the
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eigenvalues are the roots of j, (z) = 0. Let z,, be the s thsuch
root. There are 2n + 1 degenerate modes with the indices
(ns); the frequency of these modes in this zero-order approx-
imation is ¢z, /(2ma).

In the following sections we develop more accurate ex-
pressions for the frequencies of the modes. The major effects
come from viscous and thermal effects at the shell boundary,
and the finite acoustic impedance of the shell. These bound-
ary effects, along with bulk viscous and thermal effects, are
treated in the next section on wave modes. These effects,
along with the smaller effects due to the fill duct and trans-
ducer coupling duct, shift the frequencies of the modes from
the ideal values cz,,/(2ma). Itis convenient to represent the
frequennﬁ in the complex form Fy, =f,, + igy, where the
imaginary term describes either the decay of free oscillations
or the resonance half-width in steady-state measurements.

A. Wave modes

We begin our analysis of the wave modes of an acoustic
resonator with the equations derived by Kirchhoff in
1868."%! We assume a spherical coordinate system with the
origin at the center of a geometrically perfect shell.

Kirchhoff assumed that the pressure, temperature, and
particle velocity were described by the Navier-Stokes equa-
tion, the equations of continuity of mass and entropy, and
Fourier’s law of heat flow. Let the pressure and temperature
be represented by P+ p (r) and T + 7 (r), where Pand T
are the ambient quantities, and p (r) and 7 (r) are small
terms with the assumed time dependence. The equations of
motion couple these fields with each other and with the lon-
gitudinal particle velocity u (r). Kirchhoff found that r (r)
was governed by a fourth-order partial differential equation.
It is convenient to write this equation in the form

(i8172) [1+ (iy/2) (08,/¢)*]V'r

+ [1+ (i/2) (@/c)*(y6; + 6] VPr

+ (@/c)*r=0. (8)
The characteristic lengths in this equation are the thermal
penetration length

8,=2D,/w, €]

and a quantity &, which is related to the viscous penetration
length

=,/2D, /0, (10)

and the bulk viscosity 7, by
8.2 =46 +m/p.
Foralg;%t‘mKandO.lMPa,withafrequmcyoﬁ

(11)

appro; values for these lengths are §, =21’um,
8§, =26 ym, and &, = 30 m. (For argon and other mon-
atomic gases, the bulk viscosity term is negligible; it is in-
cluded in the formalism for completeness.) Following
Kirchhoff, we proceed by obtaining solutions for r (r).
From these we determine the pressure and particle velocity.
Morse and Ingard's show that the pressure is related to the
temperature through

p () = [ra/(y — D] [1 = (8/2) V] r(x), (12)
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and that the longitudinal particle velocity u(r) is given by
iopu= —V [p+ (iy/2) (@8,/¢)*(p —ar)]. (13)

[The derivation of Morse and Ingard makes it clear that Eqgs.
(8), (12),and (13) apply to dense fluids as well as to gases. |
Equation (13) does not represent the complete gas velocity.
A divergence-free component w(r), a solution of the trans-
verse part of the Navier-Stokes equation

= gV2w(r), (14)

can be added to u. Solutions of Eq. (14) will be needed later
to satisfy boundary conditions at the resonator wall.
Equation (8) separates into

iw pw(r)

(V2 4+k2) (V4 kD) 7 (r) = (15)

The longitudinal particle velocity is given by

pen(e) =2 T2V [F k) 7,1, () Yo
+F (k) 7,j, (kP Yo ], (20)
where
b, i 5
Fik )—1+( ) (—) (k5,)
c 2
’ 2
+ (1) (BEM) , )
4 c

We also need an expression for the transverse velocity field.
Equation (14) can be written

where k; and k§ are the roots of a bi-quadratic equation
whose coefficients can be determined from Eq. (8). It is
most convenient to write expressions for these roots in the
form of series expansions of the exact solutions:

ko= (%)2[1 - ("12‘) (%)2[ (y—1) 8 +67]
+o(“’c5) ]

532i) [1 * (é) (%)2(7’— 1) (82— 8

ro(2)]

The notation here indicates that the solutions are correct to
fourth order in the ratio of any of the characteristic lengths §
to the wavelength of an acoustic wave.

Kirchhoff found solutions of Eq. (8) for plane waves
and spherical outgoing waves in an unbounded medium, and
for waves propagating along the axis of a circular tube. It is
also possible to write down exact solutions for standing
waves in a spherical geometry. Solutions which are finite at
the origin have the form

(16)

amn

7(0) = [1,)n (k,P) + 7, o (K,1)] Yo (6,8).  (18)

From Eq. (17) we see that k, is approximately equal to
(1 —1)/8,. Thus the term j, (k,r) varies rapidly with r. For
large values of r/8,, the asymptotic form j,(z)
~cos[z + (n + 1) w/2]/z can be used. With z =k,r, the
amplitude of this expression is approximately
exp(r/8,)/(r/8,), which decays rapidly with decreasing .
Thus the behavior of the exact solution (18) is similar to the
behavior of the approximate boundary layer solutions pre-
sented in many texts. The contribution of Eq. (18) propor-
tional to 7, is only important within a few boundary layer
thicknesses §, of the wall.
The pressure corresponding to Eq. (18) is

2
t

6% ?
p(r) =%[Tp (1 + T £ )J,.(k r)

62k2
+7, (1+ Y )J,.(kr)] i
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(19)

(V2 +k2) w(r) =0, (22)
where
k% =n/(ivp) = —2i/8%. (23)

The general solution of the vector Helmholtz equation (22)
is a superposition of a longitudinal field and two transverse
fields. Only the latter are admissible here. The solution has
the form'®

w(r) = le)( [n,’jn (kur) Ynm]

+ (Wy/k,) YXVX 1,1, (k,7) ¥, ], (24)
where W, and W, are constant parameters and n, is a unit
vector in the radial direction. Like the thermal contribution
in Eq. (18), the shear wave solution is significant only within
a few boundary layers §, of the wall.

B. Boundary conditions

We now have the formalism necessary to satisfy appro-
priate boundary conditions at the shell wall. We require that
(1) the temperature and heat current are continuous at the '
wall, (2) the tangential components of the total velocity
u + v vanish at the wall, and (3) the ratio of the normal
component of the velocity to the pressure is equal to an effec-
tive acoustic admittance.

Herzfeld'” showed that when the product of the thermal
conductivity and specific heat per unit volume of the shell
material greatly exceeds the corresponding quantity of the
gas, the first condition is practically equivalent to the re-
quirement that the temperature be constant on the shell wall.
For a typical gas in a metal shell the temperature amplitude
at the gas—shell interface is on the order of 10™* of the tem-
perature amplitude well within the gas. It is thus an excellent
approximation to simply require that 7(r) vanish for r = a,
which fixes the ratio of the constants in Eq. (18) through

Ty Ju(k @) + 7, j, (k@) =0. (25)
The constants W, and W, in Eq. (24) are determined by the
condition that the # and ¢ components of u + w equal the
corresponding components of the shell velocity. The latter
are zero in the approximation that the shell is infinitely rigid,
and are small under the conditions of our experiment. Their
inclusion in the theory leads to a small correction to a term
which is itself a small correction. We thus assume for simpli-
city, without significant loss of accuracy, that the @ and ¢
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components of u + w vanish at 7 = a. The two conditions are
actually equivalent, and are satisfied if #, = 0 and if W, is
given by

w,=—1%
iwpa(y — 1)
><F(kf,) 7, jnk,a) + F (k?) 7, j, (k,a)
Jju(k,a) +j, (k,a)/(k,a)

. (26)

The transverse velocity has a radial component
w, (r0.4) = W,[ j,(k,n)/(k,r)]n(rn+1) Y, (6,4),

((oa) kyaj,(k,a) 1—i
—n\— Bnh = T -
¢ Jn(kya) 2

242 8, 5,

x((y— D= —n(n+1) —),
? a a
(33)

where the right-hand side of this is correct to within a multi-
plier 1 + O (w8/c)*. Equation (33) can be rearranged as

k,aj,(k,a)/fj,(k,a) = —i (wa/c) (B + B, +B,), (34)
where

@n B, =4 (1+) (0/c) (y—1) 5, (35)
:_VEJ‘;}.' contributes to the remaining boundary condition at is the thermal contribution to the acoustic admittance and
o B, ={(t+i) (cfoyn(n+1)8,/a (36)
4 r '
pe (4, +w,) =B, (@) (P T3 ) o ) (28) is the viscous contribution to the acoustic admittance.

Here 8, () is the specific acoustic admittance for the shell.
For a given shell this quantity is a calculable function of the
frequency and mode index n. It is discussed further in the
following section. The right side of Eq. (28) is the product of
B.. and the negative of the stress in the fluid. The latter
differs from the acoustic pressure by a factor of 1 + O (wb/
¢)2. For simplicity, we neglect this small correction. From
Egs. (19), (20), and (25)-(28), we then obtain

2% 1 k,aj,(k, a)
L (F(ry e T
wab? kf_kj( (ep) Jn(k,a)
k.aj, (k,a)
—F(k) =2 " _[F(k?)—F(k?
(k2 T o) [F(k2)—F(k})
nn+1)

=B, (). 29
1+kuaj;<kua>/jn<kua>) P () 2%

Except for a small correction to the right-hand side, this
equation is exact. The next step is to eliminate £ 2, k 7, and
k?. This, along with an expression for the shell admittance,
leads to an equation which determines the complex reso-
nance frequencies of the gas in the shell. In principle, the
exact expression for k2, kZ, and k 2 could be used in deter-
mination of the resonance frequencies. We can obtain suffi-
cient accuracy by using the series expansions (16) and (17)
of the exact solutions. These lead to the following expres-
sions for the functions F(k ?):

F(k2) =1+ (i72) (0/c)*(82 — 82) + O(wb/c)?, (30)
F(k}) = (—i/2) (@8,/¢)(y — 1) + O(wb/c)*.  (31)
To lowest order, k, is equal to (1 — ) /8,. Thus the magni-

tude of k,a is of order a/§,, and the asymptotic form can be
used for the spherical Bessel functions in Eq. (29):

Jatka)/j, (k@) = —tan[k,a — (n+ 1) 7/2]
~i+ 0 (e *%). (32)

Similarly, since k, is exactly (1 —i}/8,, the expression
1+ k,aj,(k,a)/j,(k,a) in Eq. (29) can be approximated
by ik,a. With these approximations, Eq. (29) becomes
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Equation (34) is an approximation to the more accurate
boundary condition (29), and has the same form as Eq. (7).
We thus see that the thermal and viscous effects can be in-
cluded in Eq. (7) to order (wd/¢)? by introduction of the
boundary admittances given by Eqs. (35) and (36), and use
of Eq. (16) to relate k, to the frequency.

Equation (34) can always be solved numerically for the
quantities k,a. These can then be related to complex reso-
nance frequencies Fy = fy + igy through Eq. (16). Note
that the thermal and viscous terms are generally small for
both gases and liquids, but the shell admittance is not neces-
sarily small. Thus it is worth developing approximate solu-
tions for this case. Let koa = wqa/¢ be any solution of

Jn (k@) ju (k@) = —iBy. - (37)

Now, the relation between &, and w in Eq. (16) can be ex-
pressed to order (wb/c)* as

k,a = (a/c) (0, + Aw — 27rig,,, ) = koa + Aka, (38)
where
3
G = 2L ((7/—1>53+163+”—") (39)
c 3 po

can be identified as the contribution to the imaginary part of
the resonance frequency which is proportional to the bulk
attenuation of sound. In small terms like (39), f represents
either the source frequency in steady-state measurements or
the real part of the mode frequency in free decay.

We next approximate j, (k,a) and j, (k,a) in Eq. (35)
as follows:

Jn(kya) = j, (kga) + jy (koa) Aka + O (Aka)?, (40)
. A n(n+ 1))\,

n(koa) = - — . (k )+(1————) (ko).
Jn(kea koaj (koa (kea)? Jn(koa

The last of these, the differential equation for j, (z), can be
used to eliminate the second derivative j (k,a). The remain-
ing spherical Bessel function terms involve only the ratio on
the left side of Eq. (37), and can be expressed in terms of B, .
The result, correct to order (Aka)?, is
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A (ka) _Af+ig— g
ka f
B — i (B, +B,)/ (k)
C[l—n 1+ D/ (k)?] + B — B2
Two limiting cases are of interest. For an infinitely rigid

shell, the shell admittance 3, vanishes, and the solutions
kqa of Eq. (37) are the z,, and Eq. (41) is

(41)

f f 1—n(n+1)/Z,
_ g 1—i (=14 +n(n+1)5,/z,
S 2a l—n(n+1)/2, '

(42)

Equation (42) shows that the thermal and viscous boundary
effects each contribute to the shifts to the real and imaginary
parts of the resonance frequency, and that the magnitudes of
the real and imaginary contributions are equal. Equation
(42) also shows that the bulk thermal and viscous effects
only contribute to the imaginary part of the resonance fre-
quency.

For gases in a metal shell, it is nearly always a good
approximation to assume that the shell admittance is small.
The exception is when an acoustic resonance frequency and
a shell resonance frequency nearly coincide. In such cases,
magnitude of the shell admittance can be very large. The
specific acoustic admittance of the shell, as defined in Eq.
(28), is directly proportional to the gas density. Thus, for
very high density gases or liquids, the magnitude of the shell
admittance can be large over a wide range of frequencies,
particularly for the relatively thin resonators often used in
studies of liquids. The solutions of Eq. (35) for the case
|Bax| > 1 correspond to the “pressure release” boundary
condition, i.e., they are close to the roots of the spherical
Bessel function rather than its derivative. For these cases,
Eq. (41) shows that the thermal and viscous boundary ef-
fects vanish. The reason can be seen in Egs. (25) and (26),
which show that r,, the magnitude of the thermal wave, and
W5, the amplitude of the transverse wave, are both propor-
tional to j, (k,a), which vanishes when |8, | is infinite.

Formally, Eq. (20) gives an expression for the velocity
patential ¥y, in Eq. (2). This velocity potential can still be
associated with the mode indices N = (nsm), but is no long-
er a solution of Eq. (3) with the simple form given in Eq.
(6). The differences, however, are of order (w8/¢)% To low-
est order the relation between ¥, and p expressed in Eq.
(19) is equivalent to that given in Egs. (1)—(2). For calcula-
tion of the measured resonator response and calculation of
certain higher-order effects, the differences between the
zero-order description given by Eqs. (1)-(6) and the more
accurate description developed in this and the previous sec-
tion can be neglected. The main thermal and viscous effects
are the effects on the resonance frequencies, which are repre-
sented with sufficient accuracy by, e.g., Eq. (41).

Some preliminary modeling calculations have been car-
ried out to determine the effect of lack of smoothness of the
surface finish on the thermal boundary layer perturbation.
For these calculations, the surface was assumed to have a
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sinusoidal profile of amplitude §¢8,. (Such a finish might be
left by machine tools.) The results scem to be sensitive main-
Iy to the parameter § and not to the horizontal spacing of the
surface undulations (over a reasonable range of param-
eters). The calculations suggest that Af, is increased by a
factor (1 + 25/8,) and that Ag, is not affected. [Here Af,
and Ag, refer to the thermal contribution to Eq. (42).]

C. Shell motion

The theory of the interaction of a uniform spherical shell
with an internal acoustic mode was first worked out by
Greenspan for the purely radial case.'® Mehl recently treated
the general nonradial case.' In this section, we present a

brief treatment of the radial case. We include the effects of .

radiation from the outer surface of the shell and of internal
dissipation in the shell. The objective is to calculate the effec-
tive acoustic admittance of the shell £, (@), which was re-
ferred to in the previous sections. We also summarize the
results for the n = 1 nonradial case. Modes with n > 1 were
not studied in the present work.

We assume a uniform spherical shell with inner radius a
and outer radius b. We assume that the shell is surrounded
by a fluid which is not necessarily the same as the fluid en-
closed in the shell. Thus this calculation could apply, for
example, to a liquid-filled resonator which is surrounded by
air, We neglect the coupling to the outside world through the
mechanical supports.

We assume that the shell material is isotropic with Lamé
constants A and x. The speed of longitudinal waves in the
shell is

e = (A +1)/py, - @ (43)
For the radially symmetric case, the displacement in the ra-

dial direction s, (r) is the derivative of a scalar solution of
the Helmholtz equation, which we write as

5, = (k) (44)
ar
where k,,, = w/c,, and
H, (2) =a,j,(2) +ay,(2) (45)

is a linear combination of spherical Bessel and Neumann
functions. The boundary condition at = a requires that the
normal stress in the gas, which we approximate by the nega-
tive acoustic pressure [refer to the discussion following Eq.
(28) ], be the negative of the 7r component of the stress ten-
sor, and that the acoustic particle velocity match the shell
velocity iws, . This condition can be written in terms of a shell
impedance

z, =(-£-
™ (mr)h-a

_ _ (A +2u) AH, (A) — 4uH,(4)
iwaH,(4)

, (46)

where 4 = k,, a. At r = b, we assume that we can estimate
the effects of the surrounding fluid by using a radiation
boundary condition. The shell boundary condition at r = &
is then
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— _ (A+72%) BH\(B) —4uH,(B)

- 47
iwaH (B)

where B =k, b and p;, ¢;, and k ; = w/c; refer to the gas
outside of the shell. In our work, this is the same as the gas
inside the shell. However, it is useful to distinguish the two
fluids so that our final expression can be applied to, e.g.,
liquid-filled resonators in an air environment.

Equation (47) can be used to evaluate the ratio of the
constants in Eq. (45). When the results are used in Eq. (46),
we obtain, after extensive algebra, an expression for the
acoustic impedance of the shell at r = a. It is convenient to
express this in the form of an acoustic admittance

B =PyCy/Zw = [ — ip0ca/ (puch)] Solkaa),  (48)

where p, and c, refer to the gas inside the resonator. The
function .S, has the form

S, = —ql(G, + qRG,)/(G, + ¢RG,)), (49)
where
g=A+2u)/4u=1(1-0)/(1-20), (50)

R = (pici/pncin) [(ki0)/(1 +ikb)],  (51)

and
G,=(1+AB—gB*)tan(B—4) — (B —A) —g4B?,
G, = (1 +AB)tan(B — 4) — (B —A)

Gy=1[(g4*—1) (gB*— 1) + AB ]tan(B — A)

— (1+gA4B) (B —A),
G,= (14 AB—gA*)tan(B—4) — (B —A) + g4 *B.

In Eq. (50), the second form expresses the ratios of the elas-
tic constants in terms of Poisson’s ratio a.

At zero frequency, the radiation terms vanish and the
admittance function S, is th ting value of — ¢G,/Gy:

—3qab? + 3dbh (a —gqb) + h*

3gh (a*+ab+b?) + 3abh + h*’
where & = b — aiis the shell thickness. The shell resonances
occur at frequencies for which the denominator in Eq. (49)
vanishes. If the radiation terms are neglected, the frequen-
cies are given by the zeros of G,(,,a). The lowest root cor-
responds to the breathing mode of the shell. The higher fre-
quency modes occur when tan(k, A) is close to zero. These
modes correspond roughly to the longitudinal thickness
modes of a flat plate. They clearly occur at much higher
frequencies than the gas resonances as long as ¢,,, /A is much
larger than c, /a. This suggests that a good approximation to
Eq. (49) can be obtained by simply dividing the zero fre-
quency limit by a resonance term [ 1 — ( f/f;, )?], where f,,
is the breathing resonance frequency. For the shell used in
the present work, this “isolated mode” approximation does
not differ from the exact result by more than about 2% ex-
cept very close to the breathing resonance.

For the nonradial case, the shell admittance is given by
an expression similar to Eq. (48), with S, replaced by a more
general function S,." For n > 0, the admittance function S,

(52)

S5(0)= —¢ (53)

259 J. Acaust. Soc. Am., Vol. 79, No. 2, February 1986

TABLEI. Resonance frequency shifts and losses due toshell motion (argon
at 296 K, | MPa).

No radiation With radiation

5 JouiPoe 10°A fn /foe 10°A £ /fm 10°20 /f
2 0.03 — 5196 —51.96 0.01
3 0.09 — 5546 —55.46 0.02
4 0.19 —61.72 —-61.72 0.04
5 0.31 -721N =721 0.08
6 0.47 —93.67 —93.67 0.16
7 0.65 — 143.71 — 143.72 0.44
8 0.87 — 386.57 — 386.65 3.75
9 1.12 408.83 408.63 4.82

10 1.40 122.13 122.12 0.49

must be calculated numerically. For the present, we simply
note the formal similarity of the radial and nonradial cases,
and proceed to calculate the shifts in the resonance frequen-
cies due to shell motion.

Equation (37), together with an expression for the shell
admittance, can be used to determine the quantities kqa.
These quantities represent the acoustic eigenvalues in the
absence of dissipative and boundary-layer effects, but with
the shell motion completely accounted for. For @ near
¢z,,/a, the quantity pwca in Eq. (48) is approximately
PyChz,s, OF approximately Pz, in the ideal-gas limit. For

“aluminum, the quantity g, c2, is about 1.1 X 10° MPa. The

dimensionless function S, (k,,&) is of order unity except for
frequencies near shell resonances. Thus, for gases at moder-
ate pressures, 3,;, will have a small magnitude, and an ap-
proximate solution to Eq. (37) can be found by carrying out
series approximations similar to Eqs. (40), with k.2 re-
placed by z,,. This leads to

Afw +igm _ — B /2,
# 1—n(n+1)/2,
— psc: Sn(ksha)

Puch 1 —n(n+1)/2, eo

The shell effects are largest at the highest pressures.
Equations (49)—-(52) and (54) have been used to calculate
the shifts in the resonance frequencies of the radial modes of
argon at 296 K and 1.0 MPa in the aluminum shell used in
our work. The results are summarized in Table L. The imagi-
nary terms represent radiation losses from the outside of the
shell. Except for the (s,n) = (0,8) and (0,9) modes, which

TABLE II. Effects of shell dissipation on acoustic losses (argon at 296 K, 1
MPa).

10%,, /fos for @, =
5 Sout o 10 100 1000 10000
2 0.03 0.96 0.10 001 0.00
3 0.09 1.88 0.19 0.02 0.00
4 0.19 3.29 0.33 0.03 0.00
5 0.31 5.90 0.59 0.06 0.01
6 047 11.94 1.21 0.12 0.01
7 0.65 3228 3.40 0.34 0.03
8 0.87 187.20 28.53 2.87 0.29
9 1.12 207.21 36.44 3.67 0.37
10 1.40 34.09 . 370 0.37 0.04
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are close to the breathing resonance of the shell, the radi-
ation-loss term is negligible. The real part of the frequency
shift isshown for the cases of a radiation load and for the case
of a vacuum surrounding the shell. The numerical results in
Table 1 are carried out to sufficiently high order to show that
there is only a negligibly small difference. When the radi-
ation effects are small, the ratio of the imaginary and real
parts of S, is proportional to the external gas density. Equa-
tion (54) shows that the quantity A £, + ig., is proportion-
al to the product of the density and S,; thus A f,;, is propor-
tional to the density and g,, is proportional to the square of
the density. At a pressure of 0.1 MPa, the radiation loss
terms become negligible even for the modes nearest the
breathing mode of the shell. Because all the experimental
work reported in this paper was carried out at pressures be-
low 1 MPa, the radiation losses have been neglected in the
remainder of our formal analysis.

It is also worth considering the effect of internal losses in
the shell. The losses are associated with strain rates, and can
be described in terms of complex elastic constants. In the
isolated mode approximation, this leads to an expression of
the form

S,(0)

o) = T TR +1 (/e /0n”
where (J,,, is a shell quantity factor. Table IT summarizes the
loss terms g, /f, for the radial modes for a pressure of 1
MPa and for various values of @, . It is clear that the contri-
butions will be significant only for very small values of Q,,
and for frequencies near the breathing resonance.

Numerical calculations of the admittance function
S, (kg a) for the nonradial modes have been described else-
where.'? Results for the 7 = 1 modes of the aluminum shell
used in our work are presented in a later section.

A qualitative discussion of the functional form of
S, (ky,a) is useful in the present context. For #>2, the spe-
cific admittance of the shell is qualitatively similar to the
n = 0 case, except for the additional bending mode reson-
ances at lower frequencies (i.e., lower than £, ). At low fre-
quencies, the admittance is the inverse of a stiffness reac-
tance associated with the elastic deformation of the shell.
For each n, as the frequency is increased, the shell inertia
becomes more important, until the admittance diverges at
the bending-mode resonance. For each n, there is an addi-
tional resonance at frequencies above f;,. These modes, like
the breathing mode, are associated with a net stretching of
the shell. At still higher frequencies, there are resonances
which correspond to the longitudinal thickness modes of a
flat plate.

Forn = 1, the “bending™ mode s at zero frequency. The
displacement proportional to ¥,,,, (8,4) is equivalent to uni-
form translation of the shell. For the n = 1 case only, the
acoustic pressure exerts a net force on the shell which excites
this translational motion. The corresponding inertial reac-
tance can be easily calculated if deformation of the shell is
neglected. The resulting specific admittance is given by

i{walc) By =M ,/M,, (56)

where M,,, is the total mass of gas in the shell, and M, is the
total shell mass. This equation is in close agreement with the

(55)
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numerical calculations for frequencies well below the first
nonzero, n = 1 shell resonance. The frequency shift corre-
sponding to Eq. (56) is

(Afnh/ﬂl: = (Mgu/Mlh )/(2213 —2)f (57)

which can be interpreted as a reduced mass correction for a
coupled oscillator times a correction factor. The correction
factor accounts for the difference between the actual fluid
motion and uniform translational oscillations.

D. Holes In the shell

Vent holes through the resonator shell can be modeled
as uniform cylindrical ducts with an appropriate terminal
impedance. The same is true for holes which acoustically
couple the inside of the shell to transducers which are either
external or partially imbedded in the shell. The propagation
parameter for waves in the duct is, according to the Kirch-
hoff-Helmholtz theory,'>2°

(58)
where 7, is the duct radius. Let 8, be the terminal specific
admittance of a duct of length L. Then the input specific
admittance of the hole, 3,, is given by

For the vent hole, i3, can be estimated by assuming a radi-
ation boundary condition appropriate for an opening with
an infinite flange:

= [ (22) - £ ()]

Braa 3r ( ¢ ) 2 ( ¢ ’
Under typical conditions where |i8,,4| > |tan kxy L |, Eq.
(59) simplifies to
When typical experimental parameters are used in the
evaluation of Eq. (59), the magnitudes of both the real and
imaginary parts of i8, are found to be of order unity, except
for frequencies near the resonance frequencies of the ducts.
For a hole terminated by a transducer in a cavity with an
effective volume V_, the terminal specific admittance is giv-
en by

(60)

B. = — oV /(mrc). (62)

The transducer coupling hole has a Helmholtz resonance at
low frequencies which can significantly perturb the eigenfre-
quencies of the lowest modes. The higher-frequency reson-
ances occur very close to the frequencies for which an inte-
gral number of half-wavelengths equal the duct length.
Thus, at higher experimental frequencies , |i5, | can be kept
on the order of unity by using a sufficiently short duct. The
vent hole is formed with a short duct of small radius coupled
to a much larger duct drilled partway through the shell.

The effects of nonuniform boundary admittances on the
eigenfrequencies can be calculated using boundary perturba-
tion theory.?! Let the unperturbed state correspond to the
boundary condition (7) with (@) representing the terms in
(34), and let B(w,r.) = B(w) + A B(w, r,). The additional
shift in the eigenfrequency is given by
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S xR, LAV

where the ¥, are eigenfunctions satisfying the boundary
condition (7), the integral in the numerator is over the sur-
face of the resonator, and the integral in the denominator is
over the volume of the resonator. The shifts in the eigenfre-
quencies due to a hole in the shell can be easily calculated for
the radial modes, since the eigenfunction is a constant on the
shell wall. The result is

Afitis, 1B AS

if z,, 4mwa®’

where AS /(4ma?®) is the ratio of the area of the hole to the
surface area of the shell. Typically this ratio is on the order of

1075. The total hole perturbation has a similar magnitude
for frequencies well away from the hole resonances.

E. Seam between the hemispheres

The seam where the two hemispheres are joined in the
construction of the spherical resonator should also be con-
sidered. Our description of the shell motion assumed a uni-
form isotropic shell. We have made no theoretical estimates
of the effects of the joint between the hemispheres, and must
rely on experimental evidence (presented later in this paper)
to justify the simplifications made in our theory of the shell.

A small gap at the junction of the hemispheres could
also affect the resonance frequencies. If the surfaces at the
joint are smooth and fit well, it is reasonable to assume that
the average width of the gap is less than 8,. In this limit, the
specific admittance can be estimated from the Poisueille flow
resistance for a channel of uniform width. Assume the chan-
nel cross section is D by 27ra, and the length is L. The corre-
sponding specific admittance is real and equal to p cD?%/
(127L). Thus there is no frequency perturbation; the contri-
bution to the resonance width of radial modes is given by

g/f=pcD*/(24nLaz,,). (65)
Forargonat 300K, 0.1 MPa, D~ 5 um, with the dimensions
of the sphere used in this work, this is equal to
1.4 X 10~%/z,,, which is negligible.

, (63)

(64)

F. Imperfect spherical geometry

The holes considered in the previous section are a type
of geometric imperfection which has small dimensions com-
pared with a typical acoustic wavelength. We now consider
larger-scale geometric imperfections. Let the inner surface
of the sphere be described by

i-= 1 —egc,,,, Y, (6,8,
where € is a small parameter and the series represents a shape
factor with a magnitude of order unity. Boundary shape per-
turbation theory™ can be used to calculate the shifts in the
eigenfrequencies in terms of the coefficients ¢,,, . In interpret-
ing the results, it is useful to adjust the value of ¢y, so that the
effects of change of volume are not included. That is, we wish
to consider relative changes in the eigenfrequencies as the
sphere is distorted, subject to the constraint that the volume
does not change. Then, for radial modes, the effect of change

(66)
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of shape alone causes fractional shifts in the eigenfrequencies
which are of order 2. Greenspan'® demonstrated this for
spheroidal deformations by expanding the exact solution,
and Mehl**>?* showed it for arbitrary shapes using perturba-
tion theory. The numerical prefactor A f/( fe*) depends on
the shape but is typically of order unity. Some values are
tabulated in Ref. 23.

A complete discussion of the case of nonradial modes is
presented elsewhere.?* The results will be summarized here,
particularly for the n = 1 case. For nonradial modes, the
lowest-order shift in the eigenfrequencies is linear in €. Con-
sider the n = 1 case. Owing to symmetry, the matrix ele-
ments of boundary shape perturbation theory vanish except
for the terms corresponding to the coefficients c,,, with /
equal to 0 and 2. We disregard the / =0 term which de-
scribes a change in volume, since this term leads to the same
shift for all modes.

It is worth considering the types of shape imperfections
which are likely to arise in machining and assembling a reso-
nator from two hemispheres. The individual parts are likely
to have a high degree of rotational symmetry about their
respective axes, and to be cut off in a plane which is accurate-
ly perpendicular to the axis of symmetry. However, the dis-
tance of the cutoff plane from the “pole” of the hemisphere
must be measured by the machinist. It is probable that actual
parts may be cut off a bit long or a bit short. Such effects can
bedescribed by a term of the form — &P, (cos 8) in Eq. (66).
The mean radii of the two parts are also likely to differ by a
small amount. This type of perturbation can be described by
odd-order Legendre polynomials in Eq. (66). Owing to sym-
metry, such terms do not shift the eigenfrequencies to first
order. A third type of fabrication error is likely to arise in
assembly of the resonator. The axes of symmetry of the two
parts are likely to be quite parallel, but not necessarily coin-
cident. Let the separation of the two axes be 2¢,a. This leads
to terms in Eq. (66) with m = 1. The only terms which con-
tribute to a perturbation of the n = 1 eigenfrequencies are
those in

r/a=1—€P)(cos 8) —§ €, P} (cos O)cos g.  (67)
The corresponding frequency shifts are
Afgacm =f22§s+11' (68)

f 5 Z?_, -2
where A is an eigenvalue of a 3 by 3 matrix. The eigenvalues

are
s 5

Ay =131+ E/6)]

Note that when €, = 0, the degeneracy is only partly lifted.
The mode with angular factor cos @ corresponds roughly to
translational motion along the z axis. The eigenvalue for this
mode is A , ; = 2. The frequency is determined mainly by
the polar diameter of the resonator, which, according to Eq.
(67), is decreased by a fractional amount €. The modes with
angular factors sin@cos¢ and sin@sing correspond
roughly to translational motion along the x and y axes. Their
eigenfrequencies are determined by the equatorial diameter,
which is increased by a fractional amount — €,P,(0)

(69)
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= €,/2. When ¢, is nonzero, the degeneracy of these modes
is lifted. One of the frequencies of the degenerate modes is
unchanged since the effective length of the resonator in the y
direction is not changed by a small displacement 2¢,a in the
x direction. The eigenfunctions of the + 1 mode and the

— 1 mode get mixed somewhat, and the frequencies move
further apart. The — 1 mode will correspond to transla-
tional motion along the long axis of the resonator, which will
be at some angle to the z axis.

The splitting of nonradial modes by boundary shape
perturbations is of interest because it permits a measure of
the geometric quality of the resonator directly from acoustic
measurements. The nsm modes of a perfect resonator are
{2n + 1)-fold degenerate; thus the analysis of the data be-
comes increasingly complicated as n increases. On the other
hand, the higher n modes yield information about the high-
er-order coefficients in Eq. (66).

G. Steady-state response

The steady-state response of the resonator can be calcu-
lated using a Green’s function. To lowest order, the acoustic
pressure p(r) is a solution of the Helmholtz equation (3)
and satisfies the boundary condition given by Eq. (4) on the
entire boundary except for a small active region S''. On this
source region, let the sum of the normal component of the
gas velocity and Bp/( p ¢) equal the source velocity u,,so
that :

2o i)t

Let the Green’s function be the solution of
(V?+0¥¢*) G (ry') =6(r —1'),

which satisfies the boundary condition

(70)

(70

9 _ i(wse) Blas) G (1)
dan

for r on the surface 5. Use of Green’s theorem leads to

r)= —_——G =
p{r) J;( an G&n 9%

- :@LG (e u, (r) dS.
The eigenfunction expansion of the Green’s function is
Yy (r) Wy (r)
G(rr') = s
EN: VAN (2P —F)/E
where A, is the average value of W%, over the volume V.
Equations (72) and (73) lead to
ifp¥n (r')
r)=
Bix) %21?”\” (f*—F3%)

(72)

(73

J.\I'N (r) u, (r) 4S.
£

(74)
The detector is typically a pressure transducer whose com-
plex output voltage u + iv is proportional to p (r’), and is
hence proportional to the summation in Eq. (74). In normal
experimental practice, only one or a small number of modes
whose eigenfrequencies lie within a small range are excited.
The contribution of the excited modes can be described in
detail by including one or a small number of terms in the
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summation in Eq. (74). The remaining terms of the summa-
tion can be approximated using a Taylor series in frequency.
The detector output can then be written

: ifdy

utiv=yY —

MR Yy s
where A4,,, B, and C are complex constants, and the sum is
now over only one mode or over a small number of modes of
interest. The remaining modes contribute to the background
terms proportional 10 B and C. As long as the shell is fairly
rigid, the eigenfrequencies Fyy =fy + igy in Eq. (75) are

+B+C(f-1), (75)

given to sufficient accuracy by
(76)
8nem =8 + 8y +8n + Bouns an

where A f, + ig, and A f,, + ig, are equal to the terms in Eq.
(41) which are proportional to 8, and B,, respectively, A f,,
is given by Eq. (54), A f, and Ag, represent the sum of all
hole contributions, each of the form (64), and g, is given
by Eq. (39).

Equation (75) represents the steady-state response of
the resonator to a source with a frequency f. When the source
is turned off, the signal decays away exponentially. As long
as the energy of the shell motion is a small fraction of the
energy of the gas motion, the decay will be proportional to
exp( — 2ng,, 1), where g,.,, is given by Eq. (77). (If the
shell energy were large enough, we would have to include a
distributed source over the boundary at r = a in our descrip-
tion of the gas.) For the # = 0 modes, the ratio of the shell
energy to the gas energy can easily be shown to be
(h/a) (pun/pe)|Bun|?. Except for the case of a gas reso-
nance nearly coincident with the breathing mode of the shell,
for our resonator at pressures less than 1 MPa, this ratio is
less than 105,

FIG. 1. Cross section of resonator shell (not to scale) showing orientation
of vent, transducers, and scam. The inner diameter of the shell is 12.7 cm
and the shell thickness is 1.24 cm. The two parts of the shell are held togeth-
er by bolts, which are not shown.
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Il. EXPERIMENTS
A. A prototype resonator

The data reported below were all taken with the resona-
tor sketched in Fig. 1. This resonator was assembled from
two hemispheres. The hemispheres were milled from cylin-
drical stock of aluminum 6061. (In an earlier publication,?
this resonator was incorrectly described as being made from
aluminum 2024.) The nominal inner diameter is 12.7 cm
and the nominal wall thickness is 1.24 cm. Conventional
mechanical metrology just following the machining of the
resonator parts showed that the resonator had an average
inside diameter of 12.6975 + 0.0025 cm.?® The deviations
from sphericity of each hemisphere were about 0.0005 ¢m, a
tolerance which is much finer than required for accurate
measurements. The hemispheres differed in average diame-
ter by 0.0042 cm. In several years of use before the experi-
mental work reported here was carried out, the resonator
was disassembled and re-assembled many times, and addi-
tional minor machining was carried out. No recent direct
measurements of the sphere shape have been made. The step
where the hemispheres meet was intended to insure that they
remain coaxial within 0.0025 cm when they are bolted to-
gether. The mating surfaces on the step were lapped and the
interior surfaces were polished with 3600 paper prior to
assembly.

The homemade source transducer is sketched in Fig. 2.
It fitted snugly in a 0.3-cm-diam hole through the resonator
shell. The active surface was approximately flush with the
interior surface of the shell. This transducer was driven with
150-V rms ac and no dc bias. Thus it operated as a “square
law” device generating an acoustic signal at double the fre-
quency of the electrical excitation. This strategy insured that
the electrical crosstalk between the transmitter and receiver
was negligible. The small mass of the vibrating aluminized
mylar minimized mechanical crosstalk between the trans-
mitter and the receiver.

L~ Mylar

FIG. 2. Schematic diagram of
source transducer. The trans-
ducer is 0.35 cm in diameter and
1.7 cm long.

efion
Heat Shrink
Tubing

150 Voits RMS

263 J. Acoust. Soc. Am., Vol. 79, No. 2, February 1986

The detector was a commercially manufactured electret
microphone with a built-in FET amplifier. A porous shield
was removed from the front of this small (0.62-cm-diam by
0.50 cm long), inexpensive (less than $5) device. The detec-
tor was then pressed into the machined hole in the shell (see
Fig. 1). A duct (0.079-cm-diam and 0.64 cm long) led from
the detector to the interior of the shell. This duct acts as the
acoustic inductance of an unintended Helmholtz resonator.
The acoustic capacitance of this resonator was the small vol-
ume within the aluminum case of the microphone in front of
the electret disk. The frequency of this resonator is near 3.1
kHz (in air) and has a Q of about 3. Unfortunately, this
resonance is close to the lowest radially symmetric mode of
oscillation of the gas within the spherical shell, and perturbs
the gas resonance significantly. '

The FET in the detector was biased witha 1.5-V battery.
The resulting 1-mW dissipation does not produce a signifi-
cant temperature gradient in the sheil.

The source transducer approximates a point source. The
detector transducer is deliberately placed at 90° with respect
to the source; thus its efficiency for detecting the symmetry- -
forbidden (n,5) = (3,1) resonance is greatly reduced in
comparison with its efficiency for detecting the nearby, radi-
ally symmetric (0,2) resonance.

The vent hole through the resonator's shell was divided
into two sections, as illustrated in Fig. 1. The inner section
was 0.078 cm in diameter and 0.64 cm long. The outer sec-
tion was 0.32 cm in diameter and 0.64 cm long. If a single,
straight hole had been used, its resonance (considered as an
open organ pipe) would fall quite close to the (0,5) reso-
nance of the gas-filled shell. The perturbation produced by
such a vent on the (0,5) resonance would be difficult to
calculate to the desired accuracy. We have previously ob-
served that such organ-pipe resonances appear to drive shell
motion, leading to spurious coupling of the source and the
detector.”

No effort was made to make the resonator gastight. In-
stead, it was enclosed in a pressure vessel which also func-
tioned as the innermost stage of a multistage thermostat.
Details of the thermostat have been published elsewhere.2
All the data were taken at temperatures within 5 mK of
296.310 K. Small corrections were made to reduce all data to
this temperature.

In addition to the 1-liter aluminum resonator just de-
scribed, we have extensive experience with a 1/8-liter brass
resonator. No new phenomena were encountered with the
smaller resonator.

B. Gas properties

We have used a variety of gases in these resonators.
They include argon, neon, helium, ethylene, propane, and
the refrigerants bromotrifluoromethane (R13B1) and 1,1
difluoroethane (R152a). For this paper, our argon data are
the most relevant. The argon which we used was stated to be
99.9999% pure by the manufacturer. The pressure vessel
was pumped and flushed extensively; however, it was not
baked out. Speed of sound measurements at pressures down
to 10kPa (not discussed here) suggest that a volatile impuri-
ty (such as water vapor) degassed from the interior of the
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pressure vessel until it reached a partial pressure on the order
of 1 Pa. Such an impurity will not have a major effect on the
data discussed here.

The properties of argon are summarized in Table ITL
The viscosity was obtained from the accurate measurements
of Kestin et al.?% The thermal conductivity K was obtained
from the viscosity 7 by using the Eucken equation

K/(Cyn) = (97 —5)/(47), (78)
where ¥ is the ratio of the specific heats. The thermal con-
ductivity determined in this way is consistent with less accu-
rate direct measurements.”” The density was obtained from
our pressure measurements through the virial equation. Our
+ expression for the virial coefficients B(T) is based on the
model fit to argon data by Sengers, Klein, and Gal-
lagher.?®? The pressure dependence of the speed of sound
was written as a truncated Taylor series:

c (TP =yRT/M + A, (T) P+ A,(T) P2.  (79)
The coefficient 4, was obtained from the thermodynamic
relation
dB(T)

dT

4,(D) =§(2.Bm +2(r=DT

r—1’ zd’Bm)
+ ” T )
Analytic expressions for the derivatives in Eq. (80) were
obtained from the work of Gallagher and Klein?®; the polyn-
omial representation in Table II1 is a fit to their results. For
A,, we used the value 5.45% 10~"" m?/s?/MPa?, which best
fits our data and which is consistent with the direct measure-
ments of the speed of sound made by El-Hakeem™ at pres-
sures up to 7 MPa where the influence of 4, is much greater.
QOur experiences with propane have led us to discuss
precondensation phenomena elsewhere.'?> We remark that
the refrigerant R 152a is particularly convenient for studying
resonators at low frequencies. It has a small value (0.14) for
¥ — 1 and rapid intramolecular relaxation leading to very
high Q’s. (At0.1 MPs, the @ ’s of the 15 lowest radially sym-
metric modes all exceed 10 000.)

(80)

C. Spectrum of resonances

When the frequency of the source is swept slowly, the
amplitude of the detected signal reveals the spectrum of re-
sonances discussed by Rayleigh®' (see Fig. 3). When the
shell is considered to be a perfect, rigid, insulating sphere
and the viscosity and the thermal conductivity of the gas are
neglected, the resonance frequencies are equal to
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FIG. 3. Spectrum showing frequencies and relative amplitudes of the 40
lowest frequency modes in argon near 0.1 MPaand 296 K. The O,sand 1,5
modes which are studied in this paper are labeled just above the abscissa.

cz,./(2ma). We recall that n denotes the order of the spheri-
cal Bessel function in Eq. (6) and s labels the roots z,, in
ascending order. Figure 3 displays the spectrum observed
with the shell filled with argon near 0.1 MPa. The (0,5) and
(1,s) modes which we studied in greatest detail are labeled
just above the abscissa. Their eigenvalues and frequencies
are listed in Table IV.

D. The dominant perturbations

Here, we review the dominant perturbations to the spec-
trum of resonances just described. These perturbations are
needed to understand our data.

The resonator shell has both a high thermal diffusivity
and a high heat capacity per unit volume compared with
those of the gas. The adiabatic sound wave in the gas be-
comes an isothermal wave near the shell. This perturbs the .
resonance frequencies by

Afi+ig _ —1+i (y— D,/ () iy
f 2 1—n(n+1)/22,

where D, is the thermal diffusivity of the gas, which is equal
to the thermal conductivity divided by the constant pressure
heat capacity per unit volume.

TABLE IV. Eigenvalues and resonance frequencizs at 296 K, P=0.

s z, Hz Hz

TABLE 11, Properties of argon. b = fa i i

1 0.000 000 2.081 576 0 1673

M =0.039 947 6 kg/mole 2 4.493 409 5.940 370 3611 4774

Ay = (2.724 — 1.834/T* — 0.685/T **) X 10~ m*/s*/MPa 3 1725252 9.205 840 6208 7398

A, =5.45X10~"" m%/s*/MPa? 4 10904 122 12.404 445 8763 9969

- _MP/(RT) 5 14.066 194 15.579 236 11 304 12520

1+BP/(RD) 6 17220755  18.742 646 13839 15062

B = (0.3454 — 4.3607/T* — 0.1270/T **) X 10~* m*/mole 7 20371303  21.8%9697 16 371 1759

7= [2.1001 4 1.7482 (T* — 1) + 0.0020P */T*] X 10~5Pas 8 23519453  25.052825 18 901 20133

T*=T/(273.15K) 9 26660543 28203 361 21425 22 665

P* =P /(0.1 MPa) 10 29811599 31325092 23958 25196
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For our resonator, Eq. (81) is approximately

Af +ig, _226x1074(—-1+ HDAP*
f 1—n(n+1)/2, )

(Here we have chosen to measure frequency in units of £
and pressure in units of 0.1 MPa; thus f* = £/3611 Hz and
P*=P/0.1 MPa.)

For the nonradial modes of indices (n,5) with n > 0, the
boundary condition that the tangential component of the
acoustic velocity vanish at the shell leads to a perturbation
which depends upon the viscous diffusivity, D, =7 / p:

(82)

Af+ig, _ —14in(n+ 1){D,/(nf) (83)
f 2a Z —nn+1)

which, for our prototype resonator, can also be expressed in
terms of P* and /* as

Af,+ig,  276X107*( — 1+ Dn(n+ 1)/JP*f*

f Z, —n(n+1)

(84)

The contribution to the half-width resulting from bulk dissi-
pation throughout the volume of the resonator is given by
Eq. (39). For our conditions, this is equal to

Gou/S=3.6X 1075 */P* (85)

The effects of shell motion on the acoustic modes can be
described most easily by considering the n =0 and n =1
cases separately. For n =0 and at low frequencies, the
acoustic pressure tends to stretch the shell, and the shell
response is governed by an elastic stiffness. At higher fre-
quencies, the inertial reactance of the shell grows. The stiff-
ness and inertial reactances are equal at the breathing reso-
nance of the shell near 20.2 kHz. The scale of the
corresponding perturbations can be estimated from the thin-
shell limit of Eqs. (49)-(54):

Afda — (Pcz). ﬂ/’l
f (PP 2— (c/og )2y

where a is the shell’s radius, 4 is the shell thickness, and the
subseripts “sh” and *“g" refer to the shell and the gas, respec-
tively. For our prototype resonator, the somewhat more ac-
curate expression based on the isolated mode approximation
leads to

Afw _ —50x10-°P*
f 1 — (f/20.2kHz)?’

which predicts a divergent perturbation at the 20.2-kHz
breathing mode resonance of the empty shell,

Entirely different phenomena occur at low frequencies
with the n = 1 modes. Because the acoustic pressure is pro-
portional to ¥,,, (8,4), the gas exerts a net transverse force
on the shell which excites translational motion. Thereis little
deformation of the shell at low frequencies. The main effect
is inertial. In practice, the frequency correction for shell mo-
tion must be calculated numerically.'® At low frequencies,
however, the approximate resuit given as Eq. (57) can be
interpreted as a “reduced mass” correction.

(86)

(87)
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E. Data aquisition and analysis

In order to measure the frequencies fy, and half-widths
gy of the radially symmetric modes with sufficient resolu-
tion, the following procedure was adopted. First, f, and g,
were estimated from rough measurements. Then, the drive
transducer was stepped through 11 synthesized, discrete fre-
quencies starting at fy, — gy and increasing in increments of
gx/5 until £, + g, was reached. At each frequency, the in-
phase voltage « and the quadrature voltage v produced by
the detector were measured with a tracking lock-in amplifi-
er, scanner, and digital voltmeter, all operating under con-
trol of a microcomputer. Then, the sign of the frequency
increment was reversed and the voltages were measured
again as the frequency was reduced in steps back to its origi-
nal value. The 11 frequencies and 44 voltages were fitted by a
function of the theoretically predicted form [Eq. (75)] us-
ing the efficient algorithm previously described.*? For radi-
ally symmetric modes, the sum in Eq. (75) is replaced by a
single term representing the radial mode under study. A
small number of terms were used in the sum when studying
nonradial modes. The fit determines values of the complex
resonance frequencies F,, = fy + igy, the complex ampli-
tudes A, (this allows for undetermined phase shifts in the

_ source—detector path), and the complex “background” pa-

rameters B and C allow for the influence of the tails of all of
the resonances other than the particular ones under study. In
almost every case, all of the measured voltages fit Eq. (75)
with a precision of better than 0.1% of the maximum vol-
tage. It follows that f}, is determined by the fit with a preci-

1.0

001 3614 3616

Frequency (HZ)
FIG. 4. Top: In-phase (solid curve) and quadrature (dashed curve) voi-
tages from the detector as a function of frequency near the (0,2) resonance
in argon at 0.4032 MPa and 296.309 K. Bottom: Measured voltages minus
calculated voltages [Eq. (75) ] with the fitted parameters fy, = 3613.9970
Hz, g,; = 0.4275 Hz, A = 0.7535 — 0.5831i, B = 0.0048 + 0.0068/, and
€ = 0.0001 + 0.0001i. Data were taken at intervals of 0.07 Hz, first from
the lowest ta the highest frequency and then back to the lowest frequency.
Separate deviation plots for the upward and downward frequency sweeps
show the effects of drifts in the lock-in amplifier.
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sion of 0.1% of gy or typically 10~ of f,. This precisionis a
factor of five greater than that required to measure the gas
constant to 1 part in 10°,

An important check of the entire data acquisition sys-
tem and the numerical methods used to fit Eq. (75) to the
data was made when the resonator was filled with propane at
287.5 K and 0.52 MPa. Under these conditions, the (0,2)
mode occurs at 2568 Hz and has a half-width of 0.0526 Hz.
We excited this mode, turned off the excitation, and mea-
sured the detected voltage as a function of time during the
“ring down.” The value of g, , determined by fitting an expo-
nential form to the decay curve differed from the value deter-
mined by cw methods by only 0.0004 Hz, or 1.6 X 1077f, .

It is of some interest to demonstrate that the resonances
do indeed have the theoretically predicted form [Eq. (75)]
over a wider range of frequencies and with greater precision
than that required to measure f,,. Figure 4 is such a demon-
stration. Voltages were measured near the (0,2) resonance
at 100 frequencies spanning the range + 8g,. All of the data
fit the theoretical form within 0.08%; the rms deviation is
0.013%. To this extent, the resonator does behave like our
theoretical model. Nevertheless, the deviations from the fit
systematically exceed the noise. We believe these small de-
viations result from small phase drifts within the lock-in am-

1.0 T T T T

Amplitude

0.02+

Amplitude Deviation
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e
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0.001f
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o
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4778 4780
Frequency (Hz)

FI1G. 5. Top: In-phase (solid curve) and quadrature (dashed curve) vol-
tages from the detector as a function of frequency near the (1,2) resonance
in argon at 0.4032 MPa and 296.309 K. Middle: Measured voltages minus
two-resonance trial function. Note that the deviations are systematic al-
though the trial function has twelve parameters [eight parameters specify
resonances at 4777.63 and 4779.38 Hz, and four specify the constant and
linear background terms in Eq. (75)]. Bottom: Measured voltages minus
fitted function. The fitted function has sixteen parameters [twelve param-
eters specify resonances at 4777.693, 4777.903, and 4779.351 Hz with half-
widths of 0.550, 0.546, and 0.555 Hz. The remaining four parameters spe-
cify Band Cin Eq. (75)].

4776
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plifier. (0.03° would be sufficient.) In future work this hy-
pothesis could be tested using ac-bridge techniques as an
alternative to a lock-in amplifier. Other possible contribu-
tions to the deviations could arise from very small tempera-
ture shifts (0.1 mK) or instabilities in the transducers dur-
ing the 20 min needed to acquire the data.

It is necessary to pause at each frequency prior to a vol-
tage measurement for a time which is a multiple of the
slowest relaxation time of the measurement system. This
may be either 1/gy, or the post-detection time constant of
the lock-in amplifier, or the settling time of the frequency
tracking circuitry of the lock-in amplifier. In practice, the
time required to dwell at all 22 steps is several minutes. A
small drift in the gas temperature during this interval will
not affect the measurement of f,, very much; however, it
would lead to serious errors in the measurement of g, if we
did not compensate for it by the practice of taking data step-
ping up and down in frequency.

In order to measure the frequencies and half-widths of
the triply degenerate (1,5) modes, substantially more data
arerequired than we routinely used to study the nondegener-
ate (0,s5) modes. Figure 5 displays a typical set of measure-
ments near the (1,2) modes. Again, data have been taken at
100 discrete frequencies. The data stepping up and down in
frequency have been averaged for clarity. A casual inspec-
tion of the top of Fig. 5 suggests that the (1,2) mode is split
into two components, one near 4477.6 Hz and one near
4479.3 Hz. The middle frame of Fig. 5 shows the deviations
which result when a vector sum of two resonance termsand a
complex (linear) background is fit to the data. This function
is obviously unsatisfactory although it has 12 parameters
(four for each resonance term and four for the background)
which were adjusted to best fit the data in the sense of least
squares. The lower frame of Fig. 5 shows that a satisfactory
fit can be obtained when the 16 parameters required to repre-
sent the vector sum of three resonance terms and a complex

0 0.5 1

Pressure (MPa}

FIG. 6. Measured (dots) and calculated (curves) half-widths of three reso-
nances as a function of pressure.
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linear background are used to fit the data. The rms deviation
of this fit (0.021% ) is comparable to that obtained by fitting
data for the (0,2) mode under similar conditions. Thus data
of this quality and quantity can be used to resolve all three
components of the nearly degenerate (1,2) modes. Our abi-
lity to do so depends upon having phase sensitive detection
and upon the coincidence that all three components have
roughly the same amplitude when they are studied with our
transducer configuration. ( The amplitudes are in the ratio
1.7:5.0:3.2)

F. The resonance half-widths

Our data concerning resonance half-widths provide an
important indicator of our understanding of gas-filled
spherical resonators because these data can be compared to
theory using thermal conductivity data and viscosity data
derived from nonacoustic measurements. There are no un-
known parameters which can be adjusted to improve the
agreement between the data and the theory.

As an example, Fig. 6 compares the measured and the
calculated half-widths for the (0,2), (0,6), and (0,10)
modes at various pressures. The calculation for the half-
widths includes the effect of the thermal boundary layer
between the gas and the shell and the effect of bulk dissipa-
tion.
The measured half-widths always exceeded the half-
widths calculated from the sum of Eqs. (81) and (39) asone
would expect if there were other loss mechanisms. The ex-
cess half-widths are shown in Fig. 7. We have chosen to scale
this half-width excess by the measured resonance frequen-
cies to facilitate later comparison with frequency differences
at a level of parts per million.

From Fig. 7, it is clear that the measured half-widths of
the first five radially symmetric modes exceed the calculated
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FIG. 7. Excess half-widths of (0,5) resonances (scaled by 10°/frequency).
Ag = measured g,, minus calculated g.
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half-widths by less than 10 parts per million of the resonance
frequency. In general, the excess grows as the pressure is
increased and as the frequency is increased towards the
shell’s breathing resonance at 20.2 kHz between the (0,8)
and (0,9) modes. Both of these trends are consistent with the
idea that much of the excess half-width results from dissipa-
tion associated with the elastic response of the shell to the
acoustic pressure. Friction in the joint between the hemi-
spheres is a possible site for dissipation. The excess half-
width for the (0,2) modeshows a different trend. We suspect
this is a result of the proximity of the (0,2) mode to the
Helmholtz resonance associated with the detector trans-
ducer and the duct connecting it to the interior of the shell.

In Fig. 8, the excess half-widths for the (1,5) modes are
shown. The calculation for these modes includes the addi-
tional contribution to the half-width given by Eq. (83). The
excess half-widths of most of the (1,s) modes are small and
they increase very slightly with pressure. The excess half-
widths for the (1,1) and (1,9) modes are both very large and
very pressure dependent. These modes are expected to cou-
plestrongly to shell resonances which have the same symme-
try and frequency as the gas motion. It is interesting to note
that the frequency of the (1,8) mode is nearly coincident
with the predicted frequency of the breathing mode of the
shell; however, the coupling is not expected to be strong be-
cause they differ in symmetry. In agreement with this idea,
there is only a small pressure-dependent excess half-width
for the (1,8) mode. We were unable to measure the excess
half-widths for the (1,5) modes above 0.4 MPa because the
detected signal was too weak to reliably resolve the three
components of this mode.
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FIG. B. Excess half-widths of 1,5 resonances (scaled by 10°/frequency).
For each (1,5) resonance, Ag is obtained by subtracting the calculated half-
widths from the average of the measured half-widths of the three compo-

nents.
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FIG. 9. Measured resonance frequencies minus calculated frequencies
(scaled by 10%/frequency) for (0,5) modes. Here, the calculation includes
the effect of the thermal boundary layer and holes in the resonator; how-
ever, the calculation omits the effect of shell motion. The linear dependence
of A f/ fon pressure is a result of shell motion. The slopes depend upon the
proximity of the gas resonances to the shell breathing resonance near 20.2
kHz.

In summary, almost all the resonance half-width data
can be accurately explained by a model which includes the
viscothermal boundary layer and the dissipation within the
bulk of the gas. When a gas resonance happens to fall near a
shell resonance, a large, pressure-dependent excess half-
width is observed.

G. The resonance frequencies and shell response

The Introduction emphasized that all of the resonance
frequencies could be predicted if two parameters ¢,/ (V) '/?
and A4, were fit to one mode at two pressures and if our
theoretical model were complete. In this section, we shall
illustrate the extent to which this is true when the model
includes the effects of the viscothermal boundary layer [ Eqgs.
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FIG. 10. Measured resonance frequencies minus calculated frequencies
(scaled by 10%/frequency) for the three components of the (1,2) and (1,6)
resonances. Here, the calculation includes the effect of the viscous and ther-
mal boundary layers; however, neither the effects of shell motion nor the
effects of the holes are included.
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of frequency. The points are the average slopes of the curves in Fig. 9. The
curve is calculated for an isotropic seamless shell using the theory of elasti-
city and the elastic constants tabulated for aluminum (see Table V). The
idealized shell has a breathing resonance near 20.2 kHz.

(81) and (83)] and the value of A4, obtained from other
experiments. We shall see that most of the differences
between this simple model and the data are attributable to
the nonzero admittance of the 1.24-cm-thick aluminum
shell.

The parameter ¢,/ (¥,)"/* is chosen to be 8135.350/s to
best fit the first few (0,s) modes. This value is used consis-
tently throughout the remainder of this paper. For the (0, s)
modes, we have also included in the model some very small
effects resulting from the vent hole and the transducer duct
[Eqgs. (59)-(64)]. These effects cannot be included for the
(1, s) modes because the orientations of the symmetry axes
of the nearly degenerate submodes with respect to the vent
and the duct have not been determined.

Figure 9 displays the deviations of all of the (0, s) data
from the model without shell-admittance effects. The nearly
linear dependence of the deviations on pressure is exactly
what one would expect for an admittance effect [Eq. (87)]
because the speed of sound in argon at 296.31 K is a very
weak function of pressure and the density of the argon is
almost exactly proportional to pressure. The mode closest to
the breathing resonance of the shell, the (0,9) mode, shows
the largest deviations (as much as 0.08% at 1 MPa). The
(0,9) data also depart from a linear pressure dependence.

Figure 10 displays the deviations of the frequency data
for the (1,2) and (1,6) modes. The linear pressure depen-
dence again demonstrates the effect of the shell admittance.

TABLE V. Properties of the aluminum shell.

a=0.0634932(1 —4.7X107"P*)m
h=0.0124 m

Pan = 2700 kg/m?

Cp = 6420 m/s
o =0.355
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The data for other (1,5) modes are similar.

In Fig. 11, we have plotted the average slopes of each of
the deviation curves in Fig. 9. These slopes are compared
with a calculation of the shell admittance based on elasticity
theory [Eqs. (49)-(54)] and the properties of aluminum
summarized in Table V. Thus the comparison is on an abso-
lute basis. The slopes of the low-frequency (0,2), (0,3), and
(0,4) modes lie very close to the calculated curve. The slopes
for modes which are close to the calculated breathing reso-
nance deviate substantially from the calculation. These are
the same modes for which we measured very large excess
half-widths.

Figures 7, 9, and 11, taken together, suggest that under
radially symmetric excitation, the shell behaves like an oscil-
lator with a resonance near 20.2 kHz, as predicted. How-

differ for the various (1,1) modes, depending on the direc-
tion of the average gas motion. The data are consistent witha
moderate stiffness effect which introduces some asymmetry;
the major effect, however, is the inertial effect given by Eq.
(57).

We carried out a few primitive experiments to directly
measure the shell’s resonances in air. A loudspeaker was
used as a source and a phonograph needle in contact with the
shell was used as a detector. The exact theory of elasticity
predicts, for an aluminum, isotropic, spherical shell with the
dimensions of our resonator, numerous resonances within
the frequency range of our experiments. There are three de-
generate resonances at zero frequency (and three more near
24.5 kHz), five degenerate resonances at 8.5 kHz, seven de-
generate resonances at 11.2 kHz, nine degenerate resonances

ever, this oscillator has large losses for which we have no
quantitative model.

In Fig. 12, we have plotted the average slopes of the
frequency deviations with pressure for each of the (1, s)
modes including those shown in Fig. 10. These slopes are
also compared on an absolute basis with the calculation of
the shell response given by Eq. (54) with numerical calcula-
tions of S, (k,,a) as described in Ref. 18. Again, the agree-
ment is quite good except very near the shell’s resonance at
24.5 kHz. The data for the three (1,1) modes are shown in
the inset along with a single point representing the (1,2)
modes. The data are consistent with the extraordinarily
large effect which an inertial reactance is expected to have on
the lowest-frequency modes. The splitting of the three (1,1)
modes may be related to asymmetric coupling to the Helm-
holtz resonance of the detector duct. Another possibility is
asymmetric mechanical support of the resonator. A modi-
fied form of Eq. (57) which includes the effects of support
stiffness can easily be derived.!® The effective stiffness of the
supports will differ for shell motion in the horizontal and
vertical directions. Thus the effects of support stiffness will
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FIG. 12. Elastic response of the shell to excitation with symmetry of
Y, (6,¢) as a function of frequency. The points are the average slopes of
curves such as those shown in Fig. 10. The curve s calculated for an isotrop-
ic, seamless shell using the theory of elasticity and the elastic constants tabu-
lated for aluminum. The idealized shell has ¥,,, resonances at 0 and 24.5

kHz.
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at 14.2 kHz, eleven degenerate resonances at 18.2 kHz, thir-
teen degenerate resonances at 23.0 kHz, and the nondegen-
erate breathing resonance at 20.2 kHz. Our crude experi-
ments detected sharp resonances (100 < Q < 1000) at 7.69,
8.07, 8.13, 8.50, 10.67, 10.72, 11.18, 13.80, 13.91, 13.97,
16.87, 17.39, 17.47, and 17.95 kHz. The loss factors 1/Q of
these resonances are consistent with published data for
losses in aluminum.?*** We would not expect to be able to
detect all of the resonances with our relatively crude method
of excitation and detection. We speculate that the observed
resonances differ somewhat from the predicted ones because
of the shell’s asymmetric construction and method of sup-
port. '
In these crude experiments, we did not detect the
breathing resonance near the 20.2-kHz or the 24.5-kHz re-
sonances. The large losses and frequency shifts near the
breathing resonance that are evident in Figs. 7 and 9 have
magnitudes that are roughly consistent with a value of @, in
Eq. (55) that is on the order of 10. If the breathing mode of
the shell were really this lossy, it is plausible that we would
not detect it in our crude experiment. We have, however, no
explanation why the bending modes of the shell would have
losses so much lower than those of the breathing mode.
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FIG. 13. Effects of the vent hole, the detector cavity, and the duct coupling
the detector to the resonator’s interior calculated using the model described
in the text, for P =0.1 MPaand 7'= 296 K.
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H. The vent hole and the duct

The shell admittance effects we have just considered
vanish as the pressure is reduced. At low pressures, we ex-
pect that the effects of geometrical imperfections will re-
main. We shall now consider those which have an influence
On our measurements.

In Fig. 13, we have dlsplayed the calculated perturba-
tions (for P = 0.1 MPa) to be added to f; and gy, resulting
from the vent and the duct leading to the detector transducer
[Eqs. (59)-(64)]. The duct is terminated by a cavity whose
volume is 22 mm?>. The vent is terminated by a radiation
boundary condition.

The very large pertubation at the lowest frequencies is
the result of the acoustic admittance of the open vent. This
perturbation is most important for the (1,1) mode; however,
the (1,1) mode interacts so strongly with the shell motion
that we had no chance of detecting the much smaller vent
and duct perturbation, The Helmholtz resonance near 3 kHz
is also prominent in Fig. 13. We have commented that its
effect on excess half-width may have been seen. Its effect on
the frequency is also noticeable and has been included in
Figs. 15 and 17 below. The small peaks in Ag near 21 kHz are
associated with the organ pipe resonances of the duct and
vent. They fall between the (1,8) and the (0,9) modes of the
gasinthe spherical shell. As the pressure is raised, the peaks
in Ag become larger and narrower and they shift towards
higher frequencies; however, if our model is roughly correct,
these peaks are never big enough to ex(flam the differences
between the data for the (0,9) mode and theory.

In Fig. 14, we provide a striking experimental test of
these perturbation calculations using data from an earlier
configuration of the same resonator. The half-widths of the
(0,5) resonances were measured at 0.1 MPa before and after
drilling an extra, oversized vent hole through the shell. This
0.16-cm-diam vent produced a large increase in g, 5; how-
ever it did not noticeably affect the half-widths of the other
(0,s) modes. This is exactly the expected result because this
0.62-cm-long vent happens to be resonant {as an open organ
pipe) at the same frequency as the (0,5) mode.

T T I
Argon
501~ 295 T
0.1 MPa
i ﬂ »
hole 108 |- E
o —e—a PR —
1 ] 1
0 10 000 20 000

Frequency (Hz)

FIG. 14. Excess half-width resuiting from drilling an oversized (0.16-cm-
diam and 1.27-cm-long) vent hold through the shell.
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1. The importance of the nondegenerate modes

We now illustrate the importance of the nondegenerate
modes for making accurate measurements. We shall ex-
trapolate the (0,s) and (1,5) frequencies to zero pressure.
The nondegenerate (0,s) frequencies show two orders of
magnitude greater consistency than the resolved, nearly de-
generate (1,5) frequencies.

In Fig. 15, we display the results of extrapolating the
(0,s) frequencies to zero pressure after accounting for the
viscothermal boundary layer. Separate calculations show
the effects of including and omitting the vent and the duct
perturbations. It is remarkable that the extrapolations for
the six modes (0,3) through (0,8) have an average of
(1.4 + 1.8) X 10~° when the effects of the duct and the vent
are ignored. (The quoted error is the rms deviation from the
mean. ) This extraordinarily high degree of internal consis-
tency is a clear illustration of the fact that these resonances
are not affected by the shape perturbations which we know
are about 300 parts in 10°.

Figure 15 also shows that the duct perturbs the (0,2)
mode by a relatively large amount which is not satisfactorily
predicted by our model. For this reason, the (0,2) mode was
omitted from the averages quoted above. For the six modes
(0,3) through (0,8), the effects of including the vent and
duct  perturbations changes the average to
(1.5422)x107°.

Our criterion for choice of the parameter ¢,/ ( V) /* was
the requirement that the average extrapolated A f/ f for the
first seven (0,s) modes be near zero. The scatter in these
seven points in Fig. 15 is not instrumental noise. If the mea-
surements were repeated, the same results would occur.
Thus one can also say that these zero-pressure frequencies
are inconsistent with each other and that 2 partsin 10°is the
approximate size of the rms inconsistency in A f/f. The

‘30 wio duct and vent ll
e (0,8
3 |0 (1,S)averaged | 25455
< -— duct and vent
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FIG. 15. Mcasured zero-pressure ies minus calculated frequencies
for the (0,s) (solid symbols) and (1,s) (open symbols) modes. The sym-
bols represent the zero pressure intercepts of straight lines fitted to data
such as those in Figs. 9and 10. The intercept for the (0,9) modeat 21.4 kHz
is 254 parts in 10° above the predicted value. The (0,9) mode is close to the
resonances in the vent hole and coupling duct.
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large A £/ f for the (0,9) mode may mean that the data do
not reach low enough pressures toignore the breathing reso-
nance of the shell.

In Fig. 16, we display the results of extrapolating the
(1,5) frequencies to zero pressure after accounting for the
viscothermal boundary layer. The extrapolated frequencies
span a range of 500 parts in 10° about the frequencies that
would be expected for a perfectly spherical resonator. The
curves in Fig. 16 represent Eqs. (68)—(69). The two param-
eters in these equations (&, and €, ) characterizing deviations
from sphericity were fit to the data shown. Their values are
reasonable in light of the known machining tolerances.

For each triply-degenerate (1,5) mode, the lowest order
of boundary shape perturbation theory?* predicts that the
average of the three components’ zero-pressure frequencies
is equal to the zero-pressure frequency for a geometrically
perfect spherical resonator. We have computed these aver-
ages for the seven ( 1,s) modes from (1,2) through (1,8) and
compared them with the frequencies predicted by our mod-
el. The zero-pressure frequencies differ from our model by
(5.2 4+ 1.8) X 1075, Thus the (0,s) and (1,s) families of
modes differ by only (3.8 + 2.5) X 107%.

From this discussion, the experimentalist is forced to
conclude that if he wishes to make really accurate speed of
sound measurements with a resonator, he has two options:
(1) use the nondegenerate, radially symmetric modes, or
(2) measure the frequency of each of the components of a
degenerate mode and use their average. Obviously the first
option is less demanding.

IIl. THEORY AND EXPERIMENT: A FINAL COMPARISON

Up to this point, the comparison of experiment and the-
ory has been structured to test or illustrate particular aspects

300 i
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FIG. 16. Measured zero-pressure frequencies minus calculated frequencies
for the (1,5) modes. The solid symbols represent the zero pressure inter-
cepts of straight lines fitted to data such as those displayed in Fig. 10. The
curves are obtained from Eqs. (68) and (69) with the parameters
€= 31.5%10"*and €, = 3.1 X 10~*. The open symbols are averages of the
three zero-pressure frequencies for each (1,5) set of modes. These averages
are also platted in Fig. 15.
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FIG. 17. Measured frequencies minus calculated frequencies for six of the
(0,5) modes as functions of pressure. The calculation includes the effects of
the thermal boundary layer, the holes in the shell, and the dynamic response
of the shell.

of the theory. Now we include all aspects at once to indicate
the extent to which experiment and theory agree.

In Fig. 17, we plot the differences between the frequen-
cies measured for the (0,s) modes and our most complete
model. This model includes the viscothermal boundary layer
[Eqgs. (81) and (83) ], shell elasticity [Eqs. (49)—(54) and
Table V], the pressure dependence of the speed of sound and
the transport properties (Table III), the perturbations from
the vent and duct, and a small pressure dependence of the
shell’s radius resulting from hydrostatic compression.

Figure 17 shows that all the data for 6 of the 9 (0,s)
modes we studied fall within + 18 parts in 10° of this model
in the range 0.1-1.0 MPa. Most of the data for the (0,7),
(0,8), and (0,9) modes fall off this plot. This strongly sug-
gests that the admittance of the prototype resonator near its
breathing mode is poorly modeled.

IV. ANTICIPATED IMPROVEMENTS

‘We are now constructing a spherical resonator out of
stainless steel. The higher density of steel will lead to pertur-
bations due to shell elasticity which are a factor of three
smaller at low frequencies. The hemispheres have been weld-
ed together. We hope this will reduce losses associated with
the shell’s motion still further. The breathing frequency will
not be very different. Both the source and the detector trans-
ducers will be high-impedance devices mounted flush with
the interior surface of the shell. This will eliminate the duct
and its associated Helmholtz resonance. Finally, during
measurements of the gas resonances, the vent will be
plugged. We anticipate that reducing these perturbations
will farther improve the agreement between theory and ex-
periment.
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