
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Randomness Classes in Bugs Framework (BF):

True-Random Number Bugs (TRN) and

Pseudo-Random Number Bugs (PRN)
Irena Bojanova

SSD, ITL

NIST

Gaithersburg, MD, USA

irena.bojanova@nist.gov

Yaacov Yesha

SSD, ITL; CSEE

NIST; UMBC

Gaithersburg; Baltimore MD, USA

yaacov.yesha@nist.gov

Paul E. Black

SSD, ITL

NIST

Gaithersburg, MD, USA

paul.black@nist.gov

Abstract—Random number generators may have weaknesses

(bugs) and the applications using them may become vulnerable to

attacks. Formalization of randomness bugs would help

researchers and practitioners identify them and avoid security

failures. The Bugs Framework (BF) comprises rigorous

definitions and (static) attributes of bug classes, along with their

related dynamic properties, such as proximate and secondary

causes, consequences and sites. This paper presents two new BF

classes: True-Random Number Bugs (TRN) and Pseudo-Random

Number Bugs (PRN). We analyze particular vulnerabilities and

use these classes to provide clear BF descriptions. Finally, we

discuss the lessons learned towards creating new BF classes.

Keywords—randomness, random numbers, random number

generators, pseudo-random number generators, software

weaknesses, bug taxonomy, attacks.

I. INTRODUCTION

Randomness has application in many fields, including
cryptography, simulation, statistics, politics, science, and
gaming. Any specific use has its own requirements for
randomness – e.g., random bit generation for cryptography or
security purposes has stronger requirements than generation for
other purposes. For cryptography or security purposes, the
National Institute of Standards and Technology (NIST)
recommends use of cryptographically secure Pseudo-Random
Bit Generators (PRBGs). They are subject to the requirements
in NIST SP 800-90A [8], NIST SP 800-90B [9] and NIST
SP 800-90C [10]. Satisfying the requirements for a particular
use can be surprisingly difficult [1] *.

Weaknesses (bugs) in random number generators (RNGs)
may lead to wrong results from the algorithms that use the
generated numbers or allow attackers to recover secret values,
such as passwords and cryptographic keys. Formalization of
randomness bugs would help researchers and practitioners
identify them and avoid security failures. For that we have
developed a general descriptive model of randomness and two
randomness classes as part of the Bugs Framework (BF) [2, 3].

In this paper, we discuss randomness bugs, present the BF
randomness bugs model, and detail our newly-developed
randomness classes: True-Random Number Bugs (TRN) and
Pseudo-Random Number Bugs (PRN). The details include
definitions and taxonomy of these classes, examples of
vulnerabilities from the Common Vulnerabilities and

Exposures (CVE) [4], and corresponding Common Weakness
Enumeration (CWE) [5] or Software Fault Patterns (SFP) [6].
In the concluding section we discuss the lessons learned.

II. THE BUGS FRAMEWORK (BF)

The Bugs Framework (BF) provides accurate, precise, and
unambiguous definitions of software weaknesses (bugs) and a
language-independent taxonomy that allows clear descriptions
of software vulnerabilities [2, 3]. It organizes bugs into distinct
classes. The taxonomy of each BF class comprises: level,
causes, attributes, consequences, and sites of bugs. Level (high
or low) identifies the fault as language-related or semantic.
Causes bring about the fault. At least one attribute (denoted as
underlined) identifies the software fault, while the rest may be
simply descriptive. It is useful to catalog possible
consequences of faults. Sites are locations in code (identifiable
mainly for low level classes) where the bug might occur under
circumstances indicated by the causes.

Previously developed BF classes are: Buffer Overflow
(BOF), Injection (INJ), Control of Interaction Frequency Bugs
(CIF) [2], Encryption Bugs (ENC), Verification Bugs (VRF),
Key Management Bugs (KMN) [3], and Faulty Result (FRS).
Here we only give their definitions. Details and application
examples of use are available at [7] .

BOF: The software accesses through an array a memory
location that is outside the boundaries of that array.

INJ: Due to input with language-specific special elements,
the software assembles a command string that is parsed into an
invalid construct.

CIF: The software does not properly limit the number of
repeating interactions per specified unit.

ENC: The software does not properly transform sensitive
data (plaintext) into unintelligible form (ciphertext) using a
cryptographic algorithm and key(s).

VRF: The software does not properly sign data, check and
prove source, or assure data is not altered.

KMN: The software does not properly generate, store,
distribute, use, or destroy cryptographic keys and other keying
material.

FRS: The software produces a faulty result due to
conversions between primitive types, range violations, or
domain violations.

Disclaimer: Certain trade names and company products are mentioned in the
text or identified. In no case does such identification imply recommendation

or endorsement by the National Institute of Standards and Technology

(NIST), nor that they are necessarily the best available for the purpose.

* The icon is used through the paper where we note the NIST SP 800-90

recommendations for construction of RBGs.

III. RANDOMNESS BUGS

A. Randomness Generation

We separate randomness generation in two distinct
processes: true-random number generation and pseudo-random
number generation. The former is nondeterministic true-
randomness generation (full entropy), while the latter is
deterministic pseudo-randomness generation.

True-random number generation uses entropy sources,
while pseudo-random number generation uses true-random
numbers as seeds. It is possible for a PRBG to use non-random
seeds (e.g., for generating random numbers for simulation or
game algorithms). PRBGs are used to extend the true-random
seeds, produced from a True-Random Bit Generator (TRBG)

output – if the seed has length n, the output of the PRBG can

have length m, where m>n. However, a PRBG cannot increase
the entropy of its seed.

Examples of randomness related attacks are direct RSA
common factor attack [11, 12] cryptanalytic attack, input based
attack, state compromise attack. [13]

B. The BF Randomness Model

Fig. 1 presents our BF randomness bugs model, showing in
which software components of TRNG and Pseudo-Random
Number Generator (PRNG) bugs can occur. It is a descriptive
and not as a prescriptive model. It should not be used as a
model for construction of Random Bit Generators (RBGs). (
NIST SP 800-90C specifies construction of RBGs using the
mechanisms and entropy sources described in SP 800-90A and
SP 800-90B, respectively.) TRN is the name of our BF class of
True-Random Number Bugs. PRN is the name of our BF class
of Pseudo-Random Number Bugs. The BF randomness model
helps identify where in the corresponding bugs could occur.
TRN covers bugs related to entropy sources, TRBG, and
TRNG. PRN covers bugs related to entropy pools, PRBG, and
PRNG. Although, output from the former process may be used
as input to the latter (see the red arrow in Fig. 1), they are
distinct from the point of view that bugs related to each have
different causes, attributes, and consequences. The random bits
are optionally converted in a pseudo-random number based on
the range that applications provide as an argument.

Fig. 1. The BF Model of Randomness Bugs. It is a descriptive and not as a prescriptive model. It should not be used as a model for construction of RBGs.

 NIST SP 800-90A/B/C give specific requirements and architectures for appovoed RBGs.

(TRN – True-Random Number Bugs
PRN – Pseudo-Random Number Bugs

TRBG: True-Random Bit Generator
TRNG: – True-Random Number Generator

PRBG – Pseudo-Random Bit Generator
PRNG – Pseudo-Random Number Generator

BC – Block Cipher)

If live entropy source is used, the PRBG is said to support
prediction resistance. A PRBG without prediction resistance
can still be used where an on-demand entropy source and
immediate resetting are not required. [8]

PRNGs are algorithmic and can have bugs. Most PRNGs
are not cryptographically secure.

IV. TRUE-RANDOM NUMBER BUGS CLASS - TRN

A. Definition

We define True-Random Number Bugs (TRN) as:

The software generated output does not satisfy all use-
specific true-randomness requirements.

Note that the output sequence is of random bits, where
values are obtained from one or more sources of entropy.

TRN is related to: PRN, ENC, VRF, KMN, IEX
(Information Exposure Bugs).

B. Taxonomy

Fig. 2 depicts TRN causes, attributes and consequences.

The attributes of TRN are:

Function – Health Test, Conditioning, Mixing, Output,
Converting.

Algorithm – Hash Function, Block Cipher, XOR, etc.

Used For – Seeding, Generation.

This is what the output sequence is used for. It could be
used as a seed for a PRNG or for generation of passwords or
cryptographic keying material (keys, nonces) [15].

Randomness Requirement – Sufficient Entropy,
Sufficient Space Size, Non-Inferable. This is the failed
requirement.

The importance of sufficient entropy is discussed in (CWE-
333 [5]). The notion of entropy used in this paper is min-
entropy, as the negative logarithm of the probability of the
most likely outcome. Let X be a random variable such that the

set of possible values that it can have is finite. Let P be the set

of probabilities of X having those values. The min-entropy of X

is defined as –log2 max(P), where max()finds the largest
value in a set. The min-entropy is a measure of how difficult it
is to guess the most likely entropy source output. [9, 16]

Space size is the number of elements of the space of
possible outputs (CWE-334 [5]). If the number of different
outputs is not sufficiently large, there is a vulnerability to a
brute force attack. Non-inferable means one cannot recover
from known (guessed) information anything about the TRBG
output (CVE-2008-0141 [4]). TRBGs used for
cryptography/security must satisfy the Non-Inferable
randomness requirement.

In the graph of causes: Incorrect Entropy Assessment may
result in TRN output having insufficient entropy. For example,
a certain number of bits with full entropy may be needed, and
because of Incorrect Entropy Assessment, the output may have
insufficient entropy.

In the graph of consequences: Inadequate Input to PRNG
could be repeating, weak, insufficiently random, predictable,
small space seed or other input. "A program may crash or
block if it runs out of random numbers" (CWE-333 [5]. Denial
of Service (DoS) can be a direct consequence (CWE-333 [5]).

KMN could be a consequence as in finding private keys from
public keys using a common factor attack [11, 12]. VRF could
be a consequence of using a predictable random number with a
signature algorithm, such as DSA (Digital Signature
Algorithm). The information leaked (IEX) could be of the
exact value of a generated random number (CWE-342 [5]) or a
small range of values (CWE-343 [5]) from which the generated
random number is easy to figure out.

Fig. 2. The True-Random Number Bugs (TRN) represented as causes, attributes and consequences.

C. An Example

CVE-2008-0141
This vulnerability is listed in CVE-2008-0141 [4] and

discussed in [17].

The BF TRN taxonomy for this vulnerability is:

Our BF description is:

Inadequate entropy sources (date/time and user name)
mixing using concatenation allow generation of passwords that
do not satisfy the non-inferable randomness requirement (time
known from password reset time, name - from user register),
which may be exploited for IEX (of password), leading to ATN.

Analysis (based on CVE-2008-0141 [4] and [17]): [17]
includes “… The new password is simply the date
(minute+seconds) and the var $user taken through
register_globals (we can let it [be] empty) …”. An attack
exploiting that is described there.

D. Related CWEs and SFP

The related SFP cluster is SFP Primary Cluster:
Predictability [6], which is CWE-905 with members CWE 330
to 344 [5].

Among them, the TRN CWEs are: 330, 331, 332, 333, 334,
337, 339, 340, 341, 342, 343 [5].

V. PSEUDO-RANDOM NUMBER BUGS CLASS -- PRN

A. Definition

We define Pseudo-Random Number Bugs (PRN) as:

The software generated output does not satisfy all use-
specific pseudo-randomness requirements.

Note that the output sequence is of random bits or numbers
from a PRNG.

PRN is related to: TRN, ENC, VRF, KMN, IEX.

B. Taxonomy

Fig. 3 depicts PRN causes, attributes and consequences.

The attributes of PRN are:

Function – Conditioning, Mixing, Entropy Assessment,
Seeding, Reseeding, Generate, Converting.

Algorithm – Concatenation, Hash Function, Block Cipher,
XOR. Concatenation is the usual mixing of output from IID
sources.

Used For – ASLR (Address Space Layout
Randomization), Generation, Initialization, Input to Algorithm.
This is what the output sequence is used for. It could be used
for ASLR, generation of passwords or cryptographic keying
material (keys, nonces) [15], initialization of cryptographic
primitives [18] (e.g., an initialization vector for cipher block
chaining mode of encryption; or a salt for hashing), or input to
simulation, statistics, mathematics (e.g., Monte Carlo
integration), or general algorithms.

Pseudo-Randomness Requirement – Unpredictability/
Indistinguishability, Prediction/Backtracking Resistance,
Sufficient Space Size, Use Specific Statistical Tests. This is the
failed requirement.

The pseudo-random output sequence should be statistically
independent and unbiased [10]. It should pass the use-specific
statistical tests for randomness. Unpredictability means that it
should not be possible to predict next generated output from
previous output [15]. Prediction Resistance means it is not
possible to predict future output bits even if past or present
state is known. Prediction resistance is not possible without a
live entropy source. Backtracking Resistance means it is not
possible to recover (backtrack) past output bits based on
knowledge of the state at a given point in time [8, 10].

For Space Size see section IV.B. above. Indistinguishability
for a PRNG means that its output is computationally
indistinguishable (i.e., by any probabilistic polynomial time
algorithm) from a truly random sequence [15].

PRNGs used for cryptography/security must satisfy the
Unpredictability/Indistinguishability, Backtracking Resistance,
and Sufficient Space Size requirements. Prediction Resistance
however is not always required – e.g. for PIV cards.

C. Examples

1) CVE-2001-1141
This vulnerability is listed in (CVE-2001-1141 [4]) and

discussed in [19, 20].

The BF PRN taxonomy for this vulnerability is:

Cause: Inadequate Entropy Sources (current date/time and
user name)

Attributes:

Function: Mixing

Algorithm: Concatenation

Used for: Generation (of password)

Randomness Requirement: Non-Inferable (time known
from password reset time, name - from user register)

Consequences: IEX (of password), leading to ATN
(Authentication Fault)

Cause: Improper PRNG Algorithm (C md_rand – the
secret PRNG state is updated with portion, as small as one
byte, of the PRNG’s previous output, which is not secret)

Attributes:

Function: Mixing (back into entropy pool)

Algorithm: Hash Function (SHA-1 – used for PRNG
output and to update its internal secret state)

Used For: Generation (of cryptographic keying material

– nonces, cryptographic keys)

Pseudo-Randomness Requirements: Sufficient Space
Size and Unpredictability (can be predicted from
previous value through brute force)

Consequences: KMN>Generate with IEX of future keying
material and ENC>IEX of sensitive data

Our BF description is:

Use of improper PRNG algorithm (C md_rand uses SHA-1
for mixing back in the entropy pool portion, as small as one
byte, of previous output to update PRNG’s state), allows
generation of cryptographic keying material (nonces and
cryptographic keys) that does not satisfy the sufficient space
size and unpredictability (can be predicted from previous
values through brute force) pseudo-randomness requirements,
which leads to KMN>Generate and IEX of future keying
material.

Analysis (based on CVE-2001-1141 [4] and [19 – 22]):

A PRNG used for cryptography does not satisfy the
requirement of unpredictability from previous values, because
the internal state can be determined from number of output
requests. Possible consequences include: IEX of future PRNG
output (CVE-2001-1141 [4]) (which is KMN>Generation
failure) and weak encryption, confidentiality compromise [21]
(which is ENC>Confidentiality failure [3]).

The entropy accumulation implementation (entropy pool
and associated mixing function) allows reconstruction of the
PRNG internal state [20]. The mixing hash function for md (in

the C md_rand) gets half of the previous value of md and bytes
from the PRNG internal state. Wrongly, the half used is the one
with the PRNG’s previous output (failed implementation
relative to specification). Also, the number of used state bytes
depends on the number of bytes requested as output, which
could be as small as one byte. This enables a brute-force attack.
The PRNG state could be reconstructed from the output of one
large PRNG request (large enough to gain knowledge on md)
followed by consecutive 1-byte PRNG requests [21, 22].

2) CVE-2008-4107
This vulnerability is listed in (CVE-2008-4107 [4]) and

discussed in [23-26].

The BF PRN taxonomy for this vulnerability is

Our BF description is:

Improper PRNG algorithms (not cryptographically strong

PHP 5 rand and mt_rand, based on algorithms such as LCG

or LFSR, and Mersenne Twister) used to generate pseudo-

random numbers, allow generation of passwords that do not

satisfy the unpredictability/ indistinguishability and prediction

resistance pseudo-randomness requirements and may be

exploited for IEX of password, leading to ATN.

Analysis: PHP’s rand() [23] usually uses LCG or LFSR,

which is weak. PHP 5 mt_rand() [24] uses Mersenne
Twister, which is weak as well. It enables finding the internal
state and all future values from 624 values. [25]. This
vulnerability can be used for password guessing (CVE-2008-
4107 [4]), [26]).

Fig. 3. The Pseudo-Random Number Bugs (PRN) represented as causes, attributes and consequences (ASLR – Address Space Layout Randomization).

Cause: Improper PRNG Algorithms (not cryptographically
strong PHP 5 rand and mt_rand)

Attributes:

Function: Generate (pseudo-random numbers)

Algorithms: e.g., LCG or LFSR, Mersenne Twister

Used For: Generation (of passwords)

Pseudo-Randomness Requirements: Unpredictability/
Indistinguishability and Prediction Resistance

Consequence: IEX (of password), leading to ATN

 CVE-2009-3238

This vulnerability is listed in (CVE-2009-3238 [4]) and
discussed in [27-33].

The BF TRN and PRN taxonomy of this vulnerability is:

Our BF description is:

An TRN leads to a PRN.

TRN: Improper RNG algorithm (same area is used for the

hash array, allowing to repeatedly start from the same seed)
for mixing (concatenation of pid and jiffies) followed by
conditioning (using MD4 hash function), allows seeding that
does not satisfy the sufficient entropy randomness requirement,
leading to Inadequate Input to PRNG (repeating seed).

PRN: Inadequate input to PRNG (repeating seed), used to
generate pseudo-random numbers, allows use of ASLR that
does not satisfy the unpredictability pseudo-randomness
requirement and may be exploited for IEX of addresses.

Analysis (based on CVE-2009-3238 [4] and in [27-33]):

There is always a specific area for the hash array, allowing
an attacker to repeatedly start from the same seed [32]. The
result is predictability of address space randomization over a
short time period. This violates the sufficient entropy
requirement.

“Address space randomization hinders some types of
security attacks by making it more difficult for an attacker to
predict target addresses” [27]. CVE-2009-3238 [4] includes as
a reference [33] that describes a fix that increases the
randomness of ASLR: "Following security issues were fixed:
... CVE-2009-3238: The randomness of the ASLR methods
used in the kernel was increased."

The TRN consequence is Inadequate Input to PRNG
(repeating seed) [32]. The PRN consequence is IEX of
addresses [27-30].

3) CVE-2017-15361 (ROCA – Return Of the Coppersmith

Attack)
This vulnerability is listed in CVE-2017-15361 [4] and

discussed in [34].

The BF KMN [3] with inner PRN (see RND>Inadequate in
[3]) taxonomy for this vulnerability is:

Our BF description is:

A KMN with inner PRN.

KMN: Improper algorithm step (for generation of primes for
RSA keys) leads to inner PRN>Inadequate and allows
generation of keying material (pair of public and private keys)
with weak public key, leading to IEX of the private key.

Inner PRN: Improper external algorithm (generation of primes
for RSA keys, from random numbers and a constant related to
keys size) leads to too few bits requested at converting and at
seeding, and allows generation of random numbers not
satisfying the sufficient space size requirement, which may be
exploited for IEX of primes through fingerprinting of keys and
factorization with Coppersmith algorithm.

Analysis (based on CVE-2017-15361 [4] and [34]): The
generated RSA primes have the form: p = k ∗ M +

(65537^a mod M). Where, k and a are random numbers; M

A KMN with inner PRN.

KMN:

Cause: Improper Algorithm Step (for generation of primes
for RSA keys) leads to inner PRN

Attributes:

Cryptographic Data: Keying Material (keys)

Algorithm: RSA (key generation from two primes)

Operation: Generate (pair of public and private keys)

Consequences: Weak Public Key, which leads to IEX of
Private Key.

Inner PRN:

Cause: Improper External Algorithm (generation of primes
for RSA keys from random numbers and a constant related
to keys size) leads to Too Few Bits Requested

Attributes:

Functions: Converting, Seeding (low entropy requested)

Used for: Generation (of secret prime numbers)

Randomness Requirement: Sufficient Space Size (e.g.,

one random number is only 37 bits for 512-bit RSA keys)

Consequence: IEX of generated primes (which format
allows keys fingerprinting, factorization with Coppersmith
algorithm, and finding random numbers and primes).

An TRN leads to a PRN.

TRN

Cause: Improper RNG Algorithm (same area is used for
the hash array, allowing to repeatedly start from the same
seed)

Attributes:

Functions: Mixing (of pid and jiffies), Conditioning

Algorithms: Concatenation, Hash Function (MD4)

Used For: Seeding
Randomness Requirements: Sufficient Entropy

Consequence: Inadequate Input to PRNG (repeating seed)

PRN

Cause: Inadequate Input to PRNG (repeating seed)

Attributes:

Function: Generate (pseudo-random numbers)

Used For: ASLR

Pseudo-Randomness Requirement: Unpredictability

Consequences: IEX of addresses

is a primorial (the product of the first n successive primes),
related to the key size, which is a multiple of 32 bits. For keys
with size in the [512; 960] interval, n = 39 is used (i.e., M

= 2 * 3 * … * 167); n = 71; 126; 225 is used for key

sizes within intervals [992; 1952], [1984; 3936],

[3968; 4096], respectively.

For keys with the same size, the generated RSA primes
differ only in the values of k and a. The size of M is large –

almost comparable to the size of the prime p (e.g., M has 219

bits for the 256-bit prime p used for 512-bit RSA keys). Since

M is large, the sizes of k and a are small (e.g., k has 256 -

219 = 37 bits and a has 62 bits for 512-bit RSA). Hence, the
resulting RSA primes suffer from a significant loss of entropy
(e.g., a prime used in 512-bit RSA has only 99 bits of entropy),
and the pool from which primes are randomly generated is

reduced (e.g., from 2^256 to 2^99 for 512-bit RSA). [34]

The specific format of the primes allows fingerprinting of
the keys followed by factorization. The size of M is large, but

the logarithm log65537 N mod M can be computed, as M has

only small factors. Factoring N using the Coppersmith’s

algorithm reveals a and k and eventually the prime p. [34]

D. Related CWEs and SFP

The related SFP cluster is SFP Primary Cluster:
Predictability [6], which is CWE-905 with members CWE 330
to 344 [5].

Among them, the PRN CWEs are: 330, 331, 332, 334, 335,
336, 337, 338, 339, 340, 341, 342, 343 [5].

VI. CONCLUSION

A. Summary

In this paper, we presented two new BF Classes: True-
Random Number Bugs (TRN) and Pseudo-Random Number
Bugs (PRN). They join other rigorously-defined BF classes,
such as Encryption/Decryption Bugs (ENC), Verification Bugs
(VRF), and Key Management Bugs (KMN). We presented the
(static) attributes of the classes, along with the classes’ causes
and consequences. We analyzed particular vulnerabilities
related to those classes and provided clear descriptions. We
showed that the BF-structured descriptions of randomness bugs
are quite concise, while still far clearer than unstructured
explanations that we have found.

B. Lessons Learned and Future Work

At first, we tried to define a single Randomness class.
However, that meant mixing the causes, attributes, and
consequences related to true-random number generation and
pseudo-random number generation. While exploring related
vulnerabilities, we also realized that some of the consequences
from the former may be causes for the latter. For example, if
the consequence of a faulty seed generation is weak seed, this
becomes the cause for a PRNG fault.

We considered keeping it all in one class by grouping the
causes, attributes’ values, and consequences related to true- and
pseudo-random number generation. However, the model of

randomness generation that we developed showed that these
are two clearly separated processes and there should be two
separate PRN and PRN randomness classes.

Work on explaining more randomness bugs using TRN and
PRN will help us determine if our BF taxonomy needs
refinement.

Our goal is for BF to become software developers’ and
testers’ “Best Friend.”

VII. REFERENCES

[1] D. Eastlake, J. Schiller, S. Crocker, “Randomness Requirements for
Security”, 2005, https://tools.ietf.org/html/rfc4086/.

[2] I. Bojanova, P. E. Black, Y. Yesha, and Y. Wu, “The Bugs Framework
(BF): A Structured approach to express bugs”, Proceedings of IEEE
International Conference on Software Quality, Reliability and Security
(QRS), 2016, , pp. 175-182.

[3] I. Bojanova, P. E. Black, and Y. Yesha, “Cryptography classes in Bugs
Framework (BF): Encryption Bugs (ENC), Verification Bugs (VRF),
and Key Management Bugs (KMN)”, 28th Annual IEEE Software
Technology Conference (STC), 2017.

[4] The MITRE Corporation, Common Vulnerabilities and Exposures
(CVE), https://www.cve.mitre.org.

[5] The MITRE Corporation, Common Weakness Enumeration (CWE),
https://cwe.mitre.org.

[6] N. Mansourov, “DoD Software Fault Patterns,” KDM Analytics, Inc.,
2011. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADB381215/.

[7] The Bugs Framework, https://samate.nist.gov/BF.

[8] E. Barker, J. Kelsey, “NIST Special Publication 800-90A, Revision 1,
Recommendation for Random Number Generation Using Deterministic
Random Bit Generators”, NIST, June 20q5,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
90Ar1.pdf.

[9] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,
Mary L. Baish, Mike Boyle, NIST Special Publication 800-90B,
Recommendation for the Entropy Sources Used for Random Bit
Generation, NIST, January, 2018,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
90B.pdf,.

[10] E. Barker, J. Kelsey, (Second Draft) NIST Special Publication 800-90C
"Recommendation for Random Bit Generator (RBG) Constructions",
https://csrc.nist.gov/csrc/media/publications/sp/800-
90c/draft/documents/sp800_90c_second_draft.pdf.

[11] N. Heninger, “New research: There's no need to panic over factorable
keys–just mind your Ps and Qs”, Feb. 15, 2012, https://freedom-to-
tinker.com/2012/02/15/new-research-theres-no-need-panic-over-
factorable-keys-just-mind-your-ps-and-qs/.

[12] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C.
Wachter, “Ron was wrong, Whit is right”, Infscience,
https://infoscience.epfl.ch/record/174943.

[13] J. Kelsey, B. Schneier, D. Wagner, C. Hall. "Cryptanalytic attacks on
pseudorandom number generators". Fast Software Encryption, Fifth
International Workshop Proceedings. Springer-Verlag. pp. 168–188,
1998.

[14] J. Kelsey, B. Schneier, N. Ferguson, "Yarrow-160: Notes on the Design
and Analysis of the Yarrow Cryptographic Pseudorandom Number
Generator", https://www.schneier.com/academic/paperfiles/paper-
yarrow.pdf.

[15] Wikipedia, “Cryptographically secure pseudorandom number
generator”,https://en.wikipedia.org/wiki/Cryptographically_secure_pseu
dorandom_number_generator/ .

[16] John Kelsey, Kerry A. McKay, and Meltem Sönmez Turan, “Predictive
Models for Min-Entropy Estimation”, International Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2015, pp 373-
392, http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918415.

[17] WebPortal CMS 0.6-beta - Remote Password Change, Exploit Database,
https://www.exploit-db.com/exploits/4835/.

[18] Wikipedia, “Initialization vector”,
.https://en.wikipedia.org/wiki/Initialization_vector.

[19] VULDB, “OPENSSL/SSLEAY Pseudo-random Number Generator
Weak Encryption”, https://vuldb.com/?id.16976.

[20] Security Focus, “OpenSSL PRNG Internal State Disclosure
Vulnerability”, https://www.securityfocus.com/bid/3004.

[21] OpenSSL, “Weakness of the OpenSSL PRNG in versions up to
OpenSSL 0.9.6a”, “https://www.openssl.org/news/secadv/prng.txt

[22] Security Traker, “OpenSSL Uses Potentially Predictable Pseudo-
Random Number Generator”, https://securitytracker.com/id/1001961

[23] PHP Manual, rand, http://php.net/manual/en/function.rand.php.

[24] PHP Manual, mt_rand, .http://php.net/manual/en/function.mt-rand.php.

[25] StackExchange, “Information Security, How insecure are PHP's rand
functions?”, https://security.stackexchange.com/questions/18033/how-
insecure-are-phps-rand-functions .

[26] Security Focus, “WordPress Random Password Generation Insufficient
Entropy Weakness”, http://www.securityfocus.com/bid/31115 .

[27] Wikipedia, “Address space layout randomization”,
https://en.wikipedia.org/wiki/Address_space_layout_randomization.

[28] GitHub, Inc. [US], “torvalds/linux”,
https://github.com/torvalds/linux/blob/master/drivers/char/random.c.

[29] J. Salwan, “ASLR implementation in Linux Kernel 3.7”, Jan. 19, 2013,
http://shell-storm.org/blog/ASLR-implementation-in-Linux-Kernel-3.7.

[30] xorl.wordpress, “Linux kernel ASLR Implementation” with 4
comments, https://xorl.wordpress.com/2011/01/16/linux-kernel-aslr-
implementation.

[31] git.kernel, index:: kernel/git/torvalds/linux.git”,
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=8a0a9bd4db63bc45e3017bedeafbd88d0eb84d02.

[32] xorl.wordpress, “CVE-2009-3238: Linux kernel get_random_int()
Predictable Numbers”, https://xorl.wordpress.com/2009/10/26/cve-
2009-3238-linux-kernel-get_random_int-predictable-numbers.

[33] openSUSE Mailinglist Archive: opensuse-security-announce (12 mails)
https://lists.opensuse.org/opensuse-security-announce/2009-
11/msg00005.html.

[34] M. Nemec, M. Sys, P. Svenda, D. Klinec, V Matyas, ”The Return of
Coppersmith’s Attack: Practical Factorization of Widely Used RSA
Moduli”, ACM CCS 2017,
https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_ccs17_prepri
nt.pdf.

