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Spin–phonon couplings in transition metal
complexes with slow magnetic relaxation
Duncan H. Moseley 1, Shelby E. Stavretis1, Komalavalli Thirunavukkuarasu 2, Mykhaylo Ozerov 3,

Yongqiang Cheng4, Luke L. Daemen4, Jonathan Ludwig3, Zhengguang Lu3, Dmitry Smirnov 3,

Craig M. Brown 5, Anup Pandey4, A.J. Ramirez-Cuesta 4, Adam C. Lamb1,

Mihail Atanasov 6,7, Eckhard Bill 8, Frank Neese6 & Zi-Ling Xue 1

Spin–phonon coupling plays an important role in single-molecule magnets and molecular

qubits. However, there have been few detailed studies of its nature. Here, we show for the

first time distinct couplings of g phonons of CoII(acac)2(H2O)2 (acac= acetylacetonate) and

its deuterated analogs with zero-field-split, excited magnetic/spin levels (Kramers doublet

(KD)) of the S= 3/2 electronic ground state. The couplings are observed as avoided

crossings in magnetic-field-dependent Raman spectra with coupling constants of 1–2 cm−1.

Far-IR spectra reveal the magnetic-dipole-allowed, inter-KD transition, shifting to higher

energy with increasing field. Density functional theory calculations are used to rationalize

energies and symmetries of the phonons. A vibronic coupling model, supported by electronic

structure calculations, is proposed to rationalize the behavior of the coupled Raman peaks.

This work spectroscopically reveals and quantitates the spin–phonon couplings in typical

transition metal complexes and sheds light on the origin of the spin–phonon entanglement.
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Transition metal complexes displaying slow magnetic
relaxation are of great interest for possible use as single-
molecule magnets (SMMs) and qubits1–10. One current

focus is to decrease the molecular size to a single metal
center2,4,11. To increase magnetic relaxation times, scientists have
sought bistable complexes with large axial anisotropy1–7 and large
energy barriers for the magnetization reversal12–14. This is usually
achieved by aiming for large, negative axial zero-field splitting
(ZFS) (|D| ≫ kT) and vanishing rhombicity, E/D, rendering pure
MS functions and no direct magnetic-dipole transitions such as
MS=−3/2 → +3/2 (S= 3/2 and D < 0). However, Gómez-Coca
and coworkers recently reported that 1, a Kramers ion with large
rhombic ZFS and significant g anisotropy, behaves as an SMM in
external magnetic fields (D'= (D2+ 3E2)1/2 ≈ 57 cm−1, E/D=
0.31)15.

Direct determination of large magnetic level separations (ZFS
> 33 cm−1) is a challenge4. Phonons are prevalent in the >15 cm
−1 region, making it difficult to distinguish them from magnetic
peaks by IR or microwave spectroscopy16. Frequency-domain-
Fourier-transform-terahertz-EPR spectroscopy (FD-FT-THz-
EPR) has been used to detect 10–200 cm−1 magnetic gaps10,17.
Far-IR spectroscopy has also been used to directly determine ZFS
parameters18–24, including the recent works by van Slageren and
coworkers utilizing variable magnetic fields to identify magnetic
peaks in SMMs21,22,25.

Raman spectroscopy is seldom used to examine ZFS of tran-
sition metal complexes. In 1991, Gnezdilov and coworkers
reported observation of ZFS transitions in [FeII(H2O)6]SiF6 by
Raman spectroscopy in magnetic fields4,26. These results agree
well with those from far-IR (D= 11.78 cm-1)27, high-frequency
electron paramagnetic resonance28 and frequency-domain-
magnetic-resonance spectroscopies28. The authors attributed the
Raman peaks in [FeII(H2O)6]2+ to the presence of orbital angular
momentum in the ZFS states. To the best of our knowledge,
Raman spectroscopy has not been used to probe molecular
magnetism in other complexes, although electronic transitions
have been probed29–35.

Spin–phonon coupling is often the mechanism of magnetic
relaxation in SMMs and qubits1–9,36. However, there is little
understanding of these interactions, including their nature and
magnitude. Phonons of SMM crystals include both intramole-
cular (or molecular) and lattice vibrations37. Recently, there has
been a drive using theoretical models38–40 to understand how
phonons lead to relaxations in SMMs. Goodwin and coworkers
have reported that [Dy(Cpttt)2][B(C6F5)4] (Cpttt= 1,2,4-
tBu3C5H2) displays magnetic hysteresis up to 60 K40. The mag-
netic relaxation is attributed to displacements primarily involving
the C–H motions on the Cpttt rings. A combination of experi-
mental methods is needed to directly observe, and thus help

understand, how phonons interact with unpaired electron spins.
Recent experimental evidence in this area includes work per-
formed by Rechkemmer and coworkers to observe spin–phonon
couplings of two field-dependent absorptions of a CoII SMM with
far-IR spectroscopy22.

We report here our studies of Co(acac)2(H2O)2 (1), Co
(acac)2(D2O)2 (1-d4) and Co(acac-d7)2(D2O) (1-d18).
Spin–phonon couplings have been probed by a combination of
Raman and far-IR spectroscopies. With magnetic fields, the inter-
Kramers transition moves and interacts with other phonons of g
symmetry, rendering avoided crossings (coupling constants ≈
1–2 cm−1). In Raman spectroscopy, phonon features of the
coupled peaks are observed with applied magnetic fields. Far-IR
spectroscopy reveals directly magnetic features of these coupled
peaks. Periodic density functional theory (DFT) calculations give
computed energies, atomic displacements and symmetries of the
phonons in 1-d4 and 1-d18 crystals. A vibronic model has been
developed for the field-dependent Raman transitions in 1. In
addition, ab initio calculations of the electronic structure in 1
reveal the origin of its ZFS.

Results
Structure and magnetic properties. Compound 1 is a high-spin,
d7 hexacoordinated CoII complex with a pseudo-tetragonal
structure (Fig. 1a). Its crystal structure, determined by single-
crystal X-ray diffraction at 100 K, shows C2h molecular symmetry
with equatorial and axial Co–O distances of 2.034, 2.040 and
2.157 Å, respectively. Crystal structure of 1-d18 determined by
powder neutron diffraction at 4 K allows the unambiguous
location of D atoms (Supplementary Figs. 1–2, Supplementary
Table 1 and Supplementary Note 1). If the local symmetry around
the CoII ion is approximated to D4h, the ground electronic state is
4A2g (4Ag for C2h). For high-spin, d7 complexes in D4h symmetry,
ZFS leads to two Kramers doublets (KDs) that, in the absence of
rhombicity in zero field, can be labeled by MS= ±1/2 and ±3/2.
When D < 0, E/D ≈ 0, the MS= ±3/2 KD is the ground state with
an easy axis of magnetization along the z-direction. For suffi-
ciently large |D|, fields up to a few Tesla cannot mix the two KDs
and induce any measurable magnetization in the x- or y-direc-
tions. In contrast, for D > 0 and E/D ≈ 0 complexes (Fig. 1b), the
ground state KD MS= ±1/2 is split into MS=−1/2 and +1/
2 states by Zeeman splitting which is strongly direction-
dependent. SMM behaviors in such complexes are not expected
because transitions between these two states are spin-allowed.
Gómez-Coca and coworkers have shown that 1 behaves as an
SMM (in external DC fields) despite its lower symmetry and
dominating large rhombicity observed in EPR15. Magnetic sus-
ceptibility fittings revealed large ZFS (D′= (D2+ 3E2)1/2 ≈ 57 cm
−1)15. EPR spectra showed typical rhombic effective g values
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Fig. 1 1, 1-d4 and 1-d18 and their ZFS. a Structures of 1, 1-d4 and 1-d18. b Ground-state quartet levels in high-spin, d7 complexes with D4h symmetry (D > 0;
E/D= 0). c The quartet levels in 1 with lower symmetry [E/D ≠ 0, D′= (D2+ 3E2)1/2], where the mixing coefficients a= cos β and b= sin β are described
by the mixing angle β obtained from the spin-Hamiltonian (S= 3/2) with large D in the absence of field61,62. Mixing depends on the rhombicity as tan 2β
=√3 (E/D) (SI of ref. 15)
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(2.65, 6.95, 1.83), rendering an easy axis of magnetization (along
y), but this is far from the usual axial situation encountered for D
< 0, E/D ≈ 0, namely g′= (0, 0, g′z). The best global para-
metrization for EPR and susceptibility data was favored to have
large rhombicity, E/D= 0.31, and moderate g anisotropy (for S=
3/2, g= (2.50, 2.57, 2.40)). But in principle almost any value of E/
D could be adopted, if the anisotropy of g is increased15. The
effects are covariant, because both rhombicity and g anisotropy
are mixing MS functions, at least for finite fields, as visualized in
Fig. 1c. Spin-Hamiltonian (SH) parameters cannot be deduced
experimentally because no EPR spectrum is feasible for such
highly excited MS= ±3/2 KD in 1. Ab initio calculations yielded
different values: D= 91.2, E= 10.1 cm−1 (CASSCF) and D=
63.3, E= 9.3 cm−1 (CASPT2)15.

We chose 1 in part for the fact that it displays slow magnetic
relaxation with E/D ≠ 0, its reported magnetic separation 2D′ ≈
114 cm−1 is relatively large and posed a challenge to measure
spectroscopically, and deuterated 1-d4 and per-deuterated 1-d18
could be prepared41.

Typical ZFS transitions between KDs in 1 (e.g., MS=−1/2 →
−3/2) are magnetic-dipole-allowed by both symmetry and
selection rules (ΔMS= 0, ±1)42,43. (In the double group D4h′,
MS= ±1/2 and ±3/2 KDs are represented by E1/2,g Γ

þ
6ð Þ and E3/2,g

Γþ7
� �

, respectively44,45.) These transitions are therefore far-IR
active14,18,19. (In the point groups D4h and C2h, the magnetic
dipole moment operators have the Eg, A2g and 2Bg, Ag

symmetries, respectively, as the rotations, Rx, Ry and Rz.) The
“MS=−1/2 → +3/2” transition is ordinarily forbidden (ΔMS=
2). As discussed below, the large rhombic E value in 1 makes the
MS=+3/2 state contain the MS=−1/2 character, thus rendering
the “MS=−1/2 → +3/2” transition magnetic-dipole-allowed. In
other words, both “MS=−1/2 → −3/2” and “MS=−1/2 → +3/
2” transitions in 1 are far-IR active. As vibronic analyses below
demonstrate spin–phonon couplings of the ZFS transition with g
phonons make the two coupled peaks contain both magnetic and
phonon features. In Raman spectra, the phonon excitations of the
coupled peaks reveal spin–phonon couplings in variable magnetic
fields. Far-IR spectra show directly the magnetic features of the
coupled peaks.

Spin–phonon couplings in Raman spectroscopy. Raman spectra
of 1, 1-d4 and 1-d18 under 0–14 T fields are given in Figs. 2a–f.
Figs. 2a-b (1) show four Raman peaks in the energy range
110–150 cm−1, which are close to the energy estimated for the
excited KD at 2D′ ≈ 114 cm−1 15. Interestingly, peak A at 116 cm
−1, which is the closest to 2D', is found to be slightly field-
dependent, shifting monotonously to 119 cm−1 at 14 T. Although
this feature suggests a magnetic contribution, it is unlikely to
be the ZFS transition between ϕ1,2 and ϕ3,4 levels of the KDs of 1
at zero field (Figs. 1 and 3). The peak does not show Zeeman
splitting and the shift rate of ~0.23 cm−1/T corresponds to a very
small difference of effective g values, Δg′ ≈ 0.5 (µB= 0.4668 cm−1/
T). We therefore infer that peak A is predominantly of phonon
origin, and its change with field reflects the magnetic feature of
the spin–phonon coupled peak. At 14 T, the phonon peak is still
weakly coupled to the ZFS transition. Even more interesting is
that peak C at 125 cm−1 is field-independent below 4 T, but then
attenuates with increasing field and shifts to higher energies,
whereas in the same field range (4–8 T), peak B appears at ~120
cm−1, gaining intensity with rising field and shifting to higher
energy. Above ~8 T, peak B becomes field-independent just at
the energy of the weak-field branch of peak C. This behavior has
the appearance of an avoided crossing. Below, we will explain the
effect by coupling of a phonon at 125 cm−1 to the transition from
the ground level ϕ1|0〉 to the excited level ϕ4|0〉, which is shifted

by Zeeman effect across the phonon range (Fig. 3). In this picture,
the low-field branch of peak B is Raman-silent, as it is primarily a
magnetic transition when the ϕ4|0〉 level is far from the phonon
energy. However, it gains intensity at 4–8 T due to mixing of the
phonon with the magnetic wavefunction. The high-field branch
of B is a nearly pure phonon again (at 125 cm−1). The shifting
magnetic level at higher fields then generates a second avoided
crossing with phonon peak D via the same mechanism.

Raman spectra of 1-d4 (Figs. 2c-d) also exhibit spin–phonon
couplings similar to those of 1, suggesting that deuteration of the
water ligands in 1-d4 does not significantly alter magnetic peaks,
phonons or their couplings in this region (110–140 cm−1).

In Raman spectra of 1-d18 (Figs. 2e-f), further deuteration has
shifted many phonons compared to those of 1/1-d4. Phonon A
and magnetic peak B appear to be coupled more strongly in
1-d18 than in 1/1-d4, such that both coupled peaks are observed at
0 T. With an applied field, A shifts to higher energy, eventually
residing at 115 cm−1 by 6 T. B loses intensity as it shifts at the rate
of ∼0.95 cm−1/T and vanishes by 4 T, as there are no additional g
phonons to couple with at 120–140 cm−1 and 4–14 T (Fig. 2e).

Raman peak positions in magnetic fields in Figs. 2a-f are listed
in Supplementary Table 2. The phonons that are coupled with the
ZFS peak at 0 T, forming A and B in the spectra of 1, 1-d4 and
1-d18, are Raman-active. In the C2h group, these phonons have
Ag/Bg symmetry, as periodic DFT-VASP phonon calculations
have shown in Supplementary Table 3.

Spin–phonon couplings and a vibronic model for the Raman
spectra. The field-driven avoided crossings in the Raman spectra
can be characterized by Fig. 346. A simplified Hamiltonian for the
coupling between magnetic |ϕj〉 and phonon |n〉 states (Fig. 3f) is
given by the following 2 × 2 matrix Eq. (1):

H ¼ Esp Λ

Λ Eph

 !
; ð1Þ

where Esp and Eph are the expected energies of the magnetic and
phonon excitations, respectively; Λ is the spin–phonon coupling
constant. The energy gap between the two excited states Eph – Esp
is δ (Fig. 3) which is not explicitly included in Eq. (1).

Solving the matrix gives two eigenvalues E± (with the
associated avoided-crossing peaks |Ψ±〉) in the secular Eq. (2).
An alternative, detailed expression of Eq. (2) is given in
Supplementary Note 2. Considering that Eq. (2) involves Λ2,
the sign of Λ may not be determined from the Raman spectra
here.

Esp � E
±

Λ

Λ Eph � E
±

�����
����� ¼ 0: ð2Þ

Upon coupling, |Ψ+〉 shifts to higher E+ while |Ψ−〉 shifts to
lower E−, as shown in Fig. 3f 46. For example, both states |Ψ±〉,
giving rise to peaks A and B in the Raman spectra of 1-d18 at 0 T
(Figs. 2e-f), contain magnetic and phonon features (Fig. 3). Since
the phonon here is Raman-active, the phonon portions of both A
and B make the two peaks observable in the Raman spectra.

Eqs. (1–2) provide a model to understand the spin–phonon
couplings in the Raman spectra (Figs. 2a–f) and calculate the
coupling constants, as discussed below. However, it should be
pointed out that for the Hamiltonian in Eq. (1), vibronic coupling
in the ground KD is neglected. In principle, however, both the
ground and excited KD states are involved in a transition, each
has a spin and vibrational substate, which all may interact with
each other. Thus, a more complete Hamiltonian should be at least
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a 6 × 6, or better, an 8 × 8 matrix. In contrast, Eq. (1) assumes
that the ground KD state is not involved in spin–phonon
coupling. In addition, this simple model assumes weak
spin–phonon couplings. Therefore, terms higher than single
phonon excitations are neglected. A more precise vibronic model
for the spin–phonon couplings is presented in Methods,
Supplementary Figs. 3–5 and in Supplementary Notes 3–4 and
will be discussed below. Lastly, this model only considers
coupling between the magnetic transition and one phonon,
typically the phonon closest in energy to the ZFS transition.
However, other distant g phonons may also be coupled to the

magnetic transition, although weakly, thus taking the magnetic
feature away.

Using Eq. (2) to fit the spin–phonon couplings in Figs. 2a–f
yields the coupling constants |Λ| for each avoided crossing
(Fig. 4). |Λ| corresponds to roughly half the distance between the
peaks at their closest positions. The larger the coupling constant,
the greater their repulsion (Fig. 4).

We have developed a more detailed vibronic model to quantify
the spin–phonon couplings in Fig. 4. Complex 1 possesses a large
rhombicity E/D. Parameters of the vibronic coupling model,
extracted from the experimental field-dependent Raman spectra,
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turn out to be rather insensitive to the E/D ratio (Supplementary
Table 4). Thus, we base qualitative discussions using our model
on E= 0. Magnetic-field-dependent Raman spectra of 1 (Figs. 2a-
b) consist of five branches A–E. For branches C–E, the regions at
low and high fields show almost no field dependence. While not
observed at low fields, B displays no field dependence at high
field. A and C–E correspond to vibrations with estimated zero-
field energies of ħω0= 116, ħω1= 125, ħω2= 128 and ħω3= 139
cm−1. At intermediate magnetic fields, branches B–D display the
slope of a magnetic-field-induced spin-transition as avoided
crossings. There are three avoided crossing points between B–C,
C–D and D–E at 7.64, 9.43 and 17.54 T with energies 125.05,
127.99 and 138.71 cm−1, respectively (Supplementary Table 5).
Here, magnetic excitations from the ground into the excited level
would appear when no crossing (|Λ|= 0) is present. Energies of
these unseen magnetic excitations increase with field and cross
the three different vibrational levels (0 T) at ħω1= 125 (C), ħω2

= 128 (D) and ħω3= 139 (E) cm−1. ħω1–3 are energies at the
crossing points (1/2(Esp+ Eph), Eq. (2)) from the B–C, C–D and
D–E couplings, respectively. Fig. 5 displays simulations of the
Raman transitions in the B||z field. The B||x and B||y field
directions were fitted as well, but neither was a close match to the
experimental results (Supplementary Fig. 4). Analyses of the field-
dependent Raman peaks were performed to potentially determine
E/D. However, results of the analyses indicate that the derived
parameters (Supplementary Table 4) are mostly insensitive to E/
D. Discussions of the mechanism of the intensities in the field-
dependent Raman spectra are given in Supplementary Note 5 and
Supplementary Figs. 6–7.

To the best of our knowledge, these are the first direct
observation of spin–phonon couplings (as avoided crossings)
in Raman spectra of a molecular compound and their
quantification. Brinzari and coworkers have studied ferro-
magnetic, MOF (metal-organic framework)-like CoII[N
(CN)2]2 and also found a phonon-coupled, field-dependent
transition in Raman spectra47.

Spin–phonon couplings in far-IR spectroscopy. As discussed
earlier14,18,19, transitions between the two KDs are in general
magnetic-dipole-allowed and therefore are potentially far-IR
active. For the spin–phonon coupled states of 1, 1-d4 and 1-d18
in Fig. 3, the magnetic features of the transitions are far-IR active.
In a diffuse reflectance measurement of a single crystal of 1-d4
(Fig. 6), the most significant difference between spectra of 0 and
16 T fields is a loss in absorption at ~115 cm−1 (Fig. 6a). Nor-
malizing these spectra (by dividing them by the 0 T spectrum to
remove field-independent absorptions) reveals additional details
(Fig. 6a) which are further enhanced in a color-coded contour
plot (Fig. 6b).

The most remarkable feature is a (weak) field-dependent
absorption, moving from 114 cm−1 at 0 T to ~150 cm−1 at 16 T
(trace 1, Fig. 6b). The shift rate of 2.25 cm−1/T reveals a
difference (or sum) of g′ values of the initial and final levels of Δg′
≈ 4.8. From a comparison with the principal g′ values obtained
from the previous spin-Hamiltonian parametrization for 115

(g′i(1,2)= 2.65, 6.95, 1.83 for ϕ1,2 of the lower KD and g'i(3,4)
= 2.34, 1.80, 6.63 for ϕ3,4 of the excited KD), we can infer in first
order that the main observed field-dependent IR-peak (trace 1)
may be from one of two possible transitions. The first is the ϕ1|
0〉→ ϕ3|0〉 transition with the field in the y-direction (Δg'=
6.95 - 1.80= 5.15; green line II in Fig. 7b); The second is the ϕ1|
0〉→ ϕ4|0〉 transition with the field in the x-direction (sum of
g' values: 2.65+ 2.34= 4.99; red line I in Fig. 7b). (At 5 K for the
far-IR studies, only the ϕ1|0〉 should be thermally populated, at
least for moderate to strong fields.) Corresponding simulations,
using the full spin-Hamiltonian (S= 3/2) for the three principal
field orientations (B||x, B||y, B||z) and for both magnetic
transitions to the excited KD, are given in Fig. 7. If trace 1 is
the ϕ1|0〉→ ϕ3|0〉 transition (green line II in Fig. 7b) with the field
in the y-direction (first possible transition above), another
transition (green line I) to the right of trace 1 would be expected.
However, no such trace is obvious in Fig. 6b, suggesting that trace
1 is unlikely the ϕ1|0〉→ ϕ3|0〉 transition with the field in the
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y-direction. If trace 1 is the ϕ1|0〉→ ϕ4|0〉 transition (red line I in
Fig. 7b) with the field in the x-direction (second possible
transition above), the ϕ1|0〉→ ϕ3|0〉 transition in the x-direction
(red line II in Fig. 7b) to the left of trace 1 in Fig. 6b is expected.
Such behavior can be explained by the difference in the effective g
values, Δg'= 2.65 − 2.34= 0.31, which is still positive. In fact,
traces 1 and 2 in Fig. 6b are consistent with the analysis. Starting

around 114 cm−1 at B= 0, traces 1 and 2 are the ϕ1|0〉→ ϕ4|0〉
(red line I) and ϕ1|0〉→ ϕ3|0〉 (red line II) transitions,
respectively. However, it should be noted that any such assign-
ment is a simplification when the crystal orientation is not
known, because other, off-axis orientations of the field may yield
similar results.

Spin–phonon coupling, which was not included in the above
analysis of Fig. 6, should not change the general picture. However,
it may explain the “gaps” observed in the field-dependence of the
ϕ1|0〉→ ϕ4|0〉 transition (trace 1). We suggest that the mixing of
the ϕ4|0〉 state with IR-silent g phonons at the points of the
avoided crossings reduces the absorption probability by 50%. As a
result, rather sharp, distinct gaps occur for the magnetic
transition (trace 1) at the phonon energies, as nicely observed
around ħω1= 125, ħω2= 128 and ħω3= 139 cm−1, which have
been assigned above to the g phonon peaks C, D, and E in the
Raman spectra (Figs. 2c-d).

Simulations in Fig. 7 support the analysis discussed earlier that
both ϕ1 → ϕ3 and ϕ1 → ϕ4 inter-KD transitions in 1 are
magnetic-dipole allowed and are expected to be observable in far-
IR. The two transitions, each in the x, y, z directions inside
magnetic fields, lead to the expected shifting patterns of the six
lines in Fig. 7b. Most lines, except one, are blue-shifted to higher
energies (Fig. 7a). Thus, average far-IR spectra of a powder
sample of 1 are expected to be blue-shifted and reveal the
magnetic features of the spin–phonon coupled peaks. Indeed, the
transmittance far-IR spectra of 1 (Supplementary Figs. 8a–b and
9) show these features, except that the coupled peaks are not
resolved as in the Raman spectra (Figs. 2a-b). The far-IR
transmittance spectra of a powder sample of 1-d4 (Supplementary
Figs. 8c–d and 10) are also consistent with the spin–phonon
coupling and features of the far-IR spectra of the single crystal of
1-d4 (Fig. 6). Far-IR transmittance of 1-d18 reveals similar
features in Supplementary Figs. 8e–f and 11.

Additional discussions of the far-IR spectra are given in
Supplementary Note 6. In the far-IR spectra of 1-d4, there are
four u phonons between 115 and 143 cm−1 (Supplementary
Table 3). Their symmetries have been assigned by the VASP

a

b

c

M
ag

ne
tic

 fi
el

d 
(T

)

18

16

14

12

10

8

6

4

2

0

M
ag

ne
tic

 fi
el

d 
(T

)

14

12

10

8

6

4

2

0

M
ag

ne
tic

 fi
el

d 
(T

)

14

12

10

8

6

4

2

0

115 120 125 130 135 140

Raman shift (cm–1)

115 120 125 130 135 140

Raman shift (cm–1)

115110 120 125 130 135 140

Raman shift (cm–1)

0.95(15) cm–1

1.05(5) cm–1

2.15(10) cm–1

1.05(10) cm–1

2.05(10) cm–1

1.00(10) cm–1

E

EDCA

A B

B

DC

B

A

Fig. 4 Peak positions vs. magnetic fields for selected transitions in the
Raman spectra. a 1; b 1-d4; c 1-d18. The solid lines are fittings using Eq. (2),
giving the coupling constants |Λ|. Arrows point to corresponding avoided
crossings for |Λ|

M
ag

ne
tic

 fi
el

d 
(T

)

18

16

14

12

10

8

6

4

2

0

115 120 125

DC

B

130 135 140

Raman shift (cm–1)

Fig. 5 Fitting of the Raman spectra. Simulated (solid lines) and experimental
(circles) positions of field-dependent (B||z) Raman transitions
corresponding to peaks B (red), C (blue) and D (green) of 1. gz = 1.49, ħω1

= 125.4 cm−1, ħω2= 128.1 cm−1, ħω3= 139.5 cm−1 (not shown in the
figure); E1= 1.14 cm−1, E2= 0.88 cm−1, E3= 2.66 cm−1 [E/D= 0.17 (ORCA
NEVPT2); 2D'= 115 cm−1]. E1, E2 and E3 from the vibronic calculations are
the coupling constants |Λ1|, |Λ2| and |Λ3|, Eq. (2), respectively, for the
interaction with the ħω1, ħω2 and ħω3 modes. Simulated and experimental
positions of field-dependent (B||x and B||y) Raman transitions are given in
Supplementary Fig. 4

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04896-0

6 NATURE COMMUNICATIONS |  (2018) 9:2572 | DOI: 10.1038/s41467-018-04896-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


calculations discussed below. No observed coupling between these
u phonons and the ZFS peak is found in far-IR spectra.

The results here from the Raman and far-IR spectroscopies
show that only the couplings of the ZFS transition to the g

phonons in 1, 1-d4 and 1-d18 are observed in Raman spectra.
Far-IR spectra in this work do not reveal couplings to the u
phonons. Work on the transition matrix in the future may
provide an understanding. It should be noted, however, that
pattern of the couplings is limited to the current complexes.
Additional work on other complexes, especially those with
different symmetries, is needed to have a comprehensive
understanding of the couplings.

Periodic DFT phonon calculations and comparisons with
experiments. Phonon modes for C2h1-d4 and 1-d18 are calcu-
lated by VASP (Supplementary Table 3) and show atomic
displacements with contributions from both external (lattice)
and internal modes. In the region of interest here, ~115 cm−1,
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vibrations are not localized but involve atomic displacements of
the whole molecule, as demonstrated in Supplementary
Movies 1–5. The modes with the largest spin–phonon coupling
constant |Λ|, E of 1/1-d4 (Supplementary Movie 4 for phonon E
of 1-d4) and A of 1-d18 (Supplementary Movie 5), have greatly
mismatched vector magnitudes of the equatorial O atoms,
leading to a larger net change in this bond angle (Supplemen-
tary Table 6). These vibrations significantly distort the first
coordination sphere and perhaps lead to the larger |Λ|.
Therefore, we rationalize that, if these phonons are involved in
magnetic relaxation, the O–Co–O equatorial-bond-angle dis-
tortion plays a key role in the spin reversal. These spin changes
of the excited KD is of prime importance for the magnetic
relaxation at elevated temperatures where the excited KD is
populated. Likewise, low-energy phonons (not included in
Supplementary Table 3) are responsible for the low-
temperature shortcut of the relaxation time. These effects are
beyond the scope of this work. Modes C and D of 1-d4 (Sup-
plementary Movies 2 and 3 for phonons C and D, respectively)
have less distortion of the O–Co–O equatorial bond angle and
therefore, we reason, do not couple as strongly with spin. These
findings are in line with recent calculations of spin–phonon
couplings in [(tpaPh)Fe]- [H3tpaPh= tris((5-phenyl-1H-pyrrol-
2-yl)methyl)amine] by Lunghi and coworkers demonstrating
that the vibrations perturbing the bending angle of the equa-
torial N atoms coordinated to the FeII ion are strongly coupled
to the spin38.

Additional results of the phonon calculations, including
distortion of the O–Co–O bond angle in the equatorial plane
compared with the spin–phonon coupling constants |Λ| (Supple-
mentary Table 6), are given in Supplementary Figs. 12–13 and
Supplementary Note 7. Supplementary Movie 1 for phonon A of
1-d4 is also provided.

Origin of ZFS in 1 analyzed by ab initio calculations. Although
1 has been studied as a model complex15,48,49, its ZFS origin
is not clear. Electronic structure of 1 has been reconsidered
using multireference ab initio calculations in close relation
and comparison with two basic experimental studies15,49,
including the single-crystal EPR work by Bencini and cow-
orkers49, in order to probe the origin. Lohr and coworkers
have calculated the electronic structure of 1 with descending
crystal field symmetry from octahedral to orthorhombic and
used the results to obtain magnetic properties48. Details of
the current electronic structure calculations and comparisons
with experimental results are given in Supplementary Figs.
14–18, Supplementary Tables 7–8 and Supplementary
Note 8.

According to the orbital energy diagram, dx0z0;y0z0<dx02�y02 (Sup-
plementary Fig. 17), the 4T1g state of a high-spin octahedral CoII

complex undergoes a D4h splitting into an 4A2g ground state and
an 4Eg excited state. When the symmetry is lowered to D2h and
C2h, 4Eg (D4h) state undergoes further splitting. Energies of all ten
S= 3/2 states and the effect of symmetry lowering are listed in
Supplementary Table 7. The sublevels of 4T1g are well separated
from the excited 4T2g levels with the overall splitting of the 4T1g
level about twice the effective CoII spin–orbit coupling (SOC)
parameter (530 cm−1).

Ab initio NEVPT2 calculations indicate that the splitting
between the two KDs is 169.8 cm−1, with the SOC-excited states
stemming from the 4Eg levels to be at 884.1, 1144.7, 1481.9, and
1616.2 cm−1, showing that there are no other excited states in the
vicinity of the lowest excited level at 169.8 cm−1. The computed
and g'x, g'y and g'z values of the lowest KD are 3.745, 6.846 and
1.864, respectively.

From the D eigenvalues, we deduce D and E, D= 3/2 Dzz=
81.4 and E= (Dxx - Dyy)/2= 14 cm−1 and E/D= 0.17. At the
temperatures available to probe the magnetic properties by
magnetic susceptibility, field-dependent magnetization and
EPR, there is no appreciable population of the lowest excited
KD state.

High-quality single EPR spectra have been deduced from a
single-crystal, X-band study reporting g values of 2.74, 6.84
and 1.8849. They compare in magnitude and direction well
with the computed results (vide supra). Parameters of the
spin-Hamiltonian deduced from an interpretation of both the
low-temperature magnetic data and the EPR spectra have been
used to deduce the principal values of the gyromagnetic tensor
and the ZFS15: D= 57.0, E/D= 0.31, gx = 2.50, gy = 2.57, gz =
2.40 and g′x = 2.65, g′y = 6.95, g′z = 1.83. They are again
compatible with the computed results in Supplementary
Table 8.

Current studies spectroscopically reveal and quantitate the
spin–phonon couplings in a typical Kramers complex. These
studies offer a unique look at how spectroscopies can be
utilized to study spin–phonon couplings in molecular
complexes. The work here provides a rare case to compare
Raman and far-IR spectroscopies and shows how the two,
working together with ab initio and periodic DFT phonon
calculations, reveal the spin–phonon couplings. In addition,
the vibronic model developed to understand the Raman data
sheds light on the origin of spin–phonon entanglement. At
different external magnetic fields, the ZFS peak couples to
different phonons. The spectroscopies at magnetic fields >14
T may reveal further couplings of the ZFS transition with
other phonons not observed in this work. These experiments
confirm the importance of obtaining spin–phonon coupling
constants to understand how the lattice promotes relaxation
at elevated temperatures. Importantly, spin–phonon cou-
pling is not exclusively a phenomenon in SMMs, but is
observed in a variety of magnetic materials.

We expect that the Raman and far-IR spectroscopies could be
used to probe f complexes and d complexes with the first-order
orbital momentum. Electric-dipole or magnetic-dipole transitions
between states may be observed in far-IR, IR, or UV–visible
spectroscopies50. SOC is generally larger than the effect of the
crystal field for f complexes51. States in f complexes thus have
both orbital and spin features as a result of the coupling.
Transitions between these states are thus also Raman-active,
following the electronic Raman selection rules (ΔJ ≤ 2, ΔL ≤ 2, ΔS
= 0)52. This is in contrast to the current work on a d complex
with quenched first-order orbital angular momentum, where the
Raman peaks are phonon parts of spin–phonon coupled peaks
and the spin parts are from the ZFS transition.

Methods
Synthesis of 1, 1-d4 and 1-d18. The following chemicals were used as received: Co
(acac)2 (Alfa Aesar), CoCl2 (Alfa Aesar), acetylacetone (Fisher Scientific), K2CO3

(Sigma-Aldrich), D2O (99.9% D, Cambridge Isotope Laboratories) and CH2Cl2
(Fisher Scientific, Certified ACS grade). Dimethylformamide (Fisher Scientific,
Certified ACS grade) was dried using 5 Å molecular sieves.

Complex 1 was synthesized according to the method of Ellern and coworkers53

by dissolving the anhydrous tetramer Co(acac)2 in DMF and adding H2O to the
dark purple solution. The solution lightened and pinkish-orange crystals formed.
Replacing H2O with D2O yielded the partially deuterated compound 1-d4. Larger
crystals were obtained when less H2O/D2O was used and allowed to crystallize at
−35 °C.

Deuterated acetylacetone was prepared by the method of Frediani et al.41.
Acetylacetone (10 mL, 9.8 g, 0.098 mol) was added to 100 mL of D2O and 1 g of
K2CO3 into a Schlenk flask under nitrogen gas. The solution was refluxed under
nitrogen overnight at 120 °C. After cooling the solution to room temperature, the
organic product, deuterated acetylacetone, was extracted from the aqueous layer
using CH2Cl2. Solvent was then removed in vacuo. Deuteration level was analyzed
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using DART (Direct Analysis in Real Time) mass spectrometry. The process was
repeated a second time with another 100 mL of D2O to give acetylacetone-d8 (91%
D; 100% yield).

Co(acac-d7)2(D2O)2 (1-d18) was synthesized by mixing D2O (20 mL, 22 g,
1.1 mol), acetylacetone-d8 (2.5 mL, 2.4 g, 22 mmol) and CoCl2 (0.30 g, 2.3
mmol). K2CO3 (3.12 g) was qualitatively added to dissolve the acetylacetone-
d8 until traces of an amorphous solid began to precipitate. The solution was
filtered, followed by further addition of K2CO3 until polycrystalline 1-d18
formed. The mixture was filtered and washed with D2O to give 1-d18 (0.45 g,
62% yield based on CoCl2).

Far-IR and Raman spectroscopies under variable magnetic fields. Far-IR and
Raman spectroscopic studies were conducted at the National High Magnetic Field
Laboratory (NHMFL) at Florida State University. For reflectance far-IR spectra of
1-d4, an unoriented single crystal was used. For transmittance far-IR spectra, the
powdered samples were mixed with eicosane and pressed into pellets that
were approximately 1 mm thick. Spectra were collected at 5 K using a Bruker
Vertex 80v FT-IR spectrometer coupled with a superconducting magnet (SCM)
with fields up to 17.5 T.

Raman samples were prepared with unoriented single crystals of 1 and 1-
d4 and powders of 1-d18. Data were collected by a backscattering Faraday
geometry using a 532 nm laser at a 14 T SCM in the Electron Magnetic
Resonance (EMR) facility and an 18 T SCM in the DC Field facility. Crystals
of samples were cooled at 5 K (14 T) and 1.5 K (18 T). Collected scattered
light was guided via an optical fiber to a spectrometer equipped with a liquid-
nitrogen-cooled CCD camera.

Vibronic model for the magnetic-field-dependent Raman spectra of 1. The
vibronic coupling model here, an extension of that in ref. 22 applied for a
single mode, accounts for three intervening vibrations coupling to the MS =
±1/2, ±3/2 sublevels of S = 3/2 spin. The Hamiltonian of the spin–phonon
coupled system of a spin (S) with three vibrations is composed of three terms
representing the spin ðĤSÞ, the phonons ðĤvibÞ and the spin phonon coupling
ðĤS�vibÞ:

Ĥeff ¼ ĤS þ Ĥvib þ ĤS�vib: ð3Þ

The spin-Hamiltonian for an S= 3/2 spin is:

ĤS ¼ DðŜ2z � 5=4Þ þ EðŜ2x � Ŝ2yÞ þ βBgxBxŜx þ βBgyByŜy þ βBgzBzŜz ; ð4Þ

For the three vibrations (i= 1,2,3):

Ĥvib ¼
X
i

�hωðni þ 1=2Þ ð5Þ

the spin–phonon coupling Hamiltonian is:

ĤS�vib ¼
X
i

ð∂E=∂QiÞoQiðŜ2x � Ŝ2yÞ þ ð∂D=∂QiÞoQiðŜ2z � 5=4Þ ð6Þ

With MS ¼ ± 3=2j i and MS ¼ ± 1=2j i as the basis functions for the spin-
sublevels of the S= 3/2 spin and χni ðQiÞ; i= 1,2,3 as the harmonic oscillator
wavefunctions for the three interacting modes, the spin–phonon wavefunction
ΨS�vib;k

�� E
can be expanded into a series of products as spin-sublevels and the three

vibrational functions:

ΨS�vib;k

�� E
¼

X
MS¼ ± 1=2;± 3=2

X
n1 ;n2 ;n3

ck;MS ;n1 ;n2 ;n3
MSj iχn1 ðQ1Þχn2 ðQ2Þχn3 ðQ3Þ: ð7:1Þ

Under the assumption of a weak spin–phonon coupling, one can restrict the
calculations to the ground and lowest phonon excited states: ni= 0,1 leading to the

following set non-vanishing product functions in the expansion of Eq. (7.1):

MSj iχn1 ðQ1Þχn2 ðQ2Þχn3 ðQ3Þ :
3=2j iχ0ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð3=2; 0; 0; 0Þ; ð7:2Þ

1=2j iχ0ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð1=2; 0; 0; 0Þ; ð7:3Þ

�1=2j iχ0ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð�1=2; 0; 0; 0Þ; ð7:4Þ

�3=2j iχ0ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð�3=2; 0; 0; 0Þ; ð7:5Þ

3=2j iχ1ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð3=2; 1; 0; 0Þ; ð7:6Þ

1=2j iχ1ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð1=2; 1; 0; 0Þ; ð7:7Þ

�1=2j iχ1ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð�1=2; 1; 0; 0Þ; ð7:8Þ

�3=2j iχ1ðQ1Þχ0ðQ2Þχ0ðQ3Þ ¼ ð�3=2; 1; 0; 0Þ; ð7:9Þ

3=2j iχ0ðQ1Þχ1ðQ2Þχ0ðQ3Þ ¼ ð3=2; 0; 1; 0Þ; ð7:10Þ

1=2j iχ0ðQ1Þχ1ðQ2Þχ0ðQ3Þ ¼ ð1=2; 0; 1; 0Þ; ð7:11Þ

�1=2j iχ0ðQ1Þχ1ðQ2Þχ0ðQ3Þ ¼ ð�1=2; 0; 1; 0Þ; ð7:12Þ

�3=2j iχ0ðQ1Þχ1ðQ2Þχ0ðQ3Þ ¼ ð�3=2; 0; 1; 0Þ; ð7:13Þ

3=2j iχ0ðQ1Þχ0ðQ2Þχ1ðQ3Þ ¼ ð3=2; 0; 0; 1Þ; ð7:14Þ

1=2j iχ0ðQ1Þχ0ðQ2Þχ1ðQ3Þ ¼ ð1=2; 0; 0; 1Þ; ð7:15Þ

�1=2j iχ0ðQ1Þχ0ðQ2Þχ1ðQ3Þ ¼ ð�1=2; 0; 0; 1Þ; ð7:16Þ

�3=2j iχ0ðQ1Þχ0ðQ2Þχ1ðQ3Þ ¼ ð�3=2; 0; 0; 1Þ: ð7:17Þ

Within this basis, the non-vanishing matrix elements of the spin–phonon
coupling Hamiltonian are given by

±
3
2
; 1

� ����ð∂E=∂QiÞoQiðŜ2x � Ŝ2yÞ �
1
2
; 0

����
�

¼
ffiffiffi
3
2

r
ð∂E=∂QiÞo ¼ Ei; ð8Þ

±
3
2
; 1

� ����ð∂D=∂QiÞoQiðŜ2z � 5=4Þ ±
3
2
; 0

����
�

¼ 1

2
ffiffiffi
2

p ð∂D=∂QiÞo ¼ Di; ð9Þ

±
1
2
; 1

� ����ð∂D=∂QiÞoQiðŜ2z � 5=4Þ ±
1
2
; 0

����
�

¼ � 1

2
ffiffiffi
2

p ð∂D=∂QiÞo ¼ �Di ð10Þ

resulting in Supplementary Eqs. (4)−(6).

Calculations of the electronic structure in 1. The geometry of the first coordi-
nation sphere of the CoII in 1, including only the donor oxygen atoms, is D4h.
It represents a tetragonally elongated octahedron with two axial Co–O bonds to
two water molecules (2.199 Å) and four equatorial Co-O bonds (2.05 Å) to two
acac ligands. The crystallographic symmetry is C2h (Supplementary Fig. 14). For
spin-Hamiltonian parameters from ab initio NEVPT2 calculations, SOC, along
with quasi-degenerate perturbation theory accounted for using all 10 S= 3/2 and
40 S= 1/2 non-relativistic states (roots) of the d7 CoII configuration, was used to
compute the ground and excited magnetic sublevels and to access the parameters of
the spin-Hamiltonian in Eq. (4).

The ground 4Ag state splits into two sublevels, 169.8 cm−1 apart from each
other, which in the approximation of an axial system would yield D= 84.9 cm−1.
Diagonalization of the ZFS and the g-tensor yields eigenvalues and eigenvectors
listed in Supplementary Table 8.

VASP calculations of phonons. VASP54 calculations on 1, 1-d4 and 1-d18 were
conducted. Geometry optimizations were performed on the single-crystal X-ray
structure of 1 at 100 K. The optimized structure completed at 0 T was used for the
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phonon calculations. Spin-polarized, periodic DFT calculations were performed
using VASP with the Projector Augmented Wave55,56 method and the local density
approximation (GGA)57+U (U= 5.37)55,58 exchange correlation functional. An
energy cut off was 900 eV for the plane-wave basis of the valence electrons. Total
energy tolerance for electronic structure minimization was 10−8 eV. The optB86b-
vdW, a non-local correlation functional that approximately accounts for dispersion
interactions, was applied59. For the structure relaxation, a 1 × 3 × 1
Monkhorst–Pack mesh was applied. Phonopy60, an open source phonon analyzer,
was used to create a 140 atom, 1 × 2 × 1 supercell structure. VASP was then
employed to calculate the force constants on the supercell in real space using DFT.
The crystal structure of 1 has C2h symmetry. Jmol was used to create the Sup-
plementary Movies. Since Raman and far-IR properties of 1 and 1-d4 near 115 cm
−1 are similar, only the calculated phonons of 1-d4 are presented.

Code availability. Electronic calculations were conducted with the ORCA code
(https://orcaforum.cec.mpg.de/) which is free for academic use but commercial for
industrial use. VASP (Vienna ab initio simulation package) for the periodic DFT
phonon calculations is available at https://www.vasp.at/

Data availability. The crystallographic coordinates for the structures of 1 at 100 K
from single-crystal X-ray diffraction and 1-d18 at 4 K from powder neutron dif-
fraction reported in this study have been deposited at the Cambridge Crystal-
lographic Data Centre (CCDC), under deposition numbers CCDC 1842364 and
CCDC 1842460, respectively. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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