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Abstract—Random number generators may have weaknesses 

(bugs) and the applications using them may become vulnerable to 

attacks. Formalization of randomness bugs would help 

researchers and practitioners identify them and avoid security 

failures. The Bugs Framework (BF) comprises rigorous 

definitions and (static) attributes of bug classes, along with their 

related dynamic properties, such as proximate and secondary 

causes, consequences and sites. This paper presents two new BF 

classes: True-Random Number Bugs (TRN) and Pseudo-Random 

Number Bugs (PRN). We analyze particular vulnerabilities and 

use these classes to provide clear BF descriptions. Finally, we 

discuss the lessons learned towards creating new BF classes. 

Keywords—randomness, random numbers, random number 

generators, pseudo-random number generators, software 

weaknesses, bug taxonomy, attacks.  

I. INTRODUCTION 

Randomness has application in many fields, including 
cryptography, simulation, statistics, politics, science, and 
gaming. Any specific use has its own requirements for 
randomness – e.g., random bit generation for cryptography or 
security purposes has stronger requirements than generation for 
other purposes. For cryptography or security purposes, the 
National Institute of Standards and Technology (NIST) 
recommends use of cryptographically secure Pseudo-Random 
Bit Generators (PRBGs). They are subject to the requirements 
in NIST SP 800-90A [8], NIST SP 800-90B [9] and NIST 
SP 800-90C [10]. Satisfying the requirements for a particular 
use can be surprisingly difficult [1] *. 

Weaknesses (bugs) in random number generators (RNGs) 
may lead to wrong results from the algorithms that use the 
generated numbers or allow attackers to recover secret values, 
such as passwords and cryptographic keys. Formalization of 
randomness bugs would help researchers and practitioners 
identify them and avoid security failures. For that we have 
developed a general descriptive model of randomness and two 
randomness classes as part of the Bugs Framework (BF) [2, 3]. 

In this paper, we discuss randomness bugs, present the BF 
randomness bugs model, and detail our newly-developed 
randomness classes: True-Random Number Bugs (TRN) and 
Pseudo-Random Number Bugs (PRN). The details include 
definitions and taxonomy of these classes, examples of 
vulnerabilities from the Common Vulnerabilities and 

Exposures (CVE) [4], and corresponding Common Weakness 
Enumeration (CWE) [5] or Software Fault Patterns (SFP) [6]. 
In the concluding section we discuss the lessons learned.  

II. THE BUGS FRAMEWORK (BF) 

The Bugs Framework (BF) provides accurate, precise, and 
unambiguous definitions of software weaknesses (bugs) and a 
language-independent taxonomy that allows clear descriptions 
of software vulnerabilities [2, 3]. It organizes bugs into distinct 
classes. The taxonomy of each BF class comprises: level, 
causes, attributes, consequences, and sites of bugs. Level (high 
or low) identifies the fault as language-related or semantic. 
Causes bring about the fault. At least one attribute (denoted as 
underlined) identifies the software fault, while the rest may be 
simply descriptive. It is useful to catalog possible 
consequences of faults. Sites are locations in code (identifiable 
mainly for low level classes) where the bug might occur under 
circumstances indicated by the causes.  

Previously developed BF classes are: Buffer Overflow 
(BOF), Injection (INJ), Control of Interaction Frequency Bugs 
(CIF) [2], Encryption Bugs (ENC), Verification Bugs (VRF), 
Key Management Bugs (KMN) [3], and Faulty Result (FRS). 
Here we only give their definitions. Details and application 
examples of use are available at [7] . 

BOF: The software accesses through an array a memory 
location that is outside the boundaries of that array.  

INJ: Due to input with language-specific special elements, 
the software assembles a command string that is parsed into an 
invalid construct.  

CIF: The software does not properly limit the number of 
repeating interactions per specified unit.  

ENC: The software does not properly transform sensitive 
data (plaintext) into unintelligible form (ciphertext) using a 
cryptographic algorithm and key(s).  

VRF: The software does not properly sign data, check and 
prove source, or assure data is not altered.  

KMN: The software does not properly generate, store, 
distribute, use, or destroy cryptographic keys and other keying 
material.  

FRS: The software produces a faulty result due to 
conversions between primitive types, range violations, or 
domain violations. 

Disclaimer: Certain trade names and company products are mentioned in the 
text or identified. In no case does such identification imply recommendation 

or endorsement by the National Institute of Standards and Technology 

(NIST), nor that they are necessarily the best available for the purpose. 

* The icon is used through the paper where we note the NIST SP 800-90 

recommendations for construction of RBGs. 



 

III. RANDOMNESS BUGS 

A. Randomness Generation 

We separate randomness generation in two distinct 
processes: true-random number generation and pseudo-random 
number generation. The former is nondeterministic true-
randomness generation (full entropy), while the latter is 
deterministic pseudo-randomness generation. 

True-random number generation uses entropy sources, 
while pseudo-random number generation uses true-random 
numbers as seeds. It is possible for a PRBG to use non-random 
seeds (e.g., for generating random numbers for simulation or 
game algorithms). PRBGs are used to extend the true-random 
seeds, produced from a True-Random Bit Generator (TRBG) 

output – if the seed has length n, the output of the PRBG can 

have length m, where m>n. However, a PRBG cannot increase 
the entropy of its seed.  

Examples of randomness related attacks are direct RSA 
common factor attack [11, 12] cryptanalytic attack, input based 
attack, state compromise attack. [13] 

B. The BF Randomness Model 

Fig. 1 presents our BF randomness bugs model, showing in 
which software components of TRNG and Pseudo-Random 
Number Generator (PRNG) bugs can occur. It is a descriptive 
and not as a prescriptive model. It should not be used as a 
model for construction of Random Bit Generators (RBGs). ( 
NIST SP 800-90C specifies construction of RBGs using the 
mechanisms and entropy sources described in SP 800-90A and 
SP 800-90B, respectively.) TRN is the name of our BF class of 
True-Random Number Bugs. PRN is the name of our BF class 
of Pseudo-Random Number Bugs. The BF randomness model 
helps identify where in the corresponding bugs could occur. 
TRN covers bugs related to entropy sources, TRBG, and 
TRNG. PRN covers bugs related to entropy pools, PRBG, and 
PRNG. Although, output from the former process may be used 
as input to the latter (see the red arrow in Fig. 1), they are 
distinct from the point of view that bugs related to each have 
different causes, attributes, and consequences. The random bits 
are optionally converted in a pseudo-random number based on 
the range that applications provide as an argument.  

 

Fig. 1. The BF Model of Randomness Bugs. It is a descriptive and not as a prescriptive model. It should not be used as a model for construction of RBGs.  

 NIST SP 800-90A/B/C give specific requirements and architectures for appovoed RBGs.  

(TRN – True-Random Number Bugs  
PRN – Pseudo-Random Number Bugs  

TRBG: True-Random Bit Generator  
TRNG: – True-Random Number Generator  

PRBG – Pseudo-Random Bit Generator 
PRNG – Pseudo-Random Number Generator 

BC – Block Cipher)



 

If live entropy source is used, the PRBG is said to support 
prediction resistance. A PRBG without prediction resistance 
can still be used where an on-demand entropy source and 
immediate resetting are not required. [8] 

PRNGs are algorithmic and can have bugs. Most PRNGs 
are not cryptographically secure. 

IV. TRUE-RANDOM NUMBER BUGS CLASS - TRN 

A. Definition 

We define True-Random Number Bugs (TRN) as: 

The software generated output does not satisfy all use-
specific true-randomness requirements. 

Note that the output sequence is of random bits, where 
values are obtained from one or more sources of entropy.  

TRN is related to: PRN, ENC, VRF, KMN, IEX 
(Information Exposure Bugs). 

B. Taxonomy 

Fig. 2 depicts TRN causes, attributes and consequences. 

The attributes of TRN are:  

Function – Health Test, Conditioning, Mixing, Output, 
Converting.  

Algorithm – Hash Function, Block Cipher, XOR, etc. 

Used For – Seeding, Generation.  

This is what the output sequence is used for. It could be 
used as a seed for a PRNG or for generation of passwords or 
cryptographic keying material (keys, nonces) [15]. 

Randomness Requirement – Sufficient Entropy, 
Sufficient Space Size, Non-Inferable. This is the failed 
requirement.  

The importance of sufficient entropy is discussed in (CWE-
333 [5]). The notion of entropy used in this paper is min-
entropy, as the negative logarithm of the probability of the 
most likely outcome. Let X be a random variable such that the 

set of possible values that it can have is finite. Let P be the set 

of probabilities of X having those values. The min-entropy of X 

is defined as –log2 max(P), where max()finds the largest 
value in a set. The min-entropy is a measure of how difficult it 
is to guess the most likely entropy source output. [9, 16] 

Space size is the number of elements of the space of 
possible outputs (CWE-334 [5]). If the number of different 
outputs is not sufficiently large, there is a vulnerability to a 
brute force attack. Non-inferable means one cannot recover 
from known (guessed) information anything about the TRBG 
output (CVE-2008-0141 [4]). TRBGs used for 
cryptography/security must satisfy the Non-Inferable 
randomness requirement. 

In the graph of causes: Incorrect Entropy Assessment may 
result in TRN output having insufficient entropy. For example, 
a certain number of bits with full entropy may be needed, and 
because of Incorrect Entropy Assessment, the output may have 
insufficient entropy. 

In the graph of consequences: Inadequate Input to PRNG 
could be repeating, weak, insufficiently random, predictable, 
small space seed or other input. "A program may crash or 
block if it runs out of random numbers" (CWE-333 [5]. Denial 
of Service (DoS) can be a direct consequence (CWE-333 [5]). 

KMN could be a consequence as in finding private keys from 
public keys using a common factor attack [11, 12]. VRF could 
be a consequence of using a predictable random number with a 
signature algorithm, such as DSA (Digital Signature 
Algorithm). The information leaked (IEX) could be of the 
exact value of a generated random number (CWE-342 [5]) or a 
small range of values (CWE-343 [5]) from which the generated 
random number is easy to figure out. 

 
Fig. 2. The True-Random Number Bugs (TRN) represented as causes, attributes and consequences. 



 

C. An Example 

CVE-2008-0141 
This vulnerability is listed in CVE-2008-0141 [4] and 

discussed in [17].  

The BF TRN taxonomy for this vulnerability is:  

 

Our BF description is: 

Inadequate entropy sources (date/time and user name) 
mixing using concatenation allow generation of passwords that 
do not satisfy the non-inferable randomness requirement (time 
known from password reset time, name - from user register), 
which may be exploited for IEX (of password), leading to ATN. 

Analysis (based on CVE-2008-0141 [4] and [17]): [17] 
includes “… The new password is simply the date 
(minute+seconds) and the var $user taken through 
register_globals (we can let it [be] empty) …”. An attack 
exploiting that is described there. 

D. Related CWEs and SFP 

The related SFP cluster is SFP Primary Cluster: 
Predictability [6], which is CWE-905 with members CWE 330 
to 344 [5]. 

Among them, the TRN CWEs are: 330, 331, 332, 333, 334, 
337, 339, 340, 341, 342, 343 [5]. 

V. PSEUDO-RANDOM NUMBER BUGS CLASS -- PRN 

A. Definition 

We define Pseudo-Random Number Bugs (PRN) as: 

The software generated output does not satisfy all use-
specific pseudo-randomness requirements. 

Note that the output sequence is of random bits or numbers 
from a PRNG.  

PRN is related to: TRN, ENC, VRF, KMN, IEX. 

B. Taxonomy 

Fig. 3 depicts PRN causes, attributes and consequences.  

The attributes of PRN are:  

Function – Conditioning, Mixing, Entropy Assessment, 
Seeding, Reseeding, Generate, Converting.  

Algorithm – Concatenation, Hash Function, Block Cipher, 
XOR. Concatenation is the usual mixing of output from IID 
sources. 

Used For – ASLR (Address Space Layout 
Randomization), Generation, Initialization, Input to Algorithm. 
This is what the output sequence is used for. It could be used 
for ASLR, generation of passwords or cryptographic keying 
material (keys, nonces) [15], initialization of cryptographic 
primitives [18] (e.g., an initialization vector for cipher block 
chaining mode of encryption; or a salt for hashing), or input to 
simulation, statistics, mathematics (e.g., Monte Carlo 
integration), or general algorithms. 

Pseudo-Randomness Requirement – Unpredictability/ 
Indistinguishability, Prediction/Backtracking Resistance, 
Sufficient Space Size, Use Specific Statistical Tests. This is the 
failed requirement.  

The pseudo-random output sequence should be statistically 
independent and unbiased [10]. It should pass the use-specific 
statistical tests for randomness. Unpredictability means that it 
should not be possible to predict next generated output from 
previous output [15]. Prediction Resistance means it is not 
possible to predict future output bits even if past or present 
state is known. Prediction resistance is not possible without a 
live entropy source. Backtracking Resistance means it is not 
possible to recover (backtrack) past output bits based on 
knowledge of the state at a given point in time [8, 10].  

For Space Size see section IV.B. above. Indistinguishability 
for a PRNG means that its output is computationally 
indistinguishable (i.e., by any probabilistic polynomial time 
algorithm) from a truly random sequence [15]. 

PRNGs used for cryptography/security must satisfy the 
Unpredictability/Indistinguishability, Backtracking Resistance, 
and Sufficient Space Size requirements. Prediction Resistance 
however is not always required – e.g. for PIV cards. 

C. Examples 

1) CVE-2001-1141 
This vulnerability is listed in (CVE-2001-1141 [4]) and 

discussed in [19, 20].  

The BF PRN taxonomy for this vulnerability is: 

 

Cause: Inadequate Entropy Sources (current date/time and 
user name) 

Attributes: 

Function: Mixing 

Algorithm: Concatenation 

Used for: Generation (of password) 

Randomness Requirement: Non-Inferable (time known 
from password reset time, name - from user register) 

Consequences: IEX (of password), leading to ATN 
(Authentication Fault) 

Cause: Improper PRNG Algorithm (C md_rand – the 
secret PRNG state is updated with portion, as small as one 
byte, of the PRNG’s previous output, which is not secret) 

Attributes: 

Function: Mixing (back into entropy pool) 

Algorithm: Hash Function (SHA-1 – used for PRNG 
output and to update its internal secret state) 

Used For: Generation (of cryptographic keying material 

– nonces, cryptographic keys) 

Pseudo-Randomness Requirements: Sufficient Space 
Size and Unpredictability (can be predicted from 
previous value through brute force) 

Consequences: KMN>Generate with IEX of future keying 
material and ENC>IEX of sensitive data 



 

Our BF description is: 

Use of improper PRNG algorithm (C md_rand uses SHA-1 
for mixing back in the entropy pool portion, as small as one 
byte, of previous output to update PRNG’s state), allows 
generation of cryptographic keying material (nonces and 
cryptographic keys) that does not satisfy the sufficient space 
size and unpredictability (can be predicted from previous 
values through brute force) pseudo-randomness requirements, 
which leads to KMN>Generate and IEX of future keying 
material. 

Analysis (based on CVE-2001-1141 [4] and [19 – 22]): 

A PRNG used for cryptography does not satisfy the 
requirement of unpredictability from previous values, because 
the internal state can be determined from number of output 
requests. Possible consequences include: IEX of future PRNG 
output (CVE-2001-1141 [4]) (which is KMN>Generation 
failure) and weak encryption, confidentiality compromise [21] 
(which is ENC>Confidentiality failure [3]). 

The entropy accumulation implementation (entropy pool 
and associated mixing function) allows reconstruction of the 
PRNG internal state [20]. The mixing hash function for md (in 

the C md_rand) gets half of the previous value of md and bytes 
from the PRNG internal state. Wrongly, the half used is the one 
with the PRNG’s previous output (failed implementation 
relative to specification). Also, the number of used state bytes 
depends on the number of bytes requested as output, which 
could be as small as one byte. This enables a brute-force attack. 
The PRNG state could be reconstructed from the output of one 
large PRNG request (large enough to gain knowledge on md) 
followed by consecutive 1-byte PRNG requests [21, 22]. 

2) CVE-2008-4107  
This vulnerability is listed in (CVE-2008-4107 [4]) and 

discussed in [23-26]. 

The BF PRN taxonomy for this vulnerability is 

 

Our BF description is: 

Improper PRNG algorithms (not cryptographically strong 

PHP 5 rand and mt_rand, based on algorithms such as LCG 

or LFSR, and Mersenne Twister) used to generate pseudo-

random numbers, allow generation of passwords that do not 

satisfy the unpredictability/ indistinguishability and prediction 

resistance pseudo-randomness requirements and may be 

exploited for IEX of password, leading to ATN. 

Analysis: PHP’s rand() [23] usually uses LCG or LFSR, 

which is weak. PHP 5 mt_rand() [24] uses Mersenne 
Twister, which is weak as well. It enables finding the internal 
state and all future values from 624 values. [25]. This 
vulnerability can be used for password guessing (CVE-2008-
4107 [4]), [26]).  

 

Fig. 3. The Pseudo-Random Number Bugs (PRN) represented as causes, attributes and consequences (ASLR – Address Space Layout Randomization).

Cause: Improper PRNG Algorithms (not cryptographically 
strong PHP 5 rand and mt_rand) 

Attributes: 

Function: Generate (pseudo-random numbers) 

Algorithms: e.g., LCG or LFSR, Mersenne Twister 

Used For: Generation (of passwords) 

Pseudo-Randomness Requirements: Unpredictability/ 
Indistinguishability and Prediction Resistance 

Consequence: IEX (of password), leading to ATN 



 

 CVE-2009-3238  

This vulnerability is listed in (CVE-2009-3238 [4]) and 
discussed in [27-33].  

The BF TRN and PRN taxonomy of this vulnerability is: 

 

Our BF description is: 

An TRN leads to a PRN. 

TRN: Improper RNG algorithm (same area is used for the 

hash array, allowing to repeatedly start from the same seed) 
for mixing (concatenation of pid and jiffies) followed by 
conditioning (using MD4 hash function), allows seeding that 
does not satisfy the sufficient entropy randomness requirement, 
leading to Inadequate Input to PRNG (repeating seed). 

PRN: Inadequate input to PRNG (repeating seed), used to 
generate pseudo-random numbers, allows use of ASLR that 
does not satisfy the unpredictability pseudo-randomness 
requirement and may be exploited for IEX of addresses. 

Analysis (based on CVE-2009-3238 [4] and in [27-33]): 

There is always a specific area for the hash array, allowing 
an attacker to repeatedly start from the same seed [32]. The 
result is predictability of address space randomization over a 
short time period. This violates the sufficient entropy 
requirement. 

“Address space randomization hinders some types of 
security attacks by making it more difficult for an attacker to 
predict target addresses” [27]. CVE-2009-3238 [4] includes as 
a reference [33] that describes a fix that increases the 
randomness of ASLR: "Following security issues were fixed: 
... CVE-2009-3238: The randomness of the ASLR methods 
used in the kernel was increased." 

The TRN consequence is Inadequate Input to PRNG 
(repeating seed) [32]. The PRN consequence is IEX of 
addresses [27-30].  

3) CVE-2017-15361 (ROCA – Return Of the Coppersmith 

Attack) 
This vulnerability is listed in CVE-2017-15361 [4] and 

discussed in [34].  

The BF KMN [3] with inner PRN (see RND>Inadequate in 
[3]) taxonomy for this vulnerability is:  

 

Our BF description is: 

A KMN with inner PRN. 

KMN: Improper algorithm step (for generation of primes for 
RSA keys) leads to inner PRN>Inadequate and allows 
generation of keying material (pair of public and private keys) 
with weak public key, leading to IEX of the private key. 

Inner PRN: Improper external algorithm (generation of primes 
for RSA keys, from random numbers and a constant related to 
keys size) leads to too few bits requested at converting and at 
seeding, and allows generation of random numbers not 
satisfying the sufficient space size requirement, which may be 
exploited for IEX of primes through fingerprinting of keys and 
factorization with Coppersmith algorithm. 

Analysis (based on CVE-2017-15361 [4] and [34]): The 
generated RSA primes have the form: p = k ∗ M + 

(65537^a mod M). Where, k and a are random numbers; M 

A KMN with inner PRN. 

KMN: 

Cause: Improper Algorithm Step (for generation of primes 
for RSA keys) leads to inner PRN 

Attributes: 

Cryptographic Data: Keying Material (keys) 

Algorithm: RSA (key generation from two primes) 

Operation: Generate (pair of public and private keys) 

Consequences: Weak Public Key, which leads to IEX of 
Private Key. 

Inner PRN: 

Cause: Improper External Algorithm (generation of primes 
for RSA keys from random numbers and a constant related 
to keys size) leads to Too Few Bits Requested 

Attributes: 

Functions: Converting, Seeding (low entropy requested) 

Used for: Generation (of secret prime numbers) 

Randomness Requirement: Sufficient Space Size (e.g., 

one random number is only 37 bits for 512-bit RSA keys) 

Consequence: IEX of generated primes (which format 
allows keys fingerprinting, factorization with Coppersmith 
algorithm, and finding random numbers and primes). 

An TRN leads to a PRN. 

TRN 

Cause: Improper RNG Algorithm (same area is used for 
the hash array, allowing to repeatedly start from the same 
seed)  

Attributes: 

Functions: Mixing (of pid and jiffies), Conditioning 

Algorithms: Concatenation, Hash Function (MD4) 

Used For: Seeding 
Randomness Requirements: Sufficient Entropy 

Consequence: Inadequate Input to PRNG (repeating seed) 

PRN 

Cause: Inadequate Input to PRNG (repeating seed) 

Attributes: 

Function: Generate (pseudo-random numbers) 

Used For: ASLR 

Pseudo-Randomness Requirement: Unpredictability 

Consequences: IEX of addresses 



 

is a primorial (the product of the first n successive primes), 
related to the key size, which is a multiple of 32 bits. For keys 
with size in the [512; 960] interval, n = 39 is used (i.e., M 

= 2 * 3 * … * 167); n = 71; 126; 225 is used for key 

sizes within intervals [992; 1952], [1984; 3936], 

[3968; 4096], respectively.  

For keys with the same size, the generated RSA primes 
differ only in the values of k and a. The size of M is large – 

almost comparable to the size of the prime p (e.g., M has 219 

bits for the 256-bit prime p used for 512-bit RSA keys). Since 

M is large, the sizes of k and a are small (e.g., k has 256 - 

219 = 37 bits and a has 62 bits for 512-bit RSA). Hence, the 
resulting RSA primes suffer from a significant loss of entropy 
(e.g., a prime used in 512-bit RSA has only 99 bits of entropy), 
and the pool from which primes are randomly generated is 

reduced (e.g., from 2^256 to 2^99 for 512-bit RSA). [34] 

The specific format of the primes allows fingerprinting of 
the keys followed by factorization. The size of M is large, but 

the logarithm log65537 N mod M can be computed, as M has 

only small factors. Factoring N using the Coppersmith’s 

algorithm reveals a and k and eventually the prime p. [34]  

D. Related CWEs and SFP 

The related SFP cluster is SFP Primary Cluster: 
Predictability [6], which is CWE-905 with members CWE 330 
to 344 [5]. 

Among them, the PRN CWEs are: 330, 331, 332, 334, 335, 
336, 337, 338, 339, 340, 341, 342, 343 [5]. 

VI. CONCLUSION 

A. Summary 

In this paper, we presented two new BF Classes: True-
Random Number Bugs (TRN) and Pseudo-Random Number 
Bugs (PRN). They join other rigorously-defined BF classes, 
such as Encryption/Decryption Bugs (ENC), Verification Bugs 
(VRF), and Key Management Bugs (KMN). We presented the 
(static) attributes of the classes, along with the classes’ causes 
and consequences. We analyzed particular vulnerabilities 
related to those classes and provided clear descriptions. We 
showed that the BF-structured descriptions of randomness bugs 
are quite concise, while still far clearer than unstructured 
explanations that we have found. 

B.  Lessons Learned and Future Work 

At first, we tried to define a single Randomness class. 
However, that meant mixing the causes, attributes, and 
consequences related to true-random number generation and 
pseudo-random number generation. While exploring related 
vulnerabilities, we also realized that some of the consequences 
from the former may be causes for the latter. For example, if 
the consequence of a faulty seed generation is weak seed, this 
becomes the cause for a PRNG fault.  

We considered keeping it all in one class by grouping the 
causes, attributes’ values, and consequences related to true- and 
pseudo-random number generation. However, the model of 

randomness generation that we developed showed that these 
are two clearly separated processes and there should be two 
separate PRN and PRN randomness classes. 

Work on explaining more randomness bugs using TRN and 
PRN will help us determine if our BF taxonomy needs 
refinement. 

Our goal is for BF to become software developers’ and 
testers’ “Best Friend.” 
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