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Abstract. A theoretical and experimental study is reported of the advantages and limitations of 
using the acoustic radial resonances in a spherical cavity to obtain thermophysical property data in 
dilute gases. The velocity of sound in dilute gases (0· 1-0· 5 MPa) is now measured with an 
accuracy of O · 02% and a precision of O · 001 %, and a significant increase in accuracy is anticipated. 
The measurements are at sufficiently low frequencies (3-15 kHz) to be of value in determining 
thermophysical properties in many polyatomic gases. 

1 Introduction 
In the recent past, very accurate velocity-of-sound measurements in dilute gases have 
been used to obtain information on a variety of important thermophysical properties. 
We mention three examples: (i) the equations of state of methane, helium, and 
ethylene have been derived (Gammon 1976, 1979; Gammon and Douslin 1976); 
(ii) the thermodynamic temperature scale has been established in the 4- 20 K range 
(Plumb and Cataland 1966; Cataland and Plumb 1973); and (iii) the gas constant, 
R, has been redetermined by a measurement of the velocity of sound in argon at the 
temperature of the triple point of water (Quinn et al 1976). In each of these 
examples a cylindrical acoustic interferometer was used for the measurement. 

The primary purpose of this paper is to suggest that spherical resonators, 
particularly when used in radial modes, have many practical advantages in comparison 
with cylindrical interferometers for obtaining thermophysical properties from 
velocity-of-sound measurements in dilute gases. Perhaps the most important of these 
are: 
(i) The resonance frequencies of the radial modes in a sphere are sensitive to 
geometrical imperfections in second order, thus for practical purposes only the 
resonator's volume needs to be known. 
(ii) The correction to the measured resonant frequencies resulting from the gas
resonator wall interactions can be an order of magnitude smaller in a spherical 
resonator than in a cylindrical interferometer. 
(iii) The very high Qs of the radial modes in a sphere (2200-6100 in our data) allow 
the experimenter to choose among many types of transducers and alternative schemes 
for coupling them to the resonator. We have chosen to place transducers outside the 
resonator. This choice may be particularly convenient for velocity-of-sound 
measurements at high temperatures. The resonator can be at a high temperature 
while the transducers are near ambient temperature. 

Our ultimate objective is to develop practical spherical resonators and theoretical 
models to describe them to a level of accuracy where they can be used for the most 
demanding applications such as an acoustic determination of the absolute temperature 
or an acoustic measurement of the gas constant. If this is achieved, it is likely that 
measurements using spherical resonators will routinely provide useful information 
about the thermal conductivity and viscosity of gases, in addition to the specific-heat 

,i Present address: 12 Granville Drive, Silver Spring, Md 20901, USA. 



76 M R Moldover, M Waxman, M Greenspan 

and equation-of-state data which are more commonly derived from velocity-of-sound 
measurements. 

In this paper we will report the progress in the development of our theoretical 
model for spherical resonators and some preliminary experimental results. The latter 
include a measurement of the velocity of sound in argon near ambient temperature 
and pressure with an accuracy of about O · 02% and a precision of ±0·001 % (standard 
deviation). We expect that both the accuracy and precision can be improved. We 
have also measured the first derivative of the dependence of the velocity of sound on 
pressure in argon. Our preliminary value for this derivative is close to that obtained 
by Rowlinson and Tildesley (1977) in a review of literature data for argon. Our 
measurements of the losses in the resonator suggest that, at the current state of 
development, measurements of the thermal diffusivity with an accuracy of a few 
percent should be possible. 

We will conclude this introductory section by briefly contrasting the design and 
measurement problems encountered upon using spherical resonators with those 
encountered with conventional interferometers. In section 2 we will discuss our 
progress in modeling a spherical resonator. Section 3 is concerned with experimental 
techniques and section 4 describes our preliminary results. 

The sources of systematic error in cylindrical interferometers have been reviewed by 
Colclough (1973 ). He concluded that in high-frequency interferometers (i.e. inter
ferometers in which many wavelengths fit within the resonant cavity) a problem of 
unresolved modes may exist. To interpret the observed resonances accurately, one 
needs to know the distribution of energy among the various modes that fall within a 
single resonance. To obtain this knowledge, one would have to know many details of 
the complex transducer motion, because the transducer which excites the resonant 
cavity usually comprises one of the end walls of the cylindrical resonator. In low
frequency interferometers this problem does not exist. Every mode is resolved. On 
the other hand at low frequencies the Kirchhoff-Helmholtz correction to the 
measured resonance frequencies becomes substantial. This correction, which arises 
from the interaction of the gas and the interferometer wall, must be measured with 
care and/or calculated from knowledge of both the thermal and the viscous 
diffusivities of the gas. In the recent gas-constant measurement in a 3 cm diameter 
resonator, this correction (in argon at O · 1 MPa, 273 K, and at 5 · 6 kHz) was typically 
0· 16% (Quinn et al 1976). 

Spherical resonators, as we are using them, correspond to low-frequency fixed
path-length interferometers. Every mode of interest is resolved. Our resonator is 
12 · 7 cm in diameter and has its lowest radial resonance at 3 · 6 kHz (in argon at 
0 · I MPa and 273 K). The correction to this resonance frequency which corresponds 
to the Kirchhoff-Helmholtz correction is O · 022%. This correction is much smaller 
than the Kirchhoff-Helmholtz correction for three reasons: (i) viscous damping at 
the resonator walls does not occur for the radial modes in a sphere (or cylinder); 
(ii) the surface-to-volume ratio is smaller in a sphere than in any other cavity of the 
same volume; and (iii) the acoustic energy density is highest in the center of the 
sphere. 

In variable-path interferometers, one end of the cylindrical cavity is moved and 
the displacement required to achieve successive resonances is measured. Although 
this procedure inay require that somewhat complicated mechanical, thermal, and 
optical design problems be solved, it does result in an absolute measurement of the 
wavelength of the standing wave of sound. This wavelength measurement may be 
independent of the temperature and gas pressure in the interferometer, and is 
independent of the acoustic properties of the transducer which forms one wall of 
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the interferometer. Such a displacement measurement is impractical with a spherical 
resonator. As an alternative, one measures the volume of the spherical cavity and 
then determines its changes with pressure and temperature in auxiliary experiments. 
Our preliminary experiments suggest that the study of microwave resonances in the 
spherical cavity is a practical means for accomplishing this. 

The elastic response of the resonator walls may be calculated more accurately for 
a spherical resonator than for a cylindrical interferometer. The spherical resonator 
does not have the ends and corners which complicate the analysis of vibrations of a 
cylinder. 

2 Progress in the theoretical modeling of spherical acoustic resonators 
In order to predict the behavior of our resonator we have first considered the very 
simple approximation used by Rayleigh (1894 ). He calculated the resonance 
frequencies for a fluid bounded by a perfectly rigid spherical wall. This first 
approximation neglects effects arising from the temperature wave associated with the 
sound wave as well as attenuation within the fluid. The most important improvement 
to Rayleigh's model in the case of radial oscillations in dilute gases comes from the 
consideration of the temperature wave. We have also considered the much smaller 
effects on the resonator behavior which result from attenuation within the gas, small 
departures from a spherical shape, and the elastic response of the resonator walls. 
In future work we plan to consider the effects of small holes used to bring sound 
into and out of the resonator. We have not made a detailed study of nonradial 
acoustic modes in a sphere. Such modes would cause the resonator walls to undergo 
complex vibrations which we are not prepared to consider at the present time. We 
will now outline our results to date. 

In the first approximation discussed by Rayleigh, the velocity, c, potential obeys a 
wave equation. When the wave equation is separated in spherical coordinates, the 
radial dependence of the velocity potential has the form inU3r) in which in are the 
various spherical Bessel functions (n = 0, 1, 2, ... ) and (3 = w/c. The condition that 
the normal velocity vanish at the resonator wall, that is at r = a, is 

djn({3a) = O 
da · (I) 

We denote the successive roots of equation (I) by the integer Q = 1, 2, 3, ... . Thus 
(n, Q) denotes the Qth root of equation ( 1) for the nth spherical Bessel function. In 
figure 1 we have indicated the location of the lowest 26 roots of equation ( 1) as well 
as the acoustic response of our sphere in air at 23 °C (details of the measurements 
will be given below). The solutions to equation (I) for which n = 0 are purely radial 
modes. They are indicated with arrows in figure I. For these modes, equation (I) 
may be written in the form 

1 - (3a cot((3a) = 0. (2) 

To include the effects of the temperature changes associated with the sound wave 
we return to the Navier-Stokes equations and construct solutions which consist of 
the sum of two terms. Each one has the time dependence eiwt. The first wave 
(I-wave) is sound-like. It has a propagation constant with a small real part, cx, at the 
audio acoustic frequencies of interest: 

iw 
r1=cx+-. 

C 
(3) 
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The second_ wave (2-wave) is heat-like and has a propagation constant r2 whose square 
is purely imaginary: 

(4) 

here Dt is the thermal diffusivity and 'Y is the specific heat ratio cp/cv. If we were 
interested in vibrations that were not purely radial, we would have to introduce a 
shear wave at this point. For the radial modes a combination of the sound-like and 
heat-like waves is chosen such as to satisfy two boundary conditions at the cavity 
wall: (i) the velocity vanishes, and (ii) the temperature is continuous. The latter 
condition is essentially equivalent to the condition that the temperature is constant at 
the wall, because the product cpDi' for the metal wall is between I 03 and I 04 times 
the product for the gas (cp is the specific heat at constant pressure). The equation 
determining the propagation constant, analogous to equation (2), now becomes: 

w 2a('Y-l)(D1)v, i-1 
I - {3a cot(tkz) = - :- = ---(txz)2 • 

C2 IW 2Qw 
(5) 

The right-hand side of equation (5) is small compared to unity and has equal real and 
imaginary parts. Thus, to a good approximation, the values of (3 which satisfy (5) 
differ from the values of f3 which satisfy (2) by the addition of a small number which 
has equal real and imaginary parts. From these considerations we find resonant 
frequencies which are 

(6) 

where fo are the frequencies when the thermal wave is neglected, and Ow is the 
contribution to the Q of the resonances which results from the irreversible nature of 
the heat flow in the thermal wave near the wall. 

The frequency shift proportional to (2Qwt 1 is entirely analogous to the frequency 
shift which occurs in microwave cavities because of the nonzero resistivity of the 
cavity walls (Slater 1959). A damped electromagnetic wave pentrates the cavity 
wall. To the extent that Ohm's law is valid at microwave frequency in the wall, this 
damped wave has a propagation constant whose square is purely imaginary, in exact 
analogy with the thermal wave in the acoustic case. 

The 'classical' losses in the gas throughout the volume of the cavity make a 
contribution to the line width similar to that in a plane wave. For a monatomic gas 
this loss is given by 

I 2a w 
Oc = (3 = C2(1Dv+iDt) · (7) 

Here Dv is the viscous diffusivity obtained by dividing the viscosity by the density. 
This contribution to the loss plays a role in the acoustic cavity analogous to the role 
played by dielectric losses in microwave cavities. ln particular it leads to frequency 
shifts proportional to (!/ where the constant of proportionality will depend upon the 
manner in which the resonance is excited and detected. (For example the excitation 
might be such that the sound pressure at a point is independent of frequency or, 
alternatively, that the velocity at some point is independent of frequency.) For the 
cases we have examined Q~ 2 is much less than I o-6 ; hence this frequency shift may 
be neglected. On the other hand the classical losses will contribute an easily 
measured amount to the observed Q of the resonance. Again the analogy with 
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microwaves holds, and we expect: 

1 I I I 
----=-+-+---
Qmeasured Qc Qw Q,esidual ' 

where the term denoted by Q,esidual arises from other sources we have not yet 
considered, such as damping within the cavity wall, radiation of sound, etc. 
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(8) 

The walls of laboratory resonators are not perfectly rigid. We have made some 
preliminary estimates of the effects of the finite mechanical admittance of the walls 
of our aluminum resonator. These estimates suggest that, under the experimental 
conditions discussed below, the resonance frequencies will be shifted on the order of 
5-9 parts in 106 in argon at O· l MPa and O °C. This shift is proportional to the gas 
density. The shift becomes very large at frequencies near 20 kHz where the resonator 
wall itself has a breathing mode. 

We have considered the effect of geometrical imperfections on the frequencies of 
the radial modes. From the adiabatic principle, one may argue that small 
deformations of the resonator from a perfectly spherical shape will not change the 
resonance frequencies of the radial modes so long as the volume of the resonator is 
unchanged. A specific illustration of this idea occurs in the context of nuclear 
physics (Moszkowski 1955). There, it has been shown that the eigenvalues of the s 
states of a particle in a spheroidal box are quadratic functions of a parameter which 
is a measure of small deformations of a sphere into a spheroid while the volume is 
held constant. On this basis we expect that spherical resonators manufactured to 
machine shop tolerances will behave very nearly like a perfectly spherical resonator, 
at least for the radial modes. 

We plan to continue our work in modeling the effects of the elastic response of 
the resonator shell, and in the near future we hope to begin modeling the effects of 
alternative schemes of exciting and detecting sound within the resonator. 
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Figure 1. Top: Order and relative spacing of modes in a spherical resonator. Purely radial modes 
are denoted by arrows. Bottom: Measured response of a 12 · 7 cm diameter resonator filled with 
ambient air (response is at an arbitrary phase with respect to excitation). Exciting and detecting 
transducers are approximately point sources on the resonator wall, but 90° apart. 
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3 Experimental techniques 
In this section we will describe the progress we have made in adapting spherical 
resonators in various configurations to practical problems in metrology. This is a 
report of continuing work; therefore we expect many of the unresolved questions 
raised in this section to be answered by future experiments. 

All of our quantitative measurements were made with a single spherical resonator 
made from aluminum alloy 2024. The resonator was made in two halves which fit 
together with an interlocking step as sketched in figure 2. These halves were 
machined from cylindrical stock with a numerically controlled milling machine. 
When the halves were bolted together, the step insured that they were concentric. 
The halves were in contact only on the inner surface of the step. The aluminum 
shell is I · 21 cm thick and has an inside diameter of 12 · 700 cm. The sphere had 
four holes drilled through it. Two holes (3 · 5 mm diameter) 90° apart, as shown in 
figure 2, were used to introduce various sound transducers; two other holes (I· 6 mm 
diameter) were used to couple microwave signals into and out of the rescnator. 
These holes also allowed the gas under study to flow freely into and out of the 
resonator. 

The resonator was not sealed. Instead, it was supported within a larger heavy
walled cylindrical container which served as both a thermostat and a pressure vessel. 
This aluminum cylinder was insulated from an outer aluminum cylinder which also 
was thermostated. The outer cylinder was held within ±0 · 02 K of a set temperature 
by circulating fluid from a commercially manufactured thermostat-circulator. The 
temperature of the inner thermostat was regulated at about -! K above that of the 
outer thermostat. The control point on the inner cylinder was held at a constant 
temperature ( ±0 · 0005 K) for several days. A differential thermopile on the outer 
surface of the inner thermostat indicated the top of this thermostat was consistently 
0 · 002 K cooler than the bottom. A capsule platinum thermometer recently 
calibrated on IPTS-68 was thermally anchored to the resonator support inside this 
thermostat. 

We made three independent measurements of the average diameter of the 
resonator. Two measurements were mechanical in nature. They involved many 
measurements of the coordinates in space at which a probe contacted the interior 
surfaces of the hemispheres. These measurements were used to estimate radii for 
each half. Then the distances from the steps to the bottom of the hemispheres were 
measured. The resulting effective diameters (the diameter of a perfect sphere with the 
same volume as that enclosed by the aluminum shells) from these two measurements 
were 12·6985 cm and 12· 6954 cm. The third measurement of the average sphere 

Figure 2. Sketch of resonator. Capacitor microphone probes are inserted as shown at C. Ceramic 
microphones are used with an adapter as shown at M. 
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diameter was obtained from measurements of the six lowest microwave resonances 
within the cavity. These resonances fall in the range 2·0-4·6 GHz and have Qs 

which range from 17000-35 000. The observed Qs were scattered within 30% of 
those calculated from the DC resistivity of the aluminum alloy. Small corrections 
were applied to the measured frequencies for the dielectric constant of air and for 
the finite Qs of the resonances. The diameter of the spherical volume which would 
yield these frequencies is 12 · 6987 ± 0 · 00 IO cm. These microwave resonances ace 
not spherically symmetric; hence they are more sensitive to details of the resonator 
construction than are the radial acoustic modes. 
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Our best estimate for the effective diameter of the resonator is 12 · 6975 cm with 
an uncertainty of about O · 0025 cm or 2 parts in I 04 . This uncertainty is by far the 
largest one in our measurements of the velocity of sound. In the future, we will 
greatly reduce this uncertainty by first weighing the resonator in air and then weighing 
it when it is filled with a fluid of known density. 

We experimented with four different schemes for exciting the resonator: (i) small 
home-made transducers hung in the center of the resonator; (ii) commercial 
transducers coupled to a small tube leading to the center of the resonator; 
(iii) commercial capacitor microphones mounted (see figure 2) in the resonator wall 
so that the capacitor was flush with the inner surface of the resonator; and 
(iv) commercial ceramic microphones mounted (see figure 2) just outside the 
resonator. In this last case, tightly fitting adapters were used to fill most of the 
coupling holes. They ended flush with the inner surface of the resonator. The first 
two schemes have the advantage of exciting primarily the radial modes in an efficient 
way. With them, high-order radial resonances may be detected by another transducer 
at the resonator wall with very high signal-to-noise ratios. A version of scheme (ii) 
was used by Bancroft ( 1956) to overcome the interference he encountered between 
the lowest radial mode (0, 2) and the nearby nonradial mode (3, 1 ). Unfortunately, 
both these schemes require corrections to the resonant frequencies which we have 
found hard to estimate. Thus, although these schemes may be quite valuable for 
relative velocity-of-sound measurements, they may introduce systematic errors into 
absolute measurements. 

To implement the third scheme, we excited one capacitance microphone with a 
sinusoidal voltage of about 100 V rms. Because the microphone is a 'square-law' 
device and because we did not use the customary DC bias voltage, the sound 
generated is at twice the excitation frequency. We detected this sound with a 
second capacitance microphone used in the conventional manner with its own built 
in preamplifier. This approach has several practical advantages. Electric crosstalk 
between the transnitter and the receiver is not a problem since they are operating at 
different frequencies. Conventional, commercially available, lock-in amplifiers may 
be used to measure both the amplitude and the phase of the resonator response. 
The very wide, flat frequency resonse of the microphones does not 'pull' the cavity 
resonances. The capacitor microphones were placed so that the rigid back plate of 
the capacitor was flush with the inside wall of the resonator (see figure 2). This 
back plate has a high acoustic impedance as does the resonator wall itself, hence it 
should not change the resonator characteristics significantly. 

The small commercial capacitor microphones do have some limitations which 
prevent us from using them under a wide range of conditions. They are rather 
delicate, expensive, and are limited in their tolerance for temperature extremes. They 
also require a preamplifier to be located right at the microphone. Thus we were led 
to try scheme (iv). Here we used larger (2 · 4 cm diameter) piezoelectric ceramic 
microphones. These microphones are rugged and generate a very large signal. We 
used adapters with these microphones in the configuration denoted by M in figure ' 
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Small holes in the adapters (0· 6 mm diameter) were used to conduct sound into and 
out of the resonator. Much smaller holes could have been used. It also would have 
been possible to locate these transducers much further from the sphere. This 
flexibility might be quite valuable, for example, in the study of gases at high 
temperatures. 

The third transducer scheme described above was used to obtain the 'spectrum' 
shown in figure l. This spectrum was obtained with the resonator sitting on a table 
top in the laboratory air (approximately 22 °C, 60% relative humidity). A voltage
controlled oscillator was used to sweep the drive frequency from O to l O kHz in 
20 min. The response of the detector was amplified, phase detected at twice the 
drive frequency, and displayed on an x-y recorder. The lowest 26 modes of the 
sphere are identified on figure l. All these modes except the (9, l) and (5, 2) are 
clearly resolved. Most importantly, the lowest radial modes are resolved (the radial 
modes are indicated with arrows on figure l ). In order to emphasize this point, we 
show in figure 3 an expanded view of the resonator response near the (0, 2) and the 
(3, l) modes. The lower two curves in the figure represent the components of the 
output of the detecting transducer which are in phase with, and in quadrature with, 
the driving voltage. 

The signal near the (0, 2) mode is much larger than the signal near the (3, l) 
mode even though the latter is excited much more efficiently by our 'point source' 
transducer at the cavity wall. This is a consequence of the factthat we have chosen 
to place the detecting transducer 90° away from the exciting transducer, where the 
(3, 1) mode has a node. 

To date our quantitative studies of the spherical resonator have been confined to 
argon. We have used the fourth transducer scheme exclusively. The argon, used as 
supplied, is purported to be 99 · 9999% pure. 

In order to make precise measurements, data such as those shown in figure 3 were 
taken digitally. The in-phase and quadrature signals were measured with a digital 
voltmeter while the frequency was scanned with a synthesizer in steps of O · 1, 0 · 2, 
or O· 5 Hz in the vicinity of the resonance of interest. The measured voltages, V, 
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Figure 3. Bottom: In-phase and quadrature components of detector voltage as a function of 
excitation frequency (argon near NTP). Top: Deviations of bottom curves from fitted function. 
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were made to fit functions of the angular frequency, w, of the form: 

(9) 

Here V, A, and B all have two components, one associated with the response of the 
cavity in phase with the driving voltage and one associated with the response in 
quadrature to the driving voltage. The complex constant B includes a contribution 
to the lock-in output from electric crosstalk as well as a contribution from the 
acoustic response of the cavity associated with resonances far from the one or two 
of interest. The curves on the upper part of figure 3 show the residuals that remain 
after the data in the lower part of the figure are fitted to a (complex) sum of two 
resonances plus an additive constant. The deviations are about 1 % of the original 
signal and are primarily a consequence of the imperfect (and drifting) orthogonality 
of the two channels of the lock-in. 

In general, we restricted our data to within four or so line widths of the radial 
resonances and fitted each of them to a single resonance. For the (0, 3) and (0, 4) 
resonances we added a complex constant exactly as in equation (9). To describe the 
data near the (0, 4), (0, 5), and (0, 6) modes adequately we found it necessary to 
make Bin equation (9) a linear function of frequency. 

Because all the resonances we used had high Qs (2200-6100), it is a satisfactory 
approximation to take the real part of w 0 as the resonance frequency and the ratio 
of the real part of w 0 to twice the imaginary part of w 0 as the measured Q. 

The measured resonance frequencies were divided by the factor I - (2Qw)- 1 , where 
Qw was computed from the thermal conductivity of argon as calculated by Kestin 
et al (1972) and confirmed by the direct measurements of Guildner (1975). A 
further small correction (5 to 31 parts in 106 ), which is proportional to the gas 
density, was made for the shift in the resonance frequency arising from the finite 
mechanical admittance of the resonator walls. We have not yet verified that the 
spherical shell does indeed vibrate as we have modeled it. It is important to examine 
this in light of the anomalous attenuation we have encountered (see below) and in 
light of the importance of this correction at higher gas densities. It should be possible 
to measure the vibrations of the resonator walls with the aid of accelerometers. 

From each corrected measurement of a resonance frequency .f02 we calculated the 
square of the velocity of sound, c2 = (2mrf02 /cx02 ) 2 . Here cx02 is the (0, £) root of 
equation ( 1 ). These values of c2 are discussed in the next section. 

4 Results 
We have measured the velocity of sound in argon at 25·444 ± 0·002 °C and at 
pressures from O · 11 MPa to O · 44 MPa and at five frequencies ranging from 3 · 6 to 
13 · 9 kHz. All the data taken under these conditions may be described by a linear 
function of pressure: 

(10) 

We find c5 = 103 589 · 7 m2 s- 2 with a precision of± 1 · 6 m2 s-2 (standard deviation). 
This value is remarkably close to the value '}'RT/M = 103579 m2 s-2 for argon at 
298 · 594 K when 'Y is taken to be f The absolute accuracy of our measurement of 
c0 is expected to be identical with the absolute accuracy with which we know the 
average sphere diameter (2 parts in 104 ). Thus the absolute accuracy of c5 is 
expected to be 4 parts in 104 • Our measurement falls well within this range. This 
remains true even if the data are fitted with a quadratic function of P. 
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In figure 4 we have displayed the deviations between the measured values of c2 

and the linear function of pressure, equation ( l 0). It is important to note that the 
deviations do not depend systematically on the frequency of the sound used. This is 
an important confirmation of the applicability of our model for the resonator to the 
actual laboratory instrument. In separate experiments we verified that the resonance 
frequencies were independent of the amplitude of excitation. 

The coefficient A 1 in equation (10) is, in the limit of zero frequency, equal to a 
known function of B, the second virial coefficient which occurs in the density 
expansion of the equation of state. This function is: 

2-y( 2 dB 2 d2B) 
Ai= M B+3TdT+15T2 dT2 • (l l) 

Our value for A 1 is 4·60 ± 0·05 m 2 s-2 MPa- 1 , where the error quoted is a standard 
deviation from a least-squares fit. This value for A 1 agrees remarkably well with the 
range of values from 4·8 to 5·4 m2 s-2 MPa- 1 obtained by Rawlinson and Tildesley 
(1977) from an analysis of data from a variety of nonacoustic sources. They 
obtained values of A 1 from other thermodynamic data and independently from the 
interatomic potential of argon atoms (knowledge of the potential comes from 
transport properties and optical spectra of argon dimers). 

The primary errors in our measurement of A 1 are systematic. One source which 
can be estimated is the contamination of this 'second acoustic virial coefficient' 
measurement by the third acoustic virial coefficient. We have estimated the third 
acoustic virial coefficient, A 2 , of argon to be 0·5 m 2 s-2 MPa-2 from the precise 
velocity of sound measurements of El-Hakeem (l 963) which extend from l to 70 atm. 
If we tentatively adopt this value, A 2 = 0·5 m2 s- 2 Pa-2 and refit our measurements 
of c2 versus P to the function 

we find that A 1 decreases from 4·6 to 4·3 m 2 s- 2 Pa- 1 • Perhaps this change is a 
reasonable estimate of the systematic errors in A 1 • Of course, we could have 
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Figure 4. Fractional deviations of the square of the measured velocity of sound from a linear 
function of pressure (argon, 25·443 °C). 
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attempted to determine both A I and A 2 from our own data; however, it is well 
known that the extraction of accurate virial coefficients from equation-of-state data 
is a subtle problem requiring data over a wide range of pressure. We have here a 
correspondingly subtle problem. At the present time we choose not to commit 
ourselves to a best estimate of A 1 , because we expect to make more extensive 
measurements in the near future to clarify the situation. Nevertheless we would like 
to remark that this change, O· 3 m2 s- 2 Pa- 1 , in A I corresponds to a change of only 
0·36 cm 3 mol- 1 in the function of the virial coefficient in the brackets in equation 
(11 ). Thus we are indeed making accurate measurements of thermophysical 
properties by an acoustic experiment. 

We now comment briefly on the losses in the resonator and their application to 
transport property measurements. In the course of extracting the velocity of sound 
from data such as those shown in figure 3 we inevitably measure the Q of the 
resonances. If the model of our resonator truly reflected the behaviour of the 
laboratory instrument, the quantity Q~e1sictuaI defined in equation (8) would be zero. 
Furthermore, an accurate value of the thermal diffusivity could be determined from 
the measured Q. (Qw is proportional to /'12 while QC is proportional to r 1 . This 
frequency dependence allows a clear separation of the two. Under our conditions 
Qw!Qc varies from 5 to 60; thus Qw, which is proportional to D;', dominates.) 
In fact, the measured Q does approach the calculated Q in some cases. This is 
illustrated in figure 5 where we have displayed the values obtained for I 04 Q~e\ictuaI as 
a function of pressure at various frequencies. The (0, 2) resonance has a very 
consistent small residual loss whose average value corresponds to Q residual = 8 9 000 ± 
18 000. This is indeed a small fraction (0 · 03-0 · 04) of the measured loss. Thus it 
appears that it would indeed be possible to obtain D1 from such data. On the 
other hand, it is also clear from figure 5 that near 8 · 8 kHz there are anomalously 
high losses in our resonator. At this frequency the residual, or unexplained, loss 
corresponds to an average Q,esiduaI of 10 000 or nearly one-third of the total loss! 
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0 0 

I ·0 - 0 
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i 0 • ·~+ • 0 
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0 0·2 0·4 
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Figure 5. Q,esidual as a function of pressure at various frequencies. Note the large residual loss 
near 8-8 kHz. The average Qresidual at 3·6 kHz is 89000. The average Qresidual at 8·8 kHz is 
10000. 
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Until we have eliminated, or at least explained, this loss we cannot claim to be 
making accurate measurements of D1 • 

If, in fact, one can measure D1 using the radial modes, it should be possible to 
make at least relative measurements of Dv by measuring the losses in nonradial 
modes. 

5 Summary 
We have demonstrated that the velocity of sound and its pressure dependence can be 
determined with an accuracy of O · 02% in dilute gases by means of a spherical 
resonator. It is likely that the accuracy can be greatly improved with a relatively 
simple refinement in the measurement of the volume of the resonator. Because the 
transducers are outside the resonator and need not be moved, the present approach 
to accurate velocity-of-sound measurements should be applicable to very high and 
very low temperature conditions. It seems quite likely that the theory of the 
spherical resonator can be refined to obtain transport properties of gases from 
acoustic measurements. 
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