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Abstract 

The physicochemical properties of a substance, such as a fuel, can vary significantly with 

composition. Determining these properties with ASTM standard methods is both expensive and 

time-consuming, which has led to a desire to use chemometric modeling as an alternative. In this 

study, we compare the accuracy and robustness of two chemometric models, partial least squares 

(PLS) regression and support vector machine (SVM) with uncertainty estimation to determine how 

the physicochemical properties depend on the composition. A set of hydrocarbon mixtures, 

including crude oil, oil, gasoline, and biofuel/biodiesel, were collected. GC-MS data were taken, 

and physicochemical properties were measured for these mixtures using ASTM standard methods. 

PLS and SVM were used to develop predictive models of the physicochemical properties. 

Uncertainty in the estimated property values was estimated using a bootstrapping technique. With 

this uncertainty estimate, it is possible to assess the trustworthiness of any prediction, which 

ensures that the chemometric models can be applied for general purposes. SVM was found to be 

generally better for predicting the physicochemical properties, although we expect that with a more 

comprehensive data set the performance of the PLS models can be improved. We show in this 

work that PLS and SVM can be used to generate a predictive model of physicochemical properties 

based on GC-MS data. Combined with uncertainty analysis, these models provide robust 

predictions that can be used for regulatory, economic, and safety purposes. 
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1 Introduction 

Alternative fuels have been identified as a critical need for the transportation industry, as 

detailed by the United States Federal Aviation Administration (FAA). In the future, it is expected 

that feedstocks will transition from entirely conventional petroleum sources to blends of 

conventional and unconventional sources (e.g. shale oil) and biomass. Fuels generated from these 

different feedstocks differ greatly from each other and from conventional fuels, meaning that their 

suitability may not be easily determined. 

Certifying a fuel for aviation purposes is an onerous process that consumes millions of liters. 

Although alternative technologies to internal combustion exist in other transportation areas, it is 

not anticipated that these technologies can be easily applied to aviation in the same way. The most 

promising technology, the lithium-air battery, still faces challenges [1], which suggests that liquid 

fuels will be with us for the forseeable future. This places aviation in an auspicious position to be 

an industry leader in alternative fuels and applications. 

Fuels are currently defined by their physicochemical properties such as viscosity and elemental 

composition, as ASTM D4814 for gasoline, ASTM D975 for petroleum diesels and ASTM D7467 

for biodiesel blends [2-4]. In our previous work [5], we proposed using chemometric methods 

combined with a library of analytical profiles (such as chromatograms) for known fuels. A new 

fuel’s suitability could be assessed by comparing its profile with fuels already in the library. Here, 

we propose using the same idea to develop a regression model for fuels’ physicochemical  

properties.  The relevant properties are measured for the substances in the fuels library and a 

regression model is fit to those measurements. This model can then be used to predict the 

physicochemical properties of any other fuel. Therefore, if a proposed fuel can be synthesized in 



4 

 

 

quantities large enough to be used for an analytical technique such as chromatography, all of its 

physicochemical properties can be estimated immediately and thereby its potential range of 

suitability as a fuel can be determined. 

Methods for determining the viscosity of hydrocarbon mixtures has been the subject of past 

research [6-9], although the relations proposed in the literature are empirical relations for known 

mixtures. Petroleum derivatives have a composition that is composed of hundreds or thousands of 

compounds, and modeling a relationship between composition and physicochemical behavior for 

mixtures of that complexity would require a similar number of correlation coefficients. 

Chemometric methods offer an alternative means of finding a relation between composition and 

physicochemical properties without needing to explicitly determine the composition.  In this work, 

we use the ASTM standard methods for determining physicochemical properties and use those 

methods, along with profiles taken using gas chromatography, to generate regression models to 

predict the properties of an unknown substance. The goal of the study is not to replace the ASTM 

methods with the chemometric models, but rather to provide a model that can be used as a 

screening test to determine whether a fuel should be produced in quantity. 

Chemometric methods of analysis have been successfully used to quantify properties [10-16] 

and monitor quality of fuels [17-19]. Palou et al [20] used calibration sets selection strategy for 

the construction of robust partial least squares (PLS) models for simultaneous determination of 

seven properties of biodiesel/diesel blends: density, cetane index, fatty acid methyl esters (FAME) 

content, cloud point, boiling point at 95% of recovery, flash point and Sulphur using near-infrared 

(NIR) spectroscopy. Pinto et al [19] used nuclear magnetic resonance spectroscopy of hydrogen 

(H-1 NMR) along with principal component analysis (PCA) and soft independent modelling of 
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class analogies (SIMCA) to differentiate common and additive gasolines. Morales-Medina and 

Gusman [21] used principal components regression and PLS to predict viscosity and density of 

crude oils. Some authors [5, 22-29] have used non-linear methods, such as support vector machine 

(SVM) to study fuels. Rocha et al [30] used SVM for exploratory analysis of the different biodiesel 

samples. In that work, SVM could give the best classification results. Alves et al [31, 32] used 

SVM to determine biodiesel content in diesel fuel blends with more effective, accurate and 

appropriate results than for PLS. Balabin et al [23, 33] analyzed gasoline, ethanol-gasoline 

(bioethanol), and diesel fuel data with different chemometric methods. SVM models showed the 

best results to solve classical regression and interpolation/extrapolation tasks. In these studies, 

however, the substances used covered a fairly narrow range of potential fuel types, for instance 

gasoline only. There has been one study, by Cramer et al [34], which used PLS to predict many 

properties of fuels including viscosity, density, and cetane index and which developed a single 

model for a diverse set of fuels ranging from kerosene to marine diesel. 

In this paper, we extend the proven work on chemometric regression models by adding an 

uncertainty analysis component. We employ the bootstrap-based uncertainty estimation algorithm 

used in our previous work [35] to place confidence bounds on the property estimates obtained 

using the chemometric models. This allows a more robust comparison between the ASTM-

determined values and the chemometric model. 

In Fig. 1, we show a schematic representation of the logic used in this work. The samples have 

their physical properties measured using the ASTM methods and likewise their chromatograms 

taken by GC-MS. This information is used as an input to the chemometric analysis (PLS and 

SVM). Then, based on how well the models perform with respect to the experimental data, we 

Deleted: to the problem of estimating physicochemical 

properties across a large library of fuels. The work we 

perform here is new in that it requires a model that will work 

for such diverse substances as crude oils, marine diesels, jet 
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make a decision about which, if either, should be recommended. It should be noted that, since the 

models are trained against the ASTM data, they cannot be better than it; the question to be 

addressed is whether the models are a suitable surrogate. 

1.1 Chemometric methods used 

In this work, we study the use of partial least squares (PLS) and support vector machine (SVM) 

regression with uncertainty estimation to predict the physicochemical properties of the fuels. PLS 

and SVM, like all regression, finds a relationship between a set of independent variables X and 

dependent variables y. In this work, the X values are the GC-MS profiles obtained for the various 

substances and the y values are the physicochemical property values.  

1.1.1 Partial least squares 

Partial least squares (PLS) [30, 36, 37] is a linear regression technique that finds a relationship 

between X and y such that y = Xβ. The method relies on a decomposition similar to principal 

components analysis which will find latent structures within X that are most closely correlated 

with variability in y.   

1.1.2 Support vector machine 

Support vector machines [38-41] are a class of learning algorithms that determine hypersurfaces 

that separate the data. In the linear case, these surfaces are hyperplanes. For a classification 

problem, the SVM finds a single surface that separates the groups of samples. For a regression 

problem such as that posed here, the SVM essentially finds the contour surfaces of y within X.  
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1.2 Bootstrap uncertainty estimation 

Bootstrapping is used to estimate uncertainty in a statistical model in terms of confidence limits. 

The procedure involves creating many artificial data sets by random sampling to get an estimate 

of the uncertainty. Using bootstrapping, it is possible to calculate statistics in model outputs such 

as variances and confidence intervals that may be used to represent the uncertainty in the model 

outputs. In this work, the regression model is calculated as  

 ( )= +y M X F   (1) 

where M is the regression model, ypred = M(X) is the prediction of that model, and F is the residual 

in the model predictions. Here, we use the residual bootstrapping technique developed by Almeida, 

et al. [42]  To conduct the bootstrap, the weighted residual Fw is calculated using 

 
w

1 fD K
=

−

F
F   (2) 

where K is the number of independent variables and Df  is the number of pseudo-degrees of 

freedom [43]. A new properties vector y* is generated by drawing with replacement from Fw, that 

is, ( ) ( )*

wbootstrap= +y M X F  where bootstrap(A) means sampling with replacement from the 

elements of A. A population of y* vectors can be generated by executing bootstrap many times, 

and then calculating a new model M* for each y*, along with a corresponding ( )* *

pred =y M X , 
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very similar to a standard bootstrap. Confidence limits are calculated using percentiles of 
*

predy ; 

for the 95% CI, the limits are the 2.5 and 97.5 percentiles. 

2 Methods 

2.1 Experimental data 

The experimental fuel samples used in this work consisted of a set of NIST Standard Reference 

Materials (SRMs), augmented with military aviation fuels obtained from the Air Force Research 

Laboratory and with commercially available gasoline. This sample set is the same as used in our 

previous work [5] and is detailed in Table 1. GC-MS chromatograms were obtained for these 

samples in triplicate, and the details can be found in our previous work [5]. In that study, retention 

times were obtained up to 150 minutes and m/z values from 50 to 300 Da. For this study, a set of 

physicochemical property measurements typical for heavier fuels was measured, namely the 

density ρ at two temperatures, the kinematic viscosity ν at two temperatures, the pour point Tp, and 

the total acid and base numbers NA and NB. The properties and the relevant ASTM test methods 

used to calculate them are shown in Table 1. The values for the properties are shown in Table 2.  

As shown in Table 2, some density and viscosity measurements for the commercial gasoline as 

well as the pour point value for SRM 2723b were removed from the data set before regression. 

Including these measurements resulted in highly degraded performance for the PLS models (and 

sometimes the SVM models), which suggested there was an issue either with the chromatograms 

or with the property value measurements. 
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2.2 Multivariate analysis 

The GC-MS data, which form the X matrix, are arranged into as a three-way array with 

dimension k × i × j, representing the samples, GC retention times, and mass spectra respectively. 

This array was unfolded into a matrix with dimension k x ij. For each physicochemical property, 

there is a y vector consisting of the k measured property values. Because many of the GC-MS array 

elements are zero, principal components analysis was used to reduce the dimensionality of the GC-

MS arrays. Principal components explaining more than 1 % of the variance were retained, and the 

largest loadings for each array element were identified. Array elements were retained if the largest 

loading was greater than a specified cutoff, which was chosen as 0.003; this cutoff resulted in 

about 65 000 GC-MS array elements retained for the analysis.  

Partial least squares regression and support vector regression with the radial basis function 

kernel are used. The PLS equation is 

 =y X Wq   (3) 

where X′ is a matrix of spectra whose properties are being predicted by the model, of size k′ x ij. 

W is a transformation matrix that is of size ij × l, where l is the number of latent variables, a free 

parameter, and q is a vector of size l × 1. The SVM equation is  

 ( ) ( ) ( )* , b = − +y X α α K X X   (4) 

where ( )*−α α  is the vector of dual coefficients whose nonzero values identify the support vectors 

and K is the k × k kernel matrix, whose elements are ( )2

expij i jK  = − −x x  for the radial basis 
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function. The parameter γ can be reinterpreted as a characteristic distance 1 2 = , which describes 

how far the influence of each sample extends within feature space. 

As mentioned above, there are three separate GC-MS chromatograms and three property values 

for each of the samples. When constructing the X and y arrays for regression, we use these three 

values as representative of the measurement uncertainty in these processes. Each experimental 

sample is represented by nine “virtual” measurements, representing each possible chromatogram 

and physicochemical property value pair. This allows a representation of the measurement 

uncertainty in the chemometric model. Consequently, k is approximately 150, although this varies 

from property to property since some properties could not be measured for some substances. 

Before fitting the model, the X and y arrays are split into a calibration and validation set using 

a random shuffle procedure. For each property, approximately 30% of the samples are held out in 

the validation set. In addition, this splitting procedure is stratified to ensure that, for a given 

substance, roughly the same proportion of its virtual measurements appear in the calibration and 

validation sets. This is not ideal; the reason is because there is considerable variability from 

chromatogram to chromatogram for a substance and also between substances. For instance, the 

animal and plant biodiesel fuels are different from each other and from the other fuels, meaning 

that if either of these substances were only in the validation set, then suddenly they would be 

outside the range of applicability of the model. As this work is a pilot study with a small set of 

fuels, we feel that these concerns are relatively minor. A large study to thoroughly investigate the 

relationships between GC-MS data and physical properties would have more data that would cover 

the space of possible fuels more densely and thus not be likely to have these problems. 
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2.3 Software implementation 

The PLS and SVM models were implemented using scikit-learn 0.19.1, run in Anaconda 4.0.0 

with Python 3.6.0. Uncertainty in the PLS and SVM models was calculated using the bootstrap 

machine-learning uncertainty module developed in our previous work [35]. 

3 Results and discussion 

3.1 Analysis of the chromatograms and selected variables 

The petroleum derivatives samples are all hydrocarbon mixtures of similar origin and their 

compositions are expected to be qualitatively similar. On the other hand, biodiesel samples consist 

basically of fatty acid methyl esters (FAME). These substances from petroleum derivatives and 

biodiesel samples can be seen in the variables which are selected using chemometric analysis, 

shown in Fig. 2. In addition, we show in Fig. 3 the chromatograms for SRM 2773 (biodiesel), 

SRM 1624d (Diesel), the commercial gasoline, and SRM 2779 (crude oil) as representative 

samples. Note that, in these figures, we do not display data for times greater than 110 minutes and 

m/z values greater than 175 Da because few significant variables were identified outside this range. 

Several groups of significant features can be identified, associated with characteristic compounds 

of the various fuels. At low retention times (< 10 minutes) there are clusters of features that can be 

associated with alkanes and olefins of up to 9 carbons, as well as benzene, xylene, trimethyl 

benzene, and isomers. These substances are common in gasolines and the peaks show prominently 

in the commercial gasoline chromatogram. At retention times of up to 100 minutes, there are broad 

features associated with alkanes, olefins, and cycloalkanes of between four and seven carbons, as 

well as features that are consistent with both small polycyclic aromatic hydrocarbons and alkanes 

Deleted: in Fig. 3 
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and olefins of 12 or fewer carbons, all present in diesel and crude oils. Additionally, a cluster of 

features can be seen between 60 and 62 minutes and between 69 and 73 minutes of retention time, 

with m/z values consistent with carboxylic acids, and fatty acid methyl esters. These features 

prominently identify the biodiesels, which are almost exclusively composed of these substances. 

3.2 Chemometric models and overall precision 

Individual multivariate calibration models were developed for the quantification of 

physicochemical properties of fuels using PLS and SVM models with uncertainty estimation. PLS 

and SVM both have free parameters whose best values must be estimated. The best parameters are 

found by using a 5-fold cross-validation grid search. This kind of analysis consists in breaking the 

calibration set into five partitions, with the model calibrated against four of the five folds and then 

validated against the fifth. The procedure is then repeated for each partition. The optimal 

parameters are those with the smallest root mean squared error of cross-validation (RMSECV). 

For PLS, the free parameter is the number of latent variables (LVs), while for SVM, the free 

parameters are the cost parameter C, the kernel coefficient γ, and the threshold ε. The number of 

LVs (for PLS) and the values of C, γ, and ε (for SVM) can be viewed as a measure of the 

complexity of the model, determining the tradeoff between minimizing the training error and 

minimizing the model complexity [44, 45].  

The parameters obtained for construction of PLS and SVM models for each property are presented 

in Table 3. As mentioned above, as these parameters increase in value, the model becomes more 

complex. This can represent increased chemical complexity in the system, that is, that more 

material components of the mixture are interacting in more complex ways. For large parameter 

values, this could indicate overfitting. Conversely, small parameter values can indicate model form 
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errors, such that the relationship between the physicochemical property and the GC-MS 

chromatogram cannot be captured by this kind of model. The PLS models all have between 20 and 

30 LVs, except for the viscosity ν60, with 13. In the case of SVM, γ (for the RBF) indicates how much 

influence measurements have on nearby regions of GC-MS space; larger values mean less influence, which 

allows for a more complex and varied model but at the risk of overfitting. C indicates how large a penalty 

must be used to fit the measurements to the SVM, which also increases complexity of the model at the risk 

of overfitting. ε defines minimum residual at which the penalty starts to be applied.  All of the models 

have a C of around 106 and ε values that are negligibly small. Because the γ values describe a distance 

over which each sample’s influence extend, one metric for the model is how many other samples are within 

that distance. For ν60, and Tp, that number is nearly half the total number of samples, and for ν40 it 

is about 5% of them. For the other properties, it is about 10 %. Values close to 100 % would 

suggest that the model is close to linear, while smaller values indicate a more nonlinear and 

possibly overfit model. It should be noted that, since there are 9 virtual measurements for each 

substance, 10 % is approximately the threshold at which all chromatograms for one substance are 

within each other’s distance of influence. This suggests that most of the SVM model results should 

be taken with a great deal of care. 

When there are multiple models of varying complexity, it is necessary to have some means of 

choosing between those models. The SVM model with the RBF kernel is more internally complex 

than the PLS model, which allows it to more effectively match a given calibration set, but at the 

expense of overfitting to that calibration set and ruining the model’s predictive power. We consider 

two comparisons between the PLS and SVM models, both of which rely on comparing the models’ 

performance on the validation set. Traditionally, this comparison is done by calculating the root 
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mean squared error of prediction (RMSEP) for the two models and using an F-test. The F value is 

calculated using  

 

2

SVM

PLS

e

e

 
=  
 

F  , (3) 

where e is the RMSEP value. The SVM more accurately represents the data, to a p > 0.05 level of 

confidence, if F is greater than about 1.65 for these data sets. The critical value will vary a small 

amount because not all properties have the same number of measured values. 

In addition, since there is an uncertainty on each prediction, we can assess whether the PLS and 

SVM models predict the experimental measurement value to within any arbitrary confidence 

interval. We describe this as a hit function H, defined to be 1iH =  if yi is within the confidence 

interval of ( )iM X , and 0 otherwise. The number of hits is then sum of H. By comparing the 

number of hits in the validation set, we can obtain an uncertainty-based estimate of the models’ 

relative performance.  

The RMSEP and number of misses is presented in Table 4, along with the F values from Eq. 3, 

which can be used to gauge the relative performance of the PLS and SVM models. In addition, 

shown for comparison are the root-mean-squared error of calibration (RMSEC) and the Pearson 

R2 values (denoted Rc
2 and Rp

2 for the calibration and validation sets). The F values show that the 

SVM model conclusively (p < 0.05) outperforms the PLS model for all the properties except for 

ν60 and Tp,. Interestingly, these are the same properties for which the SVM produces the least-
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nonlinear models, which suggests that, for this set of data, a linear model is the best that can be 

done for those properties. The relative number of misses shows that the SVM models for ρ60 and 

ν40 conclusively outperform the PLS models, but it is difficult to decide between the others. We 

can say, then, that there is a statistical basis for selecting the SVM model over the PLS model for 

all properties except ν60 and Tp. The R2 values for the SVM models are almost all very close to 1, 

however, so there is some concern that the models are overfit. 

3.3 Predictions of the chemometrics models 

The F-test results are only valid for a population of measurements, so to understand any 

individual measurement it is necessary to plot the measurements and predictions individually. We 

show the model predictions of the PLS and SVM models for ρ60, ν60, Tp, and NB in Fig. 4. These 

properties can be viewed as representative examples; we also show all predictions in Fig. S1. We 

also present the performance of each model on each target substance; the PLS performance is 

shown in Fig. S2 and the SVM performance in Fig. S3. 

As a rule, the PLS models have larger uncertainty than the SVM models (e.g. 1 kg/m3 vs. 20 

kg/m3 for the density measurements). Furthermore, there are four substances with which the PLS 

models have difficulties, namely SRMs 2722 (a crude oil), 2771 (a Diesel) and SRM 2723b (also 

a Diesel) and the commercial gasoline. Property values are accurately reproduced for all other 

substances. Conversely, the SVM models predict all the measurements, sometimes with a few 

misses per substance. Given that there are many Diesel and crude oils in our sample library, the 

fact that the PLS models have difficulty with these examples suggests there is something unusual 

in the chromatograms. 
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3.4 Physical interpretation of the chemometric models 

Given the ability of both the PLS and SVM models, in general, to predict the physicochemical 

properties, it is useful to interrogate them to gauge what spectral features, and therefore which 

components, are correlated with increasing or decreasing which properties. In the case of PLS, the 

model can be directly interrogated with the linear model coefficients WQ from Eq 3. The SVM 

models can be interrogated with the p-vector [46], which is defined by  

 ( )*= −p α α X . (5) 

This vector is a highly qualitative description of the impact each spectral feature has on the SVM 

result, but it has been used with some success in petroleomics to interpret SVM models [47]. We 

present the coefficients of the PLS models, as well as the p-vectors of the SVM models for ρ60, ν60, 

Tp, and NB, in Fig. 5. The remaining properties show patterns like one of these four, and their 

respective coefficients and p-vectors are shown respectively in Figs. S4 and S5. As we said earlier, 

this study is intended to be a proof-of-concept, and so we do not attempt to attach a specific 

chemical identity to the spectral features; indeed, as the samples are mostly petroleum derivatives, 

this would be an unwieldy task. Instead, we merely show that the models produce results that make 

some sense when viewed from a chemical perspective. 

For all of the properties we investigated, the spectral features with the largest coefficients are 

relatively short alkane chains at long scan times, suggesting that the properties are most strongly 

affected by heavy, low-volatility species that elute poorly. In addition, there is varying influence 

from lighter substances. In the PLS model for ν60, for instance, the viscosity is decreased strongly 

by fast-eluting single-ring aromatic ions and increased strongly by polycyclic compounds. 



17 

 

 

Furthermore, if we look at the SVM p-vectors in Fig S5, we can see that many of properties show 

wildly varying influence from all available spectral features, suggesting that the models are 

“reaching” so that they can reproduce as many substances’ properties as possible but in a way that 

is not generalizable. From this perspective, the SVM models for ρ60, ν60, Tp, and NA are the most 

trustworthy, which is the same conclusion drawn from Table 3. 

By themselves, the coefficients and p-vectors can be difficult to interpret, so we can also 

interrogate the influence of each spectral feature on each substance’s property value using,  

 
( )  PLS

 SVM

iki
ik

i ik

X
I

p X


= 


WQ
 , (6) 

where Iik is the influence of spectral feature i on the property value for substance k. Taking the sum 

of I over all substances, for PLS, would then yield the property value for that substance; for SVM, 

the interpretation of I is more holistic but still valuable. We show these influence values on ρ60 for 

four representative substances in Fig. 6, and on ν60 in Fig. 7; the influence values for all substances 

are shown in Figs. S6 and S7. Here, we can see that the long-elution-time features that are so 

prominent in Fig. 5, are mostly associated with the crude oil and the residual oil. It also becomes 

clearer that the properties of SRMs 2723b and 2771, as well as the commercial gasoline, are poorly 

reproduced by the PLS models because the influence plots for those fuels closely resemble those 

for the crude oils, despite the widely varying physicochemical properties. That is to say, the 

features identified by the PLS regression as significant for each property are similar in these 

chromatograms, and so PLS cannot distinguish these substances. Furthermore, the influence 

vectors of the SVM models again suggest that many of the models are reaching to reproduce 

measurements but doing so in a way that is not easily generalized. 
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3.5 Recommendation for choice of model 

Based on the results from Table 3 and Fig. S5, we can conclude that the SVM models for ρ15, 

ν40, and NB are likely overfit and should not be used. From Table 4, we can conclude that the PLS 

models for ν60 and Tp are statistically comparable to the corresponding SVM models. 

Consequently, we would recommend use of PLS for ρ15, ν40, ν60, Tp, and NB, and SVM for the 

remaining parameters. 

4 Conclusions 

In this work, linear and non-linear methods with uncertainty were used to estimate 

physicochemical properties of fuels using GC-MS data. The properties were measured using 

ASTM standard methods, and partial least squares and support vector machines were used to 

determine a relation between the GC-MS data and the measured properties. 

The fuels examined spanned a wide range, from lighter fuels such as gasoline, through jet fuels, 

kerosenes, crude oils, to heavy marine diesels. This ensured that the models could cover a wide 

range of potential fuels, without being restricted to any one class. The size of the fuel sample set 

was not meant to represent a realistic fuels library, but rather to be representative; a real library 

would have dozens or hundreds of samples from a much broader range of available fuels. 

Properties investigated included density and viscosity at several temperatures as well as pour point 

and acid and base content. Generally, the support vector machine was best able to reproduce the 

physical properties using the GC-MS data, although partial least squares proved significantly better 

for viscosity at higher temperature, and somewhat better for the pour point. However, after 
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examining the support vector machine models for evidence of overfitting, it was evident that the 

partial least squares models were most trustworthy for most of the physical properties. 

This paper has shown that using chemometric regression models can lead to useful results, even 

when used on a wide library of fuels that one would normally expect not to be comparable. Much 

work remains to be done, however. To be practically useful, we would need a fuels library that 

covers the available fuel space more densely than that used here. Furthermore, much of the 

uncertainty in the model predictions appears to come from variability in the GC-MS data, and 

future iterations of this project would need to take steps to minimize this variability. 
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