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Measurements of the resonance frequencies of the acoustic modes and of the microwave modes of
a single cavity can determine u/c, the ratio of the speed of sound of a gas to the speed of light.
Such measurements with a monatomic gas would determine the thermodynamic temperature T with
unprecedented accuracy. By judicious choices of cavity geometry and resonance modes, u /c can be
measured to part-per-million accuracy using cavities whose geometry is known only to parts per
thousand. These techniques can also be applied to measurements of the universal gas constant R.
A measurement of R would also require an accurate determination of the average atomic mass of

the monatomic gas.

The application of microwave cavity resonators to
metrology was developed by Essen and his colleagues be-
ginning in 1945.! Essen’s 1950 measurement of the speed
of light, carried out with a variable-length cylindrical cav-
ity, had an estimated accuracy of 3 parts in 10°% and
differs from the recently defined value (299 792 458 m/s)
by only 1 part in 107. Stroke refined the microwave cavi-
ty technique still further, claiming higher precision;’> how-
ever the microwave techniques were superseded by even
more precise techniques for measuring the speed of light.>

The application of acoustic cavity techniques to metrol-
ogy is now under active development. Recently Col-
clough, Quinn, and Chandler* measured the universal gas
constant R with an accuracy of 25 parts per million. Col-
clough et al. also used a variable-length cylindrical cavity
whose length changes were defined and measured accu-
rately within 2 parts per million.

In 1979 Moldover, Waxman, and Greenspan® suggested
an alternative approach to acoustic metrology. They not-
ed that the resonance frequencies of the radially sym-
metric modes of a gas-filled spherical cavity were not af-
fected by volume-preserving deformations of the
resonator’s shell in the first order of perturbation theory,
and that these modes are not subject to viscous damping
at the cavity wall. They recommended that these modes
be used for accurate speed of sound measurements. A
stable resonator of known volume is required; however,
the modest requirements for sphericity can be attained in
ordinary machine shop practice. The volume of the cavi-
ty can be determined at ambient temperatures by filling it
with a known mass of mercury. Subsequent work (see
Fig. 1) with prototype spherical resonators has demon-
strated that the internal consistency of speed of sound
measurements can approach a few parts per million and
that further improvements can be anticipated.

There are no radially symmetric microwave modes.
Thus, although Moldover et al.’ noted that microwave
resonances are useful for monitoring thermal expansion of
a resonator, they were not aware that microwaves can be
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used in a straightforward way to determine the volume of
an imperfect spherical cavity. The purpose of this article
is to point out that the average frequency of a nonradial
microwave (or acoustic) multiplet is also independent of
volume-preserving deformations of the cavity, in the first
order of perturbation theory. Thus the volume of an im-
perfect cavity can indeed be determined if the nearly de-
generate frequencies of a microwave multiplet are
resolved sufficiently well that their average frequency can
be measured accurately.

If microwaves are used to measure the volume of a
spherical acoustic resonator, an acoustic expériment with
the same resonator can determine, in effect, u /c, the ratio
of the speed of sound to the speed of light. The state of
the art of acoustic measurements in spherical resonators
suggests that this ratio can be measured with an accuracy
approaching a few parts per million. Thus, if the average
atomic mass of a monatomic gas can be determined with
comparable accuracy, it should be possible to improve
measurements of R and of the thermodynamic tempera-
ture without filling a resonator with mercury and weight-
ing it.

In the remainder of this article, we describe recent ex-
perimental and theoretical results on the nonradial acous-
tic modes of a spherical cavity, and then derive a corre-
sponding theoretical result for the electromagnetic modes.
Finally, we speculate on the implications of further ad-
vances in the state of the art.

Consider a geometrically perfect spherical cavity of ra-
dius a. If the boundary is a rigid, thermal insulator, the
acoustic modes can be described by the eigenfunctions

Wlnm(r)zjl(klnr)YIm(9’¢) ’ (1)

where j;(z) is the Ith-order spherical Bessel function and
Y,, is a spherical harmonic. The eigenfrequencies f},,,
are determined by the condition that the normal deriva-
tive of ¥ vanish on the boundary; they can be expressed as
finm =uzy, /(2ma), where zj, is the nth root of the equa-

3341 ©1986 The American Physical Society



3342

tion j;(z)=0. The eigenfrequencies are independent of the
index m, thus the modes with indices {I/n} are (2/+1)-
fold degenerate. Let the boundary of the cavity be
smoothly deformed so that

r=a[l—ef(6,4)], (2)

where € is a small parameter, and f(6,¢) is a function
which describes the perturbed shape. Mehl’ showed
theoretically that although the individual members of a
multiplet generally have shape perturbations of order e,
the mean frequency shift of the 2/+1 modes of a multi-
plet is of order € for volume-preserving deformations.
Moldover et al.® showed experimentally, with a practical
resonator, that the mean frequency of the / =1 triplets is
no more sensitive to geometric perturbations than are the
frequencies of the radial (I =0) modes. The experimental
results are summarized in Fig. 1, which shows fractional
deviations of the ratio # /a from a nominal value. Each
solid symbol represents the limit of u /a as the pressure of
the argon gas used approaches zero for measurements
made with a single radial (/ =0) mode. Each open symbol
represents a similar limit based on measurements of the
average frequency of a degenerate triplet (/ =1) set of
modes. The mean of the (0,3) through (0,8) values of
A(u/a)/(u/a) is (1.4+1.8)X 1078 (The quoted error is
the rms deviation from the mean.) The correspondin
mean of the (1,2) through (1,8) modes is (5.2+1.8) X 107°.
Thus the two families of modes have mean values of
A(u /a) which differ by less than 4 parts in 10°. We now
argue that comparable measurements with the electromag-
netic modes can determine the ratio ¢ /a, so that the ratio
u /c can be obtained from the two sets of data.

Consider the electromagnetic modes of a cavity resona-
tor with perfectly conducting walls. The electric and
magnetic fields can be expressed as linear combinations of
eigenfunctions Ey and By, both solutions of the vector

03 04 05 06 0,7 0,8

kel

10
O

“ o0 O
i o
= o * © o©
= [ ]
3 or PY
=
2
< o

-10 | | 1 |

0 10000 20000

Frequency (Hz)

FIG. 1. Fractional deviations (from a nominal value) of the
zero-pressure limiting values of u /a. The data were determined
from acoustic resonances in a one-liter resonator filled with ar-
gon near 296 K (Ref. 6). Data from the radially symmetric
modes (0, n) are shown as solid circles. The average data from
the triply degenerate (1, n) modes are shown as open circles.
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Helmholtz equation

(V24+k3)Ey(r)=0. 3)
The fields are related by

ikyEy=VXBy , @

—ikyBy=VXEy .

The boundary condition on the cavity wall S is
nXEy=0, (5)

which, together with the second of Egs. (4), implies that
the normal component of By vanishes on S.

For a geometrically perfect sphere of radius a, there are
two classes of solutions. The eigenfunctions are

Bfnm zjl(klitr)xlm ’ (6)
for the electric modes (denoted by the superscript e), and
B}, =i /kp)V X Liskijpr) X ] (7

for the magnetic modes (denoted by the superscript b).
Here the vector spherical harmonics X, are defined by?

I'XVYlm
WET

These functions are tangential to the radial unit vector n,.
The magnetic mode eigenfunction in Eq. (7) has both ra-
dial and tangential components given by

V X Likr) X, 1=1in, VI +1)j;(kr) Yy,

Xim(6,4)= (®)

+gikr)n, XX}, 1/, 9)

where
gi(z)= %[zj,(z)]:jl(z)-f-zj,’(z) . (10)

The frequencies of the unperturbed modes are
& =ckg, /(2m), where kpa is any solution of j;(kfa)=0,
and kj,a is any solution of g;(kj,a)=0. As in the acous-
tic case, the unperturbed eigenfrequencies form (2/+1)-
fold degenerate multiplets.

For the perturbed problem, the fields E and B are solu-
tions of the vector Helmholtz equation (3) which satisfy
the boundary condition (5) on a perturbed surface S. The
changes in the eigenfrequencies can be calculated with
boundary-shape perturbation theory.”!° Let S be given by
Eq. (2), with €>0 and f(6,¢4)>0, so that the perturbed
surface lies on or within the unperturbed surface.

The boundary condition (5) is equivalent to Feshbach’s
boundary condition III A

nXx(VXB). (11)

For this case Feshbach’s Eq. (5.11) gives the frequency
shift correct to second order:

L2y Dy LS | Dwa |
fa kKiPy  am'Cn) PyPukitki—kip)

The perturbation matrix and normalization parameters in
Eq. (12) are given by

(12)
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Dyy = [((nXBj)-VxBydS , (13)
PN=fV|BN|2dV. (14)

In order to apply Eq. (12) to the degenerate electromag-
netic modes, new linear combinations of the eigenfunc-
tions must be chosen so that each submatrix describing a
set of degenerate modes is diagonal. For a first-order cal-
culation, the normalization integral can be taken over the
unperturbed resonator volume V,. We thus consider a
normalized submatrix

S
where
2P =a’[i(kfa) PL1—1(+ 1) /(kga)?] ,
2Ph =a’[jj(kba)]? .

Let the eigenvalues of A" be A;”", where —I<s<l.
From Eq. (12) the first-order frequency shifts are given by

AfS/fo=A". (17

Calculations of the frequency shifts for specific modes
will be considered elsewhere.!! Here we focus on the aver-
age shift for the set of 2/+ 1 modes with indices oln. The

(16)

I
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mean fractional shift is given by
! !
QI+DAEY /fa= 3 A= 3 Al . (18)

s=-1 m=-—1]

The second equality holds because the sum of the eigen-
values is equal to the trace of the matrix, which is invari-
ant under the diagonalizing transformation.

The matrix elements (13) can be simplified by using Eq.
(4) for the curl of By, leading to

Dyy =iky fsan;,-ENds
=iky [ (B} XEy)dS
=—iky [, V-(Biy XEy)dV . (19

The second equality follows from a vector identity, and
the third follows from the use of the divergence theorem.
The volume integral is over AV, the region between the
unperturbed and perturbed boundaries. Further simplifi-
cation by expansion and the use of Egs. (4) leads to

Dyy = fAV(k},B;rBN—kMkNEX,-EN)dV ) (20)

The diagonal form of Eq. (20) appears in the frequently
quoted “perturbation formula.”!?

With the eigenfunctions given by Egs. (4), (6), and (7),
the diagonal matrix elements are

Dyy = iszAVdV[[jl(kr)]Z[ | Xim [ 2= 1L+ 1) | Yy /(kr) | 2] —[ gy kr) /CKP) ) | X |2} 1)

where the plus sign is for the electric modes and the minus sign is for the magnetic modes, and k stands for the ap-
propriate unperturbed eigenvalue kj;. The diagonal matrix elements must be summed over m in taking the trace in Eq.
(18). According to the addition theorem for spherical harmonics, the sums of both | Y |2 and | X}, |2 equal
(21 +1)/(47). The mean frequency shift thus simplifies to

(Afin) 1

=% VdV{ [j,(kr)]z[l—l(l+1)/(kr)l]—[gl(kr)/(kr)]z} . (22)

St 4P VA

Near the boundary, the functions in Eq. (22) differ from
their values at r =a only by terms of order €. The in-
tegration volume in Eq. (22) is itself of order €. Thus, for
a first-order calculation, the fields can be approximated
by ji(kr)~jj;(ka) and g;(kr)=0 for the electric modes and
Jitkr)=~0 and g;(kr)=kaj;(ka) for the magnetic modes.
These cancel similar terms in the normalization constants,
leading to

(Afin) €

o [dare6,4)+0(e) . (23)
The right-hand side of this expression is equal to one-
third of the fractional decrease of the volume of the reso-
nator. Thus the average frequency shift of each multiplet
will be the same up to order € for all perturbations which
have the same change in volume, including the perturba-
tion for which f(6,4)=1, i.e., a uniform contraction. It
follows that the average frequency shift of each multiplet
is zero in order € for all perturbations which do not
change the volume. This is the same result that was

demonstrated for acoustic modes earlier.’

For spherical resonators, the main contribution to the
resonance linewidths is the thermal boundary layer effect
for the acoustic modes, and the analogous skin-depth ef-
fect for electromagnetic modes. The electromagnetic
modes in an aluminum cavity are typically 10 times
sharper than the radially symmetric acoustic modes when
the resonator is filled with argon at normal temperature
and pressure. We thus expect that experimental tech-
niques similar to those that we have used for acoustic
measurements will suffice to measure electromagnetic res-
onance frequencies with an accuracy of one part in 107
Combined with the acoustic measurements, the ratio u /c
can be determined to an accuracy limited by the acoustic
measurement to a few parts in 10°.

To measure u /c to 1 part in 107 using resonator tech-
niques, one would have to know the ratio of the cavity
volume sensed by the acoustic field to the cavity volume
sensed by the electromagnetic field to 3 parts in 107. This
puts stringent requirements on the mechanical and chemi-
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cal nature of the resonator’s surfaces (e.g., oxide layers
would have to be very thin or very well characterized).
Furthermore, one would have to characterize the devia-
tions from Ohm’s law in the microwave penetration layer
at the level of 1% as well as the deviations from the
Navier-Stokes equations and their boundary conditions at
the level of 0.1 /A. (Here y is the mean free path and A
is the wavelength of sound.) It is not likely that these ad-
vances will occur in the near future.

The possibility of accurately measuring u /c leads us to
speculate on the practicality of replacing the defined tem-
perature of the triple point of water by a defined value of
the gas constant R. At the present time, the Kelvin is de-
fined as 1/273.16 of the temperature of the triple point of
water (T,=273.16 K). Comparisons of triple-point cells'?
indicate that this definition can be realized with a pre-
cision on the order of 50 uK (~2X1077T,). At present,
the universal gas constant R is measured at the tempera-
ture T, by, for example, measuring the speed of sound of
a monatomic gas and using the relation R =3u>M /(5T,),
where M is the atomic mass of the gas. In order to com-
pete with the present scheme, the temperature of a gas-
filled resonator would have to be definable to a precision
exceeding that of reproducibility of the realized tempera-
ture of the triple point of water. One might imagine do-
ing this by measuring the acoustic and microwave reso-
nance frequencies of a resonator filled with a gas of
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known atomic mass, for example, “He. An accuracy
within 1 part in 10’ would be required to compete with
the existing practice. (As mentioned in the preceding
paragraph, it is not likely that such accuracy will be
achieved in the near future.) If such a great advance in
the state of the art were achieved, one could then consider
defining the gas constant to be a particular value Ry. The
temperature of a resonator would then be determined
from the relation T=3u?M /(5R,) and T, would lose its
special status. (Of course triple-point cells would continue
to be extremely useful devices for the calibration of prac-
tical thermometers.) Such a change in metrology would
in some ways be analogous to the 1983 agreement to de-
fine the speed of light and to abandon the special status of
the wavelength of the 2p,o-5ds transition of Kr.%¢ Of
course, a competitor to this conceptually attractive
scheme would be further refinement of the definition of
the triple point of water and its realization, perhaps by
specifying more precisely the isotopic composition of the
water used, the size and shape of the ice crystals, dis-
solved gases, etc.

ACKNOWLEDGMENT

One of us (M.R.M.) would like to acknowledge stimu-
lating conversations with Dr. J. Lyons and Dr. G. Sinnot
concerning the implications of improved measurements of
u/c.

IK. D. Froome and L. Essen, The Velocity of Light and Radio
Waves (Academic, New York, 1969).

2G. W. Stroke, Appl. Opt. 2, 481 (1963).

3For a review, see E. R. Cohen and B. N. Taylor, J. Phys.
Chem. Ref. Data 2, 663 (1973).

4A. R. Colclough, T. J. Quinn, and T. R. D. Chandler, Proc. R.
Soc. London, Ser. A 368, 125 (1979); see also the review by A.
R. Colclough, in Precision Measurements and Fundamental
Constants II, Natl. Bur. Stand. (U.S.) Spec. Publ. No. 617,
edited by B. N. Taylor and W. D. Phillips (U.S. GPO,
Washington, D.C., 1984), pp. 263—275.

SM. R. Moldover, M. Waxman, and M. Greenspan, High
Temp.—High Pressures 11, 75 (1979).

6M. R. Moldover, J. B. Mehl, and M. Greenspan, J. Acoust.

Soc. Am. 79, 253 (1986).

7). B. Mehl, J. Acoust. Soc. Am. 79, 278 (1986).

8J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975), Chap. 16.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), pp. 999—1064.

10H. Feshbach, Phys. Rev. 65, 307 (1944).

11J. B. Mehl and M. R. Moldover (unpublished).

12See, e.g., J. C. Slater, Microwave Electronics (Van Nostrand,
New York, 1950), Chap. 4.

13G. T. Furukawa and W. R. Bigge, in Temperature, its Mea-
surement and Control in Science and Industry, edited by J. F.
Schooley (AIP, New York, 1982), pp. 291—297.



