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Abstract. In 2016, Yasuda et al. presented a new multivariate encryp-
tion technique based on the Square and Rainbow primitives and utiliz-
ing the plus modifier that they called Square Rainbow Plus (SRP). The
scheme achieved a smaller blow-up factor between the plaintext space
and ciphertext space than most recent multivariate encryption propos-
als, but proved to be too aggressive and was completely broken by Perlner
et al. in 2017. The scheme suffered from the same MinRank weakness
that has allowed effective attacks on several notable big field multivariate
schemes: Hidden Field Equations (HFE), multi-HFE, HFE-, for example.

We propose a related new encryption scheme retaining the desirable
traits of SRP and patching its weaknesses. We call the scheme HFE
Rainbow Plus (HFERP) because it utilizes a similar construction as SRP
with an HFE primitive replacing the Square polynomial. The effect of
this substitution is to increase the Q-rank of the pubic key to such a
degree that the MinRank attack is impossible. HFERP still retains the
relatively small blow-up factor between the plaintext space and cipher-
text space, and is thus a candidate for secure multivariate encryption
without an essential doubling in size between plaintext and ciphertext.

Key words: Multivariate Cryptography, HFE, encryption, MinRank,
Q-rank

1 Introduction

Ever since the discovery of polynomial time algorithms for factoring and com-
puting discrete logarithms on a quantum computer by Peter Shor [1], creating
schemes that resist such developments has fallen upon the shoulders of today’s
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cryptographers. In recent years, quantum computing has made significant ad-
vances leading some experts to make more confident predictions that the post-
quantum world will soon be upon us, see, for example, [2].

There has also been an explosive development in public key technologies
relying on mathematics for which there is no known significant computational
advantage quantum computers possess. In particular, multivariate public key
cryptography (MPKC) produced numerous schemes for public key encryption
and digital signatures in the late 1990s. These schemes further fueled the de-
velopment of computational algebraic geometry, and seem to have inspired the
advancement of some of the symbolic algebra techniques we now apply to all ar-
eas of post-quantum cryptography, that is, cryptography designed with quantum
computers in mind.

With the development of such techniques, many multivariate schemes have
been cryptanalyzed and broken. Specifically, multivariate encryption seems to be
challenging. The purpose of this article is to confront this challenge, advancing
a new multivariate encryption scheme Hidden Field Equations Rainbow Plus
(HFERP), based on Square Rainbow Plus (SRP), see [3], developed to eradicate
the deficiencies of its predecessor.

1.1 Recent History

While there may be many trustworthy candidates for multivariate signatures,
such as Unbalanced Oil and Vinegar (UOV) [4], Rainbow [5], and Gui [6], de-
veloping multivariate schemes for encryption has been a bit of a struggle. While
some older ideas have have been reborn with better parameter sets due to the
advancement of the science, such as applying HFE-, see [7], to encryption, most
of the surviving multivariate encryption schemes are relatively young.

In the last few years, there have been a few new proposals for multivariate
encryption, mostly following the idea that it is easier to hide the structure of an
injective mapping into a large codomain than to hide the structure of a bijection,
as is needed for any encryption mapping into a codomain of the same size as
the domain. The ABC Simple Matrix encryption scheme of [8, 9] and ZHFE, see
[10] are examples of this idea. Most of these encryption ideas, both new and old,
have inspired recent surprising cryptanalyses that affect parameter selection or
outright break the scheme, see [11–15], for example.

Such a tale describes the life of SRP, see [3], the design of which aimed
to be very efficient and holds a comparably small blow up factor between the
plaintext and ciphertext sizes. The scheme also claimed security against attacks
efficient against the Square and Rainbow schemes by combining them into one.
Unfortunately, SRP is also the victim of a new cryptanalysis, see [16]. The attack
exploits the low Q-rank of the Square map, a vulnerability inherited by the public
key. A modified MinRank attack was able to pull apart the Square polynomials
from the Rainbow and Plus polynomials in the public key.
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1.2 Our Contribution

We present a new composite scheme in the manner of SRP by replacing the
weaker Square layer with an HFE polynomial of higher Q-rank and finding the
correct balance in the sizes of the HFE, Rainbow and Plus layers for efficiency
and security. We call our scheme HFERP. We further establish the complexity
of the relevant attack models: the algebraic attack, the MinRank attack, and the
invariant attack.

1.3 Organization

The paper is organized as follows. In the next section, we present isomorphisms
of polynomials and describe the structure of HFE and SRP. The subsequent
section reviews the Q-rank of ideals in polynomial rings and discusses invariant
properties of Q-rank and min-Q-rank. In section 4, we review more carefully
the previous cryptanalyses of HFE and SRP. We then present HFERP in the
next section. Section 6 discusses the complexity of all known relevant attacks on
HFERP. Our choice of parameters to optimize security and performance along
with experimental results are then presented in the following section. Finally,
we conclude discussing why a similar approach to SRP seems to produce such a
different technology in HFERP.

2 Big Field Schemes

HFE and SRP are members of a family of cryptosystems known as “big field”
schemes. This term is based on the system exploiting the vector space structure
of a degree n extension of K over a finite field Fq. Using core maps within the
extension field allows us to take advantage of Frobenius automorphisms x 7→ xq

for any function of the form f(x) = xq
i+qj , noting that φ−1 ◦ f ◦ φ is a vector-

valued quadratic function over Fq where φ : Fnq → K is an Fq-vector space
isomorphism. By observing that any vector-valued quadratic function on Fnq is
isomorphic to a sum of such monomials, it is clear that any quadratic function
f over K can be represented as a vector-valued function, F , over Fq.

This equivalence allows us to construct cryptosystems in conjunction with
the following concept, the isomorphisms of polynomials.

Definition 1 Two vector-valued multivariate polynomials F and G are said to
be isomorphic if there exist two affine maps T,U such that G = T ◦ F ◦ U .

The equivalence and isomorphism marry in a method commonly referred to
as the butterfly construction. Given a vector space isomorphism φ : Fnq → K and
an efficiently invertible map f : K→ K, we compose two affine transformations
T , U : Fnq → Fnq in order to obscure our choice of basis for the input and output.
This construction generates a vector-valued map P = T ◦φ−1◦f◦φ◦U = T ◦F ◦U ,
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where F = φ−1 ◦ f ◦ φ.

K
f // K

φ−1

��
Fnq

U // Fnq
F //

φ

OO

Fnq
T // Fnq

2.1 HFE

The Hidden Field Equation Scheme was first introduced by Patarin, see [17], as
an improvement on the well known C∗ construction of [18]. Patarin’s contribu-
tion was to use a general polynomial with degree bound D in place of the central
monomial map of C∗.

Explicitly, one chooses a quadratic map f : K→ K of the form:

f(x) =
∑
i≤j

qi+qj≤D

αi,jx
qi+qj +

∑
i

qi≤D

βix
qi + γ, (1)

where the coefficients αi,j , βi, γ ∈ K and the degree bound D is sufficiently low
for efficient inversion using the Berlekamp algorithm, see [19] .

The public key is computed as P = T ◦ F ◦U , where F = φ−1 ◦ f ◦ φ. Inver-
sion is accomplished by taking a ciphertext y = P (x), computing v = T−1(y),
solving φ(v) = f(u) for u via the Berlekamp algorithm and then recovering
x = U−1(φ−1(u)).

2.2 Rainbow

The Rainbow scheme is a generalization of Patarin’s UOV, see [4]. The key idea,
introduced by Ding, see [5], was constructing multiple layers of UOV.

Let F be a finite field with a degree n extension Fn. Let V = {1, 2, . . . , n}.
For a chosen u, let v1, . . . , vu be integers such that 0 < v1 < · · · < vu = n and
let Vl = {1, . . . , vl} for each l ∈ {1, . . . , u}. Note that |Vi| = vi.

Let oi = vi+1 − vi for each i ∈ {1, . . . , u − 1} and Oi = Si+1 − Si for each
i ∈ {1, . . . , u−1}. Define Pl to be the space generated by the span of polynomials
of the following form:

f(x1, . . . , xn) =
∑

i∈Ol,j∈Vl

αi,jxixj +
∑
i,j∈Vl

βi,jxixj +
∑
i∈Vl

γixi + η

One can refer to the previous constructions using the following terminology: O
is the collection of oil variables, V is the collection of vinegar variables, and a
polynomial f ∈ Pl is an l-th layer Oil and Vinegar polynomial.

The Rainbow map F : Fn → Fn−v1 is defined as (with x1, . . . , xn being
referred to as x̄ for convenience)

F (x̄) = (F̃1(x̄), . . . , F̃u−1(x̄)) = (F1((̄x), . . . , Fn−v1(x̄)
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where each F̃i consists of oi randomly chosen quadratic polynomials from Pi.
F is a Rainbow polynomial map with u− 1 layers. The public key is generated
in the usual fashion by applying two affine transformations, T and U , where
T : Fn−v1 → Fn−v1 and U : Fn → Fn: T ◦ F ◦ U

2.3 SRP

In Section 5, we present in detail the construction of our proposed scheme,
HFERP. For reference, we will include the Square Map definition as well as
method of inversion presented in the original SRP paper, see [3].

Instead of using the HFE core map described in section 5, SRP uses the
Squaring map where the Square component is defined as FS : Fn′q → Fdq (where

qd + 1 is divisible by 4) and it is the result of the following composition:

Fn
′

q
πd−→ Fdq

φ−→ K X 7→X2

−−−−−→ K φ−1

−−→ Fdq
Upon inversion step 3, the user would compute

R1,2 = ±X(qd+1)/4

and use it to find y = (y
(i)
1 , . . . , y

(i)
d ) = φ−1(Ri) ∈ Fdq . The choice of the Square

map was made because of the speed of inversion it provided when compared to
any other quadratic maps. Unfortunately, due to this choice, SRP was quickly
broken in [16] by isolating the squaring public polynomials and exploiting its
low Q-rank.

3 Q-Rank

The min-Q-rank of the public key is a critical quantity when analizing the secu-
rity of big field schemes within multivariate cryptography. For clarification, the
definition is as follows:

Definition 2 The Q-rank of any quadratic map f(x) on Fnq is the rank of the

quadratic form φ−1 ◦f ◦φ in K[X0, . . . , Xn−1] via the identification Xi = φ(x)q
i

.

Usually, the definition of the rank of a quadratic form is given as the mini-
mum number of variables required to express an equivalent quadratic form due
to quadratic form equivalences corresponding to matrix congruence. Note that
congruent matrices have the same rank. This same quantity is equal to the rank
of the matrix representations of the quadratic form, even in characteristic 2,
where the quadratics x2q

i

are additive, but not linear for q > 2.
Q-rank is invariant under one-sided isomorphisms f 7→ f ◦ U , but is not

invariant under isomorphisms of polynomials in general. The quantity that is
often meant by the term Q-rank, but more properly called min-Q-rank, is the
minimum Q-rank among all nonzero linear images of f . This min-Q-rank is
invariant under isomorphisms of polynomials and is the quantity relevant for
cryptanalysis.
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4 Previous Cryptanalysis of Relevant Schemes

SRP was a designed as a concatenation of two known multivariate schemes and a
scheme modifier. The first component was Square, see [20], which can be seen as a
degenerate version of HFE. The second component was oil-and-vinegar (OV) or,
more generally, Rainbow, see [21, 5]. The final component was the plus modifier,
first proposed in [22]. The algebraic properties of these schemes were intended to
complement their weaknesses when used in conjunction. This patchwork design
requires, however, a careful consideration of the relevant cryptanalyses within
all of these families.

The original oil-and-vinegar (OV) scheme, proposed in [21], was completely
broken in [23] by what we call the invariant method. Specifically, the balanced
OV scheme contains an equal number of oil variables, variables which only occur
linearly in the central map, and vinegar variables, which occur quadratically.
Thus, the differential of any central polynomial has the shape

Dfi =



a1,1 · · · a1,v a1,v+1 · · · a1,2v
...

. . .
...

...
. . .

...
a1,v · · · av,v av,v+1 · · · av,2v
a1,v+1 · · · av,v+1 0 · · · 0

...
. . .

...
...

. . .
...

a1,2v · · · av,2v 0 · · · 0


,

under an appropriate basis of F2v = V ⊕ O, where V is the subspace spanned
by the vinegar variables and O is the subspace spanned by the oil variables.

The invariant attack proceeds by computing the differential of random linear
combinations of the public polynomials until two full rank differentials, Df1 and
Df2, are produced. Then O is left invariant by Df−11 Df2 and is thus easily
recovered. A similar technique has been used in conjunction with rank attacks
to assault schemes with a similar structure whenever dim(V ) ≤ dim(O), see, in
particular, [11, 24, 13].

HFE and some of its modifications have been the target of effective crypt-
analyses utilizing the low Q-rank property of the central map. Each of these
cryptanalyses can be described as a big field MinRank attack, recovering a low
rank quadratic form over the extension E from which an isomorphism relating
the public key to an equivalent private key can be derived.

The earliest iteration of this technique is the well-known Kipnis-Shamir (KS)
attack of [25], also known by the name MinRank, due to the close relationship
between the attack and the MinRank problem in algebraic complexity theory,
see [26]. The KS-attack recovers a private key for HFE by exploiting the fact that
the low Q-rank of the central map is a property preserved by isomorphisms. Con-
sidering an odd characteristic instance of HFE. We may write the homogeneous
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quadratic part of the central map as

[
x xq · · · xqn−1

]


α0,0 α′0,1 · · · α′0,d−1 0 · · · 0

α′0,1 α1,1 · · · α′1,d−1 0 · · · 0
...

...
. . .

...
...

. . .
...

α′0,d−1 α
′
1,d−1 · · · αd−1,d−1 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0




x
xq

...

xq
n−1

 ,

where α′i,j = 1
2αi,j and d = dlogq(D)e. The KS-attack first interpolates an

univariate representation of the public key over E. This representation of the
public key is isomorphic to the central map of Q-rank bounded by the ceiling
of the logarithm of the degree bound. Thus, there is a linear map T−1 which
when composed with the public key has Q-rank d, and so there is a low rank
matrix that is an E-linear combination of the Frobenius powers of G. This turns
recovery of the transformation T into the solution of a MinRank problem over
E.

Another version of this attack, utilizing the same property, is the key recovery
attack of [27]. The authors prove the existence of an E-linear combination of the
public key with low rank over E. Setting the unknown coefficients of this linear
combination as variables, they construct the ideal I ⊆ R = F[T ] of minors of this
sum of the appropriate dimension such that V (I) ∩ Edim(R) consists of exactly
such linear coefficients. Thus a Gröbner basis needs to be computed over F and
the variety computed over E. This modeling of the KS-attack is called minors
modeling and dramatically improves the efficiency of the KS-attack in many
circumstances.

The KS-attack with either KS modeling or with minors modeling has also
been used to break other HFE descendants. In [27], the minors modeling ap-
proach is used to break multi-HFE. In [15], the KS-attack is extended to provide
key recovery for HFE-. In [14], both the KS modeling and minors modeling
versions of the KS-attack are used to undermine the security of ZHFE.

The MinRank methodology is also employed in [16], where an effective key
recovery attack on SRP is presented. It was shown that the low Q-rank of Square
is exposed by the SRP construction. Specifically, the Q-rank of the square map
f(x) = x2 is one over an odd characteristic field. Since this low Q-rank map
is in the span of the public polynomials, there is an E-linear combination of
the public polynomials of rank one! Thus the ideal generated by the two-by-two
minors is resolved at degree two and the complexity of the attack is O(

(
m+1
2

)ω
),

where 2 ≤ ω ≤ 3 is the linear algebra constant. The attack is applied practically,
breaking the 80-bit parameters in about 8 minutes.
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5 HFERP

In this section, we present a significant modification of SRP that we call HFERP.
The key observation is that by replacing the Square map with a higher Q-rank
instance of HFE, one can make the MinRank attack inefficient while maintaining
efficient inversion. For simplicity of the exposition, we present the scheme with
a single layer UOV component, noting that it is trivial to replace UOV with a
multi-layer Rainbow via the same construction.

Choose a finite field Fq and let E be a degree d extension field over Fq. Let
φ : Fdq → E be an Fq-vector space isomorphism. Also, let o, r, s, and l be non-
negative integers.

Key Generation Let n = d + o − l, n′ = d + o and m = d + o + r + s.
The central map of HFERP is the concatenation of an HFE core map, FHFE ,
an UOV (or alternatively, Rainbow) section, FR, and the plus modifier, FP .
Formal definitions of the maps are provided below:

– The HFE component is defined as FHFE : Fn′q → Fdq and is the result of the
following composition:

Fn
′

q
πd−→ Fdq

φ−→ E f−→ E φ−1

−−→ Fdq

where f is the HFE core map described in (1) and πd : Fd+oq → Fdq is the
projection onto the first d coordinates.

– The UOV (or alternatively, Rainbow) component is defined as

FR = (g(1), . . . , g(o+r)) : Fn
′

q → Fo+rq

following the normal construction of the UOV signature scheme where V =
{1, . . . , d} and O = {d + 1, . . . , d + o}. For every k ∈ {1, . . . , o + r}, the
quadratic polynomial g(k) is of the following form:

g(k)(x1, . . . , xn′) =
∑

i∈O,j∈V
α(k)xixj +

∑
i,j∈V,i≤j

β
(k)
i,j xixj +

∑
i∈V∪O

γ
(k)
i xi + η(k)

where α(k), β
(k)
i,j , γ

(k)
i , and η(k) are chosen at random from Fq.

– The Plus modification is defined as FP = (h(1), . . . , h(s)) : Fn′q → Fsq which
consists of s randomly generated quadratic polynomials.

An affine embedding U : Fnq → Fn′q of full rank and an affine isomorphism
T : Fmq → Fmq are chosen for the butterfly construction as is common in big
field schemes. The public key is given by P = T ◦ F ◦ U : Fnq → Fmq , where
F = FHFE‖FR‖FP ( ‖ being the concatination function), and the private key
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is represented by the following figure:

Fdq

!!
Fnq

P

@@
U // Fn+lq

FHFE

<<

FP ""

FR // Fo+rq
// Fmq

T // Fmq

Fsq

==

Encryption Given a message M ∈ Fnq , the ciphertext is computed as C =
P(M) ∈ Fmq .
Decryption Given a ciphertext C = (c1, . . . , cm) ∈ Fmq , the decryption process
is the following:

1. Compute x = (x1, . . . , xm) = T −1(C).
2. Compute X = φ(x1, . . . , xd) ∈ E.
3. Use the Berlekamp algorithm to compute the inverse of the HFE polynomials

to recover y = (y1, . . . , yd).
4. Given the vinegar values y1, . . . , yd, solve the system of o+r linear equations

in the n′ − d = o variables ud+1, . . . , un′ given by

g(k)(y1, . . . , yd, ud+1, . . . , un′) = xd+k

for k = 1, . . . , o+ r. The solution is denoted (yd+1, . . . , yn′).
5. Compute the plaintext M ∈ Fnq by finding the preimage of (y1, . . . , yn′)

under the affine embedding U .

6 Complexity of Attack

In this section we derive tight complexity estimates or proofs of resistance for the
principal relevant attacks on HFERP. These attacks include the direct algebraic
attack, the MinRank attack, the small field MinRank and dual rank attacks, and
the invariant attack.

6.1 Algebraic Attack

The algebraic attack attempts to invert the public key at a ciphertext directly via
the calculation of a Gröbner basis. It is commonly believed that the closeness of
the solving degree of a polynomial system, the degree at which the Gröbner basis
is resolved, and the degree of regularity, the degree at which a non-trivial syzygy
producing a degree fall first occurs, is a generic property. Thus the lower bound
on the complexity of the algebraic attack that the degree of regularity provides
is likely a tight bound, and is consequently a critical quantity for analyzing the
security of the scheme.



10 Y. Ikematsu, R. Perlner, D. Smith-Tone, T. Takagi & J. Vates

Theorem 1 The degree of regularity of the public key of HFERP is bounded by

dreg ≤

{ (q−1)dlogq(D)e
2 + 2 if q is odd or dlogq(D)e is even,

(q−1)(dlogq(D)e+1)
2 + 1 otherwise.

Proof. There is a linear function of the public key separating the HFE polyno-
mials H from the non-HFE polynomials N . Trivially, the dreg is bounded by the
degree of regularity of the system H, which, via [28, Theorem 4.2], produces the
above bound.

One must note that the above bound is not what is needed to ensure security.
Instead we require a lower bound. Extensive experimentation shows that for very
small q, the above estimate is tight. We have, however, a further complication.
In general, adding more polynomials to an ideal may decrease its degree of regu-
larity. To address this issue we have conducted small scale experiments showing
that the degree of regularity and solving degree behave similarly to those of
random systems, see Section 7.

Conjecture 1 Under the assumption that the degree of regularity is at least
dlogq(D)e + 2 for small odd q and sufficiently large n, the complexity of the
algebraic attack is given by

Comp.alg = O

((
n+ dreg
dreg

)2(
n

2

))
= O

(
n2dlogq(D)e+6

)
.

6.2 MinRank Attack

The min-rank attack proposed in [16] is so successful due to the Q-rank of the
squaring map within SRP being equal to one. By changing the square map com-
ponent to an HFE core map, we are able to thwart such an attack on HFERP.
This subsection walks through the attack proposed in [16] , with HFERP in
mind, and proves that the min-Q-rank of HFERP differs from SRP.

Note that, similar to SRP, the public key of HFERP has an analogous scheme
without embedding as long as πd ◦ U is of full rank, which it is defined to be
in this scheme. Let π′d : Fnq → Fdq be the projection onto the first d coordinates

and find a projection ρ : Fn+lq → Fnq such that U ′ = ρ ◦ U has full rank and
π′d ◦ U ′ = πd ◦ U . Let F∗ : E → E represent the chosen high Q-rank HFE core
map so that FHFE = φ−1 ◦ F∗ ◦ φ ◦ πd. Then identify the Rainbow and random
components as F ′R : FR ◦ U ◦ U ′−1 and F ′P : FP ◦ U ◦ U ′−1 respectively. Thus,
one can see that

T ◦

φ ◦ F∗ ◦ φ−1 ◦ πdFR
FP

 ◦ U = T ◦

φ ◦ F∗ ◦ φ−1 ◦ π′dF ′R
F ′P

 ◦ U ′.
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Notice that the attack on SRP was not just a min-rank attack on the public
key of SRP, but on a linear combination of public forms of SRP that had low Q-
rank over the degree d extension used by the squaring component. This method
allowed the attack to ignore the fact that the public key of an instance of SRP
was expected to be of high rank. Thus, to demonstrate that HFERP resists such
an attack, we briefly outline the method of deriving the linear combination of
public forms from [16] for HFERP and prove that the min-Q-Rank of the result
is sufficiently high to resist such an attack.

Let α be a primitive element of the degree d extension E of Fq. Fix a vector

space isomorphism φ : Fdq → E defined by φ(x̄) =
∑d−1
i=0 xiα

i. Then, fix a one

dimensional representation Φ : E → A defined by a
Φ7−→ (a, aq, . . . , aq

d−1

). Next,
define Md : Fdq → A by Md = Φ ◦ φ. It was demonstrated you can look at this
map through the following matrix representation

Md =


1 1 . . . 1

α αq . . . αq
d−1

α2 α2q . . . α2qd−1

...
...

. . .
...

αd−1 α(d−1)q . . . α(d−1)qd−1

 ∈Md×d(E)

This matrix allows the passage from Fdq and A easily by right multiplication

with Md or M−1
d . Next are a few more definitions necessary to be able to look

at a matrix representation of the public key:

M̃d =

[
Md 0
0 Io+r+s

]
∈Mm×m(E)

M̂d =

[
Md

0o×d

]
∈M(d+o)×d(E)

Finally, define F∗i be the matrix representation of the quadratic form over
A of the ith Frobenius power of the chosen HFE core map. Now we have all the
necessary notation to view the public key as a matrix equation.

Denote the m-dimensional vector of (d + o) × (d + o) symmetric matrices
associated by the private key as follows:

(F(HFE,0), . . . ,F(HFE,d−1),F(R,0), . . . ,F(R,o+r−1)F(P,0), . . . ,F(P,s−1)). (2)

Note that the function corresponding to the application of each coordinate of
a vector of the quadratic forms followed by the application of a linear map
represented by a matrix is denoted as a right product of the vector and a matrix
representation of the linear map.

Next, observe

(F(HFE,0), . . . ,F(HFE,d−1))Md = (M̂dF
∗0M̂>

d , . . . , M̂dF
∗(d−1)M̂>

d ),
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which yields

(x̄F(HFE,0)x̄
>, . . . , x̄F(HFE,d−1)x̄

>)Md =

(x̄M̂dF
∗0M̂>

d x̄
>, . . . , x̄M̂dF

∗(d−1)M̂>
d x̄
>),

as a function of x̄. This gives the following equation:

(F(HFE,0), . . . ,F(HFE,d−1),F(R,0), . . . ,F(P,s−1))M̃d =

(M̂dF
∗0M̂>

d , . . . , M̂dF
∗(d−1)M̂>

d ,F(R,0), . . . ,F(P,s−1))
(3)

Now, look to the relation between the public key and its corresponding private
key central maps:

(P0, . . . ,Pm−1)T−1 = (UF(HFE,0)U
>, . . . ,UF(P,s−1)U

>). (4)

By combining equations 3 and 4, we have the following:

(P0, . . . ,Pm−1)T−1M̃d =

(UM̂dF
∗0M̂>

d U>, . . . ,UM̂dF
∗(d−1)M̂>

d U>,UF(R,0)U
>, . . . ,UF(P,s−1)U

>)

As in [16], let T̂ = T−1M̃d = [ti,j ] ∈ Mm×m(E) and W = UM̂d. This
identification produces

m−1∑
i=0

ti,0Pi = WF∗0W>. (5)

Since the rank of F∗i is equal to the Q-rank of the quadratic form of the HFE
core map for all i, the rank of this E-linear combination of the public matrices

is bounded by the minimum of the rank of UM̂d and the rank of F∗0, id est the
Q-rank of our HFE core map. This statement forms the following theorem:

Theorem 2 The min-Q-rank of the public key P of HFERP(q,d,o,r,s,l) is given
by:

min-Q-rank(P) ≤ min{Rank(UM̂d), Rank(F∗0)}

Proof. The proof in [16] describes the parameters in which the min-Q-rank(P)

can be equal to zero. So, we move forward with the assumption that UM̂d 6=
0, which occurs with high probability when d > l. In (5) we have a linear
combination of the public key equations equal to the following:

WF∗0W> = UM̂dF
∗0M̂>

d U>. (6)

This proves our result.

It should be noted that U, M̂d, and F∗0 are chosen by the user. They can
easily be chosen in such a way such that

min-Q-rank(P) = min{Rank(UM̂d), Rank(F∗0)}.
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This would also occur with high probability if U, M̂d, and F∗0 were randomly
generated. Directly from [15], we also have the following complexity for the
MinRank attack on HFERP:

Corollary 1 The complexity of the MinRank attack with minors modeling on
HFERP is given by

Comp.Minors = O

((
m+ blogq(D)c
dlogq(D)e

)2(
m

2

))
= O

(
m2dlogq(D)e+2

)
.

6.3 Base-Field Rank and Invariant Attacks

Variants of several attacks applicable to other versions of the Rainbow cryptosys-
tem are applicable to HFERP. These include the linear-algebra-search version
of MinRank [29], the HighRank attack [29] and the UOV invariant attack [4].

The MinRank attack works by randomly choosing one or more vectors wj in
the plaintext space and solving for a linear combination ti ∈ F of the plaintext
equations satisfying:

m∑
i=1

tiDfi(wj) = 0

The attack succeeds when wj is in the kernel of a low rank linear combination
of differentials of the public polynomials. In the case of HFERP, the HFE com-
ponent equations form a d-dimensional subspace of the public equations having
rank d over F. Note that the attacker can remove up to d − 1 equations while
preserving at least a one dimensional subspace of low rank maps. Thus, the at-
tack can succeed with a one dimensional solution space for ti and only a single
wj as long as m ≤ n+ d.

If m > n + d, the adversary may still use a single vector wj to constrain
the ti’s rather than attempting to find two vectors in the kernel of the HFE
equations. In this case, the attacker must search through an m − n − d + 1
dimensional space of spurious solutions to find the useful 1 dimensional space
of tis. This method is still less expensive than searching for two vectors in the
kernel of the HFE equations when m < n+ 2d.

It should be further noted that, since the differentials of the oil maps will map
any vector in the kernel of the HFE equations to the d-dimensional HFE input
space, we expect an o1 + r1−d dimensional subspace of the oil equations to also
have such a vector in the kernel of their differentials, see Figure 1. Thus, when
m < n+ max(d, o1 + r1), vectors in the HFE kernel can be recognized, because
they are in the kernel of an unusually large subspace of the public equations,
and when 2d < n the linear combinations of the public equations from the HFE
and oil spaces can be recognized due to their low rank.
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HFE Rainbow-1 Rainbow-2 Random

Fig. 1. The shape of the matrix representations of the central maps of HFERP. The
shaded regions represent possibly nonzero values while unshaded areas have coefficients
of zero.

Thus the complexity of MinRank (for plausible choices of m) is

Comp.MinRank =



O
(
qdmω

)
m < n+ max(d, o1 + r1)

O
(
qd+m−n−max(d,o1+r1)nω

)
m ≥ n+ max(d, o1 + r1)

m < n+ d+ max(d, o1 + r1)

n > 2d

O (qm−nnω) m ≥ n+ max(d, o1 + r1)

m < n+ 2d

n ≤ 2d

O
(
q2dmω

)
m < 2n+ max(d, o1 + r1 − d)

No better attack.

In the HighRank attack, the attacker randomly selects linear combinations of
the public polynomials with the hope of selecting a polynomial with significantly
less than full rank. This attack takes advantage of the d + o1 + r1-dimensional
subspace of the public polynomials generated by the HFE maps and either the
Rainbow-1 maps of Figure 1 or for UOV of the d-dimensional HFE subspace.
The complexity of the attack is then:

Comp.HighRank = O
(
qm−d−o1−r1nω

)
.

It should also be noted that linear combinations of HFE and Rainbow-1
polynomials form an m−s dimensional subspace of the public polynomials, that
act linearly on the o2− l dimensional preimage under U of the oil subspace. This
bounds their rank to be at most 2d. Noting that the probability that a random
square matrix has corank a is approximately q−a

2

, we see that, the high rank
attack can be straightforwardly applied if 2d < n−

√
m− d− o1 − r1.

Additionally, the HighRank attack can be combined with the oil and vine-
gar invariant attack to distinguish linear combinations of the HFE and Rainbow
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maps from other linear combinations of the public maps. Here, a pair of maps
from the HFE and Rainbow subspace can be identified by restricting their dif-
ferentials to a subspace of the plaintext space in which both maps are full rank,
and checking to see if (Dp1)−1Dp2 has a large invariant subspace (which will be
the intersection of the preimage of the oil subspace under U and the subspace
used to restrict the differentials). This allows the high rank attack to be applied

with similar complexity as long as 2d < n−
√

m−d−o1−r1
2 : Applying the attack

will involve testing no more than
(
q

m−d−o1−r1
2

)2
= qm−d−o1−r1 pairs of rank

n − 2d maps, and therefore this step will not dominate the complexity of the
approximately qm−d−o1−r1 rank computations involved in the HighRank step.

If 2d ≥ ζ, where ζ1 = n−
√

m−d−o1−r1
2 , the complexity of HighRank is given

by:

Comp.HighRank =

{
Comp.HighRank = O

(
qm−dnω

)
2d ≥ ζ1

Comp.HighRank = O
(
qm−d−o1−r1nω

)
2d < ζ1.

Finally, when 2d ≥ n −
√

m−d−o1−r1
2 , as in the UOV attack, the previous

steps must be combined with a projection, aimed at removing enough vinegar
variables that the restriction of the differentials of linear combinations of HFE
and Rainbow maps to the projected plaintext space is less than full rank. This
yields a complexity for hybrid HighRank/UOV invariant type attacks of:

Comp.UOV =

O
(
qm−d−o1−r1nω

)
n > ζ2

O
(
qm−d−o1−r1+

√
m−d−o1−r1

2 +2d−n(o1 + o2 − l)4
)

n ≤ ζ2.

where ζ2 = 2d+
√

m−d−o1−r1
2 . This attack may also be applied to the Rainbow-2

maps of Figure 1 in which case the complexity is:

Comp.UOV 2 =

{
O (qsnω) n > 2d+ 2o1 +

√
s
2

O
(
qs+
√

s
2+2d+2o1−n(o2 − l)4

)
n ≤ 2d+ 2o1 +

√
s
2 .

7 Parameter Selection and Experimental Results

We propose single-layer parameters (A) and (B) for 80-bit security and multi-
layer parameters (C) and (D) for 128-bit security :
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(A) (q = 3, d = 42, o = 21, r = 15, s = 17, l = 0, D = 37 + 1)

(B) (q = 3, d = 63, o = 21, r = 11, s = 10, l = 0, D = 37 + 1)

(C) (q = 3, d = 85, o1 = o2 = 70, r1 = r2 = 89, s = 61, l = 0, D = 37 + 1)

(D) (q = 3, d = 60, o1 = o2 = 40, r1 = r2 = 23, s = 40, l = 0, D = 39 + 1)

Then we have the following values for (n,m): (63, 95) for (A), (84, 105) for (B),
(225, 464) for (C), and (140, 226) for (D). The security level for suggested pa-
rameters is estimated by all the attack in §6. Here, we assume that the degree
of regularity for direct attack is 10 by Conjecture 1 for (A),(B), and (C) while
it is 12 for (D).

To draw a direct comparison with HFE, note that to achieve the same secu-
rity level as HFERP, an HFE scheme requires m equations, and hence n = m
variables. Therefore secure HFE public keys are far larger while offering slower
decryption due to the use of the Berlekamp algorithm in a far larger field.

We ran a series of experiments with Magma, see [30], on a 2.6 GHz Intel®

XeonR CPU1. These are not optimized implementations.

(A) (B) (C) (D)

Key Generation 0.299 s 0.572 s 20.498 s 3.43 s

Encryption 0.001 s 0.001 s 0.006 s 0.001 s

Decryption 3.977 s 8.671 s 49.182 s 124.27 s

Secret Key Size 19.8KB 31.7KB 1344.0KB 226.0KB

Public Key Size 48.2KB 93.6KB 2905.7KB 552.3KB
Table 1. Experimental results for HFERP.

We also investigated the growth of the first fall degree (dreg) as well as the
solving degree with five experiments performed at each of eight different param-
eters sets. We directly compared these data with randomly generated systems,
see Table 2.

For comparison, we include the semi-regular degree for systems of m equa-
tions in n variables. This quantity was calculated by computing the first non-
positive coefficient in the series

Sn,m(t) =
(1− tq)n(1− t2)m

(1− t)n(1− t2q)m
.

1 Certain commercial equipment, instruments, or materials are identified in this paper
in order to specify the experimental procedure adequately. Such identification is
not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or
equipment identified are necessarily the best available for the purpose.
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Noting that the degree of regularity of the zero-dimensional ideal is the same as
the first fall degree of the ideal generated by the homogeneous components of
the generators of highest degree. We derive the above formula as the fusion of
the techniques in [31] and [32].

It is clear that the degree of regularity of the small scale instances of HFERP
grows in relation to that of random schemes. By the data in the tables, we can
estimate that the degree of regularity for direct attack on (A) and (B) is greater
than 9 at least.

Table 2. Direct attack experiment data for various values of d, o, r, s. (s.r.d. stands for
semi- regular degree)

HFERP Random

(q, d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(3, 8, 4, 3, 3, 0, 2188) 12 18 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4

(3, 10, 5, 4, 3, 0, 2188) 15 22 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(3, 12, 6, 5, 4, 0, 2188) 18 27 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(3, 14, 7, 5, 5, 0, 2188) 21 31 6, 5, 5, 5, 5 6, 6, 6, 6, 6 5, 5, 5, 5, 5 6, 6, 6, 6, 6 6

Table 2.A. Direct Attack, d = 2o, d + o ; 2(r + s), o = 4, 5, 6, 7

HFERP Random

(q, d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(3, 9, 3, 2, 2, 0, 2188) 12 16 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(3, 12, 4, 2, 2, 0, 2188) 16 20 5, 6, 6, 5, 5, 5, 6, 6, 6, 5 6, 5, 6, 6, 5 6, 6, 6, 6, 6 6

(3, 15, 5, 3, 3, 0, 2188) 20 26 6, 5, 5, 5, 5 6, 6, 6, 6, 6 5, 5, 5, 6, 5 6, 6, 6, 6, 6 6

(3, 18, 6, 3, 3, 0, 2188) 24 30 5, 5, 5, 5, 5 7, 7, 7, 7, 7 5, 5, 5, 5, 7 7, 7, 7, 7, 7 7
Table 2.B. Direct Attack, d = 3o, r + s ; o, o = 3, 4, 5, 6

HFERP Random

(d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(3, (3, 3), (4, 4), 2, 0, 2188) 9 19 3, 3, 3, 3, 3 3, 3, 2, 3, 2 3, 3, 3, 3, 3 2, 3, 3, 2, 2 3

(7, (6, 6), (7, 7), 5, 0, 2188) 19 38 4, 4, 4, 4, 4 4, 4, 4, 4, 4 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(10, (8, 8), (11, 11), 7, 0, 2188) 26 55 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(14, (11, 11), (14, 14), 10, 0, 2188) 36 74 5 5 6
Table 2.C. Direct Attack,

d ; 3.4a, o ; (2.8a, 2.8a), r ; (3.56a, 3.56a), s ; 2.44a, a = 1, 2, 3, 4

HFERP Random

(d, o, r, s, l,D) n m dreg sol. deg dreg sol. deg s.r.d.

(5, (3, 3), (2, 2), 3, 0, 39 + 1) 11 18 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 3, 4 4

(7, (5, 5), (3, 3), 5, 0, 39 + 1) 17 28 4, 4, 4, 4, 4 4, 4, 4, 4, 4 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(10, (6, 6), (4, 4), 6, 0, 39 + 1) 22 36 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 6, 6, 6, 6, 6 6

(12, (8, 8), (5, 5), 8, 0, 39 + 1) 28 46 5, 5 6, 6 5, 5 6 6
Table 2.D. Direct Attack,

d ; 2.4a, o ; (1.6a, 1.6a), r ; (0.92a, 0.92a), s ; 1.6a, a = 2, 3, 4, 5
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8 Conclusion

SRP was an ambitious encryption scheme attempting to combine the efficiency
of the inversion of Square with the security of Rainbow to achieve security with
a small blow-up factor between the plaintext and ciphertext. Unfortunately, this
technique was a bit too ambitious.

Interestingly, the idea of replacing Square with a more general and higher
Q-rank HFE primitive seems to solve this problem. Even more interestingly, the
resulting scheme, HFERP, though in principle assailable via essentially every
major cryptanalytic technique available in multivariate cryptography, appears
to be out of range of these myriad attacks.

The parameter ` in SRP was introduced for efficiency, attempting to reduce
the public key size while maintaining the algebraic structure of the scheme. We
have found that this quantity adds nothing to security and have set it equal to
zero for our suggested parameters. An interesting possible future problem is to
determine whether ` can be securely set to a value larger than zero and thereby
reduce public key size. For now, we err on the side of caution, and conservatively
use all of the entropy we can get.
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A Toy Example

The purpose of the following toy example is to help the reader understand the
process of generating a public key for an instance of HFERP as well as an
example of encryption and decryption. The parameters used are by no means
secure and are soley for instructional purposes.

Parameters of this toy example are as follows: q = 7, d = o = r = 2, s =
1, and l = 0. Then, construct E a degree 2 extension field over F7. The chosen
HFE core map is f = ξ12X14 + ξ6X8 + ξ29X2 where ξ ∈ E. Let T and U be the
following affine maps:

T =



2 1 2 4 5 0 3
1 1 3 3 4 4 4
4 2 1 3 1 0 6
0 1 0 1 5 5 5
5 5 3 6 4 2 4
2 5 1 6 5 6 0
1 1 2 2 6 4 3


,U =


4 6 6 4
3 2 0 2
1 1 6 5
3 6 6 6
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With the parameters described above, F can be represented as the follwing
matrices over F7

F1 =


0 1 0 0
4 0 0 0
0 0 0 0
0 0 0 0

 , F2 =


0 3 0 0
1 6 0 0
0 0 0 0
0 0 0 0

 , F3 =


3 1 6 1
3 1 4 5
3 4 0 0
3 2 0 0

 ,

F4 =


5 1 0 3
0 5 0 3
0 4 0 0
6 1 0 0

 , F5 =


6 0 3 4
6 2 4 2
6 3 0 0
0 3 0 0

 , F6 =


4 4 1 1
3 0 0 3
3 6 0 0
1 2 0 0

 , F7 =


6 3 2 3
4 4 0 6
2 3 1 3
6 4 0 6


P1 and P2 represent the HFE component, P3 → P6 represent the rainbow com-
ponent, and P7 represents the plus component. With the public key generated
by P = T ◦ F ◦ U , its matrix form over F7 is:

P1 =


1 1 2 5
1 2 3 2
3 2 4 4
3 3 0 3

 , P2 =


0 2 0 6
4 5 2 0
6 3 3 4
3 1 2 2

 , P3 =


2 3 1 4
4 5 4 5
3 5 5 1
5 1 0 6

 ,

P4 =


0 6 0 2
1 3 0 2
5 1 5 1
5 3 0 5

 , P5 =


4 3 2 3
6 5 2 4
4 3 1 5
5 2 4 5

 , P6 =


1 4 2 2
3 3 6 2
5 4 0 0
3 5 5 4

 , P7 =


1 3 6 0
0 3 4 0
1 2 4 2
2 1 6 4


Given the following plaintext, (2, 6, 1, 5), the resulting ciphertext is (0, 0, 1, 3, 0, 4, 0).

Decryption: Given a ciphertext (0, 0, 1, 3, 0, 4, 0), the following process is how
you would obtain its corresponding plaintext.
Part of the secrect key:

T −1 =



1 6 4 2 2 2 5
5 4 4 6 0 5 2
5 3 5 2 3 2 4
5 6 5 5 2 1 1
2 5 4 2 1 5 2
2 5 6 6 3 5 5
1 2 5 4 4 0 5


,U−1 =


4 5 2 1
3 1 3 1
4 1 2 0
5 6 1 1



Feed the ciphertext through T −1 to get

(0, 6, 2, 6, 0, 4, 6) (7)

The first d = 2 elements are the corresponsing HFE outputs. Take these elements
and adjust the HFE core map as follows:

f := f − 0ξ1−1 − 6ξ2−1 = ξ12X14 + ξ6X8 + ξ29X2 + ξ
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Perform the Berlekamp algorithm to find the preimage of f . In doing so in this
toy example, you get (0, 6). Next, construct the vector:

u = [0, 6, u1, u2] .

Construct equations of the form uF1u
> = xi where xi refers to the ith element

of (7), for i ∈ {3, 4, 5, 6}. This will result with the following equations:
6u1 + 1

3u1 + 3u2 + 5
2u2 + 2
u1 + 2u2

 =


2
6
0
4


Solving this system of equations gives us u1 = 6 and u2 = 6. Thus,

u = [0, 6, 6, 6] .

Finally, feed this through U−1 to get the plaintext, [2, 6, 1, 5].


