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ABSTRACT
The increasing decentralization of manufacturing has con-

tributed to the growing interest in scalable distributed manu-
facturing systems (DMSs). The emerging body of work from
smart manufacturing, Industrie 4.0, Industrial Internet of Things
(IIoT), and cyber-physical systems can enable the continued
development of scalable DMS, particularly through the digital
thread. However, significant challenges exist in understanding
how to apply the digital thread most appropriately for scalable
DMS. This paper describes these major challenges and provides
a standards and technology roadmap developed from the digi-
tal thread viewpoint and consensus-built industrial standards to
realize scalable DMS. The goal of this roadmap is to guide re-
search that enables manufacturers to take advantage of oppor-
tunities provided by scalable DMS, including improved agility,
flexibility, traceability, dynamic decision making, and utilization
of manufacturing resources.

1 Introduction
Several trends have contributed towards the growing decen-

tralization of manufacturing systems. For example, with the
growth of global production networks original equipment man-
ufacturers (OEMs) have increasingly become system integrators
rather than just manufacturers. There is also a growing desire to
design and manufacture products closer to the end user, which
requires customer involvement in the product development pro-
cess and enables more individualized products [1]. Furthermore,
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both small and large manufacturers have identified opportunities
to leverage external capacity to provide flexibility. For example,
small-to-medium manufacturers often have excess capacity that
can be monetized by providing services to OEMs that need re-
sources to meet planned or unplanned production changes. These
trends have contributed to a growing interest in distributed and
federated systems, which we will call distributed manufacturing
systems (DMSs).

DMSs are manufacturing systems composed of heteroge-
neous components that have a means of semantic interoperabil-
ity that enables the coordination and control of activities. Fig-
ure 1 provides a schematic representation of a DMS. There are
a variety of examples of DMSs, including tiered supply chains
common in the aerospace and automotive sectors, traditional job
shops that may use equipment of different capability and vin-
tage from a variety of vendors, and emerging organizations fo-
cused on providing manufacturing services on-demand. While
the scale of each of these examples may be substantially dif-
ferent, they are architecturally similar at a meaningful level of
abstraction, which enables the scalability of DMSs. Scalable
DMSs can provide useful capabilities to manufacturers, includ-
ing agility, flexibility, traceability, dynamic decision making, and
ultimately improved utilization of manufacturing resources.

The growing body of work from smart manufacturing, In-
dustrie 4.0 (I4.0), Industrial Internet of Things (IIoT), and cyber-
physical systems (CPSs) can support the continued development
of scalable DMSs. These concepts all promise to link the various
phases, viewpoints, and systems of the product lifecycle, which
allows manufacturers to deliver higher-quality products to mar-
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FIGURE 1. Cyber-physical representation of a scalable distributed manufacturing system (DMS)

ket in ways that are faster, cheaper, and more sustainable. Link-
ing each portion of the lifecycle requires a means to integrate
information and the structure of that information, which is the
digital thread [2]. The digital thread is an integrated information
flow that connects all of the phases of the product lifecycle using
an accepted authoritative data source (e.g., technical data pack-
age [3], three-dimensional (3D) computer-aided design (CAD)
model) [2, 4, 5]. The digital thread provides the infrastructure
needed to link heterogeneous systems to support decision mak-
ing, knowledge generation, and control.

Both distributed and federated systems can be integrated
using the digital thread, but manufacturers require a standards
and technology roadmap to understand how to apply the digital
thread most appropriately for scalable DMSs. One example of
research in this area is the digital surrogate, which is an appli-
cation of the digital thread to the manufacturing shop-floor en-
vironment where integrated information flows are leveraged to
digitize production systems and apply modeling and simulation
to enable dynamic control (i.e., the Digitization and Realization
boxes in Figure 1). The digital surrogate has also been called
the digital twin [6, 7, 8, 9]. The term “twin” implies a one-to-one
match between a digital model and a physical asset, but one must
consider that models are simply representation of things. Thus,
models have an inherent uncertainty that must be attributed to
them, which is why digital surrogate is a more precise term. The

lack of understanding about this inherent uncertainty further mo-
tivates the need for a standards and technology roadmap. The
goal of this paper is to describe such a roadmap to guide the re-
search needed to realize scalable DMSs.

2 Challenges Hindering Scalable Manufacturing Sys-
tems
ISA-95 [10] is an enterprise-control system integration

framework, which is intended to help organizations integrate
business processes, manufacturing operations, control, and low-
level processes. Figure 2 presents the scope and hierarchy of
the ISA-95 framework. The framework is broken into five lev-
els – level four is the highest level, which is focused on busi-
ness planning and logistics. Level four is where systems such
as enterprise-resource planning (ERP) are deployed. Level three
deals with manufacturing operations management and is where
a manufacturing-execution system (MES) is utilized. Level two
and level one deal with control, where level two focuses on mon-
itoring and level one focusing on sensing. The lowest level is
level zero, which deals with the individual physical processes of
manufacturing (e.g., milling, turning).

ISA-95 provides a sound foundation for describing the dif-
ferent types of systems and functions that exist in a manufactur-
ing system. Part three [12] of ISA-95 standardizes several ac-
tivity models of manufacturing operations. These activity mod-
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FIGURE 2. Scope and hierarchy of the ISA 95 enterprise-control sys-
tem integration framework (based on [11])

els provide concise guidance to organizations for the purposes
of integrating the various systems encountered within each level.
However, in practice, it is difficult to integrate vertically across
the levels of ISA-95 [13, 14, 15, 16]. Further, the framework im-
plies single monolithic MES and ERP systems. If this is true, are
monolithic integrations capable of being scaled or distributed?
This is a question that must be answered before the full bene-
fits of a framework like ISA-95 could be achieved to enable a
scalable DMS.

ISA-95 was developed by the process industry. The frame-
work was not purpose built for discrete manufacturing. Enabling
scalable DMSs requires both vertical integrations within domains
and horizontal integrations between domains. Horizontal inte-
gration requires connecting heterogeneous information and sys-
tems, which implies the need for semantic mediation. Thus, are
the information models (or behaviors, methods, interfaces, ser-
vices) described with sufficient precision to enable translation of
data (e.g., syntactic integration) and/or semantic interoperabil-
ity? The answer is, not completely.

Each phase of the product lifecycle has different viewpoints
and concerns, which lead to different levels of abstraction in
modeling and simulation [17, 18, 19]. The various viewpoints
lead to information models and systems being developed for a
specific purpose, which results in different information models
across phases of the lifecycle to look at the same data in different

ways. A “fit for purpose” approach to modeling is recommended
because it enables “expert systems” that support the user (i.e.,
human), in a specific function and role, to make decisions in a
contextual way.

Conversely, purpose-built models are not scalable. Data re-
quires context when related to decisions [20]. Data alone is not
sufficient for decision making because the decision maker must
understand the scope and type of the problem the decision is in-
tended to solve. As the scope of the problem changes, the models
must also change. Thus, connecting of heterogeneous informa-
tion and systems to enable scalable DMSs introduces a paradox
to the steadfast approach of purpose-driven modeling. A trade-
off of how purpose-built to make a model versus how scalable to
make a model must be considered with the shift towards scalable
DMSs.

Scalable DMSs require an effective and efficient forward
and backward communication backbone. This requires integrat-
ing domains in multiple directions while providing scalable con-
textual models. Overcoming these challenges to a scalable DMS
is not easy, but we believe a standards-based approach, using the
digital thread, provides the best opportunity for maximizing the
successful deployment of scalable DMSs.

3 Defining Use Case for Research
Addressing the challenges and barriers to scalable manu-

facturing systems described in Section 2 requires defining an
appropriate use case reflective of industrial practice, but man-
ageable in the context of research. The use case we propose is a
flexible machining cell composed of a numerical control (NC)
machine tool, coordinate-measurement system (CMS), robot,
in-process metrology system (e.g., cutting-tool metrology),
and material-handling system (e.g., automated-guide vehicle);
see Figure 3. Such a cell would act as an on-demand, pull
manufacturing system that autonomously produces finished
parts from stock material and resources using the following
sample workflow:

1. Humans set the initial work plans

2. Autonomous systems execute the work

3. Control systems study the execution of the work while all
systems communicate with each other

4. Autonomous systems self-adjust the work plans and act
based on inputs from the control system and other systems

The objective of the proposed research is to develop a refer-
ence implementation for a flexible machining cell that will scale
to larger production systems. The research would leverage and
extend the lifecycle information framework and technology pro-
posed by Hedberg et al. [21]. The framework consists of three
layers: (1) linked product-lifecycle data, (2) data certification and
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FIGURE 3. Representation of flexible machining cell for on-demand,
pull production

traceability, and (3) data-driven applications. The framework and
technology supports both vertical (i.e., intra-phase) and horizon-
tal (i.e., inter-phase) integration in the product lifecycle.

The proposed research would enable all decisions (e.g., pro-
cess parameters, schedule, routing) to be made based on the
measured and predicted status or capability of the physical com-
ponents of the manufacturing system as well as additional part
and process information (e.g., product and manufacturing infor-
mation (PMI), order and delivery schedules, process constraints
and specifications) from production management and control
databases (e.g., product-data management (PDM), ERP, MESs,
and quality-management systems (QMSs)). Data and informa-
tion would be shared across the manufacturing system based
on consensus-built industry standards, including Standard for
the Exchange of Product Model Data Application Protocol 242
(STEP AP242) [22], MTConnect [23], and Quality Information
Framework (QIF) [24]. Such a manufacturing system would rep-
resent a CPS paradigm for manufacturing where control of the
physical elements would be determined using modeling, simula-
tion, and optimization that occurs in a cyber or digital environ-
ment (see Figure 1).

To achieve the goals of the proposed research, the cell
must be composed of industry-standard equipment and must
process parts designed to reflect authentic production compo-
nents. Ideally, the development of such a cell would be supported
through collaborations between academia, government, and in-
dustry partners to ensure that all stakeholder needs are recog-
nized and satisfied. A longer-term goal of this work is to deploy
several of these cells with industry partners to verify and validate
the implementation and its scalability.

4 Proposed Standards and Technology Roadmap
Distributed decision making is an important component to

successfully enabling a scalable DMS. Flexibility and agility
is added to the manufacturing system by decoupling the deci-

sion directives from the specification requirements – allowing the
manufacturing system to focus on managing itself for how best
to schedule and make product. This idea moves manufacturing
systems towards logistics systems where the manufacturing sys-
tems acts as an agent in a larger supply chain [25, 26, 27]. How-
ever, several areas of research must be expanded and integrated
to support the shift towards scalable DMSs. We identify four im-
mediate areas of need: (1) cyber-infrastructure integration, (2)
physical-infrastructure integration, (3) modeling and simulation,
and (4) analytics and data science for manufacturing. Successful
extension of these four areas of research, coupled with emerg-
ing IIoT concepts, provides opportunities to integrate cyber and
physical systems in meaningful ways to support the realization
of a scalable DMS as depicted in Figure 1.

4.1 Cyber-infrastructure integration
The Digital Thread for Smart Manufacturing project1 at Na-

tional Institute of Standards and Technology (NIST) defined the
conceptual framework [21], described in Section 3, for lifecycle
information management and integration of emerging and exist-
ing technologies that support data curation, discovery, and reuse
in manufacturing. The project provided a standardized infras-
tructure to richly represent lifecycle data and place it into the ap-
propriate context to generate useful knowledge. The framework
leverages and promulgates existing data standards such as STEP
AP242, MTConnect, and QIF.

Needs for cyber-infrastructure integration should include a
focus on further extending the digital thread – particularly in-
tegrating the elements of the cyber-world depicted in the top
portion of Figure 1 while supporting information flow on all
the arrows. This area of focus would build upon previous
work in the areas of dynamic knowledge-base management,
decision support, requirements management, and architectures
[16, 21, 28, 29, 30]. Research components for extending the pre-
vious work on reference architectures should include the use of
agents and on-demand micro-services [31, 32, 33].

Furthering linked-data and semantic web concepts for man-
ufacturing, including the use of handles [34], is required for re-
alizing the goal of autonomous knowledge generation and de-
cision diagnostics. Semantic web for manufacturing would be
enabled by standardizing the interfaces between functions, roles,
and phases of the product lifecycle. Standard interfaces could be
achieved by continuing to identify normalized elements to sup-
port a minimum information model [35, 36]. However, gaps [37]
in integrating product design, manufacturing, and quality data
must be resolved to successfully link the phases of the product
lifecycle using standard interfaces.

In addition, authentication, authorization, and traceability
cannot be ignored. Hedberg et al. [38] proposed using X.509
Public Key Infrastructure (X.509-PKI) [39] for embedding trace-

1https://www.nist.gov/programs-projects/digital-thread-smart-manufacturing4



ability metadata into artifacts. The embedded metadata would
assist functions of the lifecycle in determining what data is, how
the data can be used, and who did what to the data. This could
all be done in support of trustworthiness. Additional work is
required to determine a metadata schema that enables trusted ex-
change of artifacts throughout the product lifecycle. Emerging
technologies, such as blockchain and distributed ledgers, could
also support trustworthiness requirements.

4.2 Physical-infrastructure integration
The Prognostics, Health Management, and Control (PHMC)

project2 at NIST delivered methods, protocols, and tools for ro-
bust sensing, diagnostics, prognostics, and control that enable
manufacturers to respond to planned, new, and un-planned per-
formance changes towards the goal of enhancing the efficiency of
smart manufacturing systems. The project promoted advanced
sensing, prognostics and health management, and control from
ISA-95 manufacturing levels zero through three. The resulting
impact is improved decision-making support and greater automa-
tion with a focus on vendor-neutral approaches and plug-and-
play solutions.

In addition, NIST provides the public with real manufactur-
ing data of a contract manufacturer through the Smart Manufac-
turing Systems (SMS) Test Bed. The SMS Test Bed is comprised
of a computer-aided technologies (CAx) lab containing several
computer-aided technology tools, a manufacturing lab mimick-
ing the configuration of a contract-manufacturing shop, and data
publication web services. The goal of the SMS Test Bed is to
extend existing production-focused concepts by designing and
developing an architecture [30] for a test bed that enables smart
manufacturing research and development across the product life-
cycle [40].

Needs for physical-infrastructure integration should include
focusing on leveraging the reference architecture from the SMS
Test Bed [30] while coupling the work from the PHMC project
with part-process methods and an integration of fabrication sys-
tems, robotic systems, and metrology systems. This focus would
address the the physical-world depicted in the bottom portion of
Figure 1 and would define standard interfaces for the inputs from
realization and outputs to digitization.

Sensing, monitoring, and control methods would be fur-
ther studied to provide a full integration of ISA-95 from level
zero to level four. This would require support from the cyber-
infrastructure integration work to support connecting and con-
textualizing the representation of ERP and MES systems. Fur-
ther, methods to control physical machines (e.g., fabrication,
robots, metrology) requires an innovative shift towards model-
based control.

Manufacturing has reached the fundamental limits of what

2https://www.nist.gov/programs-projects/prognostics-health-management-
and-control-phmc

its tools and processes can manage. For example, G-code was
developed at a point when hardware and computing power was a
limiting factor and the programming approach was not intended
for accessing the machine controller directly [41]. However,
computing power today far exceeds the capabilities of G-code
for programing machine tools. Hardware and computing are no
longer the limiting factors – G-code has become the functional
limits of what a machine tool can achieve. Model-based control
systems are feasible now because of the advancement in com-
puting power. Fabrication systems would benefit significantly by
enabling a controller to interact directly with a part and process
model [42].

The research direction we propose for physical-
infrastructure integration would enable a model-based transfor-
mation of manufacturing control. Models, coupled with sensing
and monitoring, would be used to plan processes, execute
(do) those processes, study the execution, and take action to
ensure effective and efficient performance of the manufacturing
system. Applying the Deming-Shewhart Plan-Do-Study-Act
cycle [43] to our proposed approach of scalable DMSs would
ensure the system is achieving its goals and that all decisions
are determined based on measured physical components of the
system and part and process information.

4.3 Modeling and simulation
Two related projects at NIST are focused on increasing

access to and availability of analytical capabilities to support
smart manufacturing [16]. The Systems Analysis Integration for
Smart Manufacturing Operations (SAISMO) project3 has devel-
oped methods and protocols to facilitate analysis of smart man-
ufacturing operations by enabling efficient integration of smart
manufacturing systems models and engineering analysis models.
The Modeling Methodology for Manufacturing System Analysis
project4 has developed new ways of applying analytical and em-
pirical methods using domain-specific modeling methodologies
tailored for smart manufacturing.

Modeling and simulation research addresses the needs of the
analysis environment of Figure 1. Grand challenges in modeling
and simulation for manufacturing systems have been addressed
in [44, 45]. An overarching challenge is time and expertise re-
quired to develop useful models and simulations of manufac-
turing systems and populate (or update) them with information
gathered from the system.

System models developed using the Systems Modeling Lan-
guage (SysML) [46] provide a ‘single source of truth’ for or-
ganizing and integrating heterogeneous models and information
gathered from multiple engineering disciplines involved in sys-

3https://www.nist.gov/programs-projects/systems-analysis-integration-
smart-manufacturing-operations

4https://www.nist.gov/programs-projects/modeling-methodology-smart-
manufacturing

5



tem design and operation. Formal system models convey unam-
biguous, shared meaning of manufacturing concepts that extends
beyond common information models. Model-based systems en-
gineering (MBSE) methods integrate concerns from multiple en-
gineering disciplines to support the design, operation, and main-
tenance of product and production systems [17, 47], including
the many viewpoints and abstractions used to construct analysis
models [18, 48].

One area of intense focus is the formalization of part and
process models and linking those models to shop floor data col-
lection. Part models capture details about what should be pro-
duced (e.g., CAD models) and how well the resulting object was
actually produced (e.g., QIF information). Process models de-
scribe both what needs to be done to produce a part (capabilities)
and capture options for sequencing the execution of those capa-
bilities (process steps). These models capture execution informa-
tion, including duration and machines that executed each step.
They may provide a common representation of manufacturing
capabilities, both required by parts and provided by machines.
Incorporating semantic meaning with raw data enables consis-
tent interpretation across applications using that data. This infor-
mation informs many operational decisions, such as scheduling,
enabling these decisions to be made dynamically using real-time
feedback from the shop floor.

Enabling dynamic decision making, such as scheduling,
in smart manufacturing environments requires access to robust
decision-support, often provided by simulation and optimization
tools. Integrating simulation and optimization tools with sources
of system information can be enabled by system models that de-
scribe standard interfaces to analysis tools [49].

The research direction we propose for addressing the anal-
ysis environment requirements for smart manufacturing systems
focuses on modeling and simulation challenges. Standard refer-
ence models containing reusable domain-specific part, process,
and resource definitions provide a semantic foundation for inte-
grating simulation and optimization models, methods, and tools
with shop floor decision-support.

4.4 Analytics and data science for manufacturing
The Data Analytics for Smart Manufacturing project5 at

NIST developed standards, software tools, methodologies, and
guidelines to enable small-and-medium enterprises to apply data
analytics services to improve decision-making and performance
in smart manufacturing systems. The project studied four key
areas: information standards, measurement methods, integration
framework, and a data analytics testbed. The project proposed
two new models to extend Predictive Model Markup Language
(PMML) – Gaussian process regression and Bayesian networks.
In addition, the project supporting the development of the Amer-

5https://www.nist.gov/programs-projects/data-analytics-smart-
manufacturing-systems

ican Society of Mechanical Engineers (ASME) subcommittee
for verification and validation of computational modeling for ad-
vanced manufacturing6.

Needs for analytics and data science in manufacturing
should include a focus on extending the information standards,
measurements methods, and integration framework further into
predictive and prescriptive analytics. The goal would be to
further mature manufacturing models for predictive analytics,
domain-specific languages for performing predictive analytics,
standard interfaces for data analytics tools, and further study of
uncertainty quantification. Then, models could be developed to
move beyond predictive analytics toward prescribing what needs
to be done based on an ability to predict the future and understand
the interactions of the various operation and materials on the sys-
tems. Enhancing analytics and data science in manufacturing
would support decisions in and interactions with each compo-
nent represented in Figure 1.

The study of analytics and data science in manufacturing
must include both data analytics [50, 51] and visual analytics
[52]. This would leverage our proposed modeling and seman-
tics work to enable effective decision making by both machines
and humans. Further, leveraging the traceability, security, verifi-
cation, validation, and data provenance methods from our pro-
posed cyber-infrastructure integration work, and combining it
with enhanced uncertainty quantification, would enable effective
research in applying machine learning and artificial intelligence
concepts to decision making in scalable DMSs.

Significant time is spent searching for data and develop-
ing knowledge across the product lifecycle. Leveraging trust-
worthy artificial intelligence would achieve autonomous decision
support, requirements management, and knowledge management
across distributed and/or federated systems. This would free up
time for labor to focus solely on the activities that require human
participation.

5 Summary
The digitalization of manufacturing systems is in full swing

thanks to international pursuits in smart manufacturing, I4.0,
IIoT, and CPSs. However, work remains in fully realizing
the digital thread in support of scalable DMS. Shifting the de-
sign specification paradigm from primarily paper-based two-
dimensional (2D) drawings to 3D model-based definitions could
reduce manufacturing and inspection cycle time by up to 75%
on average [2]. Further, managing digital-data streams through
models while improving the transmission of digital information,
enhancing sensing and monitoring, advancing the use of data an-
alytics, and efficiently communicating information to decision
makers to help determine and implement required actions would
save United States manufacturers $57.4 billion annually [53].

6https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=101978604
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The annual savings could be significantly higher as the figures
do not account for reinvestment of savings and other value gains
as a result of more manufacturing-system availability and poten-
tial positive cash flow.

More importantly, deploying scalable DMS makes the over-
all system(s) more agile. Engineers would be able to do more
with less. Decisions are made today based on a limited set of
knowledge and/or selection options. Increasing the agility of
manufacturing systems would enable designers and engineers to
create on an unprecedented scale since they will now have tools
to rapidly test ideas and create new products that will meet cus-
tomer requirements much better than they do today.

However, barriers to innovation increase the cost of smart
manufacturing research and development (R&D) and small-
to-medium manufacturers face the highest burden to adopt-
ing smart-manufacturing technologies [1]. Therefore, standards
must play a key role in the advancement of paradigm-setting
technologies. Industry requires standards that support both verti-
cal integrations of manufacturing systems and horizontal integra-
tions of the manufacturing domain with design and other phases
of the product lifecycle.

NIST researchers expect the development of a flexible ma-
chining cell with industrial partners will illuminate the chal-
lenges that must be addressed to enable growth of smart man-
ufacturing and the digital thread in industry. For example, one
area identified is the need for standardized interfaces between
physical components of manufacturing systems that allow these
components to coordinate their activities. Another need is mod-
eling and simulation approaches that can capture the complex
interactions in manufacturing systems as well as the lack of ob-
servability of certain process and system data. Through this ef-
fort, NIST hopes to contribute to the enhancement of standards
and technologies where appropriate.

The primary goal of the effort proposed in this paper would
be the development of a reference implementation of a flexi-
ble, on-demand, pull manufacturing system that may be used
by industry to leverage the digital thread within production sys-
tems. The digital thread enables the collection, transmission, and
sharing of data and information between heterogeneous product-
lifecycle systems, which are typically silo-ed between different
functions and organizations [21]. Such integration allows indus-
try to use data and information to reduce costs, improve produc-
tivity, ensure first-pass success, and augment existing capabili-
ties in the workforce [40]. Our proposal also addresses evolving
industry challenges due to the increasingly distributed nature of
modern manufacturing activities and the growing complexity of
manufacturing systems and networks.
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