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Abstract 
Standardized benchmarking methods and tools are essential to robust accuracy assessment of 
NGS variant calling. Benchmarking variant calls requires careful attention to definitions of 
performance metrics, sophisticated comparison approaches, and stratification by variant type and 
genome context.  To address these needs, the Global Alliance for Genomics and Health (GA4GH) 
Benchmarking Team convened representatives from sequencing technology developers, 
government agencies, academic bioinformatics researchers, clinical laboratories, and commercial 
technology and bioinformatics developers for whom benchmarking variant calls is essential to 
their work. This team addressed challenges in (1) matching variant calls with different 
representations, (2) defining standard performance metrics, (3) enabling stratification of 
performance by variant type and genome context, and (4) developing and describing limitations 
of high-confidence calls and regions that can be used as “truth”. Our methods are publicly 
available on GitHub (https://github.com/ga4gh/benchmarking-tools) and in a web-based app on 
precisionFDA, which allow users to compare their variant calls against truth sets and to obtain a 
standardized report on their variant calling performance. Our methods have been piloted in the 
precisionFDA variant calling challenges to identify the best-in-class variant calling methods within 
high-confidence regions.  Finally, we recommend a set of best practices for using our tools and 
critically evaluating the results.  
 
 
 

  



Introduction 
Next generation sequencing (NGS) technologies and analysis methods have rapidly evolved and 
are increasingly being used in research and clinical settings. The ability to detect DNA variants 
began in the last third of the 20th century when recombinant DNA technology facilitated the 
identification and characterization of human genes.  Due to the high cost of sequencing 
technologies, early diagnostic applications were limited to screening patient samples for 
established pathogenic variants. Clinical heterogeneity and overlapping presentations can 
complicate accurate diagnosis based on clinical symptoms alone, which often resulted in the need 
for sequential testing approaches (diagnostic odysseys). While some focused tests are still in use 
today, large gene panels including tens to hundreds of genes, often accommodating sets of 
diseases with clinical overlap, are the most common application for NGS today, with exome and 
genome sequencing rapidly gaining popularity in the research and medical genetics 
communities.1,2  An output of these tests is a list of variant calls and their genotypes, often in 
variant call format (VCF), and benchmarking these calls is an important part of analytical 
validation. 
 
Robust, sophisticated, and standardized benchmarking methods are critical to enable 
development, optimization, and demonstration of performance for sequencing and analysis tools.  
This is especially important for clinical laboratories developing sequencing-based tests for 
medical care. Efforts such as the Genome in a Bottle Consortium and Platinum Genomes Project 
have developed small variant “truth” sets for several well-characterized human genomes from 
publicly available cell lines and DNA.3–6 A “truth” set was also recently developed from a 
“synthetic-diploid” mixture of two haploid hyditaform mole cell lines not currently in a public 
repository.7 A framework for benchmarking non-complex small variant calls in the exome was 
developed previously as a web-based tool GCAT.8  However, comparing variant calls from any 
particular sequencing pipeline to a truth set is not a trivial exercise. First, benchmarking must 
consider that variants may be represented in multiple ways in the commonly used variant call 
format (VCF).9–12 When comparing VCF files record by record, many of the putative differences 
are  simply different representations of the same variant. Secondly, definitions for performance 
metrics such as true positive (TP), false positive (FP), and false negative (FN), which are key for 
the interpretation of the benchmarking results, are not yet standardized. Lastly, due to the 
complexity of the human genome, performance can vary across variant types and genomic 
regions, which inevitably increases the number of benchmarking statistics to report. 
 
In the context of performance metrics, two critical performance parameters that are traditionally 
required for clinical tests are sensitivity (the ability to detect variants that are known to be present 
or “absence of false negatives”, which we call “recall” in this work) and specificity (the ability to 
correctly identify the absence of variants or “absence of false positives”, which we replace with 
“precision” in this work).13 The shift from focused genotyping tests to genome sequencing enables 
the detection of novel sequence variants, which has fundamental implications on how these 
diagnostic performance parameters need to be determined. Early professional guidelines call for 
the use of samples with and without known pathogenic variants to determine sensitivity and 
specificity, which was appropriate when genetic testing interrogated only targeted, previously 



identified variants.  This approach remains valid for sequencing-based testing, but now constitutes 
an incomplete evaluation, since it does not address the ability to detect novel variants. To predict 
performance for novel variants, it is important to maximize the number and variety of variants that 
can be compared to a “gold standard” in order to establish statistical confidence values for 
different types of variants and genome contexts, which can then be extrapolated to all sequenced 
bases.14–17  While this problem already existed for Sanger sequencing tests, the power and scope 
of NGS technologies presents a different scale of challenges for fit-for-purpose test validation.  
Laboratories that performed Sanger sequencing prior to transitioning to NGS were often able to 
utilize previously analyzed specimens to establish analytical performance of NGS tests; however, 
this approach is practically limiting, poses severe challenges for other laboratories, and is 
completely infeasible as test sizes increase from a few genes to the exome or genome.   
Guidelines were recently published for validating clinical bioinformatics assays.18  These 
guidelines highlight the utility of reference materials for benchmarking variant calls, as well as the 
importance of stratifying performance by variant type and genome context.  
 
To address the needs for using reference materials to benchmark variant calls in a standardized, 
robust manner, we present the work of the Global Alliance for Genomics and Health (GA4GH) 
Benchmarking Team. This team, open to all interested parties, includes broad stakeholder 
representation from research institutes and academia, sequencing technology companies, 
government agencies, and clinical laboratories, with the common goal of driving towards the 
standardization of variant calling benchmarking. In particular, we describe the available reference 
materials and tools to benchmark variant calls, and provide best practices for using these 
resources and interpreting benchmarking results. 
 
 

Results 
Our goal was to standardize the variant benchmarking process such that (1) the methods used to 
compare callsets assess the accuracy of the variant and genotype calls independent of different 
representations of the same variant, (2) primary performance metrics are represented in the most 
commonly used binary classification form (i.e., TP, FP, FN, and statistics derived from these), (3) 
calculation of performance metrics is standardized such that they can be compared more easily 
across methods, and (4) performance metrics can be stratified by variant type and genome 
context. 
 
We discuss the technical challenges presented by comparing VCF files accurately and describe 
our solution to implement such comparisons. We focus on the use case where we have a call set 
that can be used as “truth” (e.g.,  Genome in a Bottle or Platinum Genomes) and would like to 
benchmark a single-sample query VCF against this dataset. The inputs to this comparison are a 
truth callset (in VCF format), and a set of confident regions (in BED format) for the truth set. The 
confident regions indicate the locations of the genome where, when comparing to the truth callset, 
variants that do not match the truth callset should be false positives and variants missed in the 
truth callset should be false negatives. Furthermore, our inputs include a query callset in (g)VCF 



format, a reference FASTA file and optionally stratification regions to break out variant calling 
performance in particular regions of the genome or to restrict comparisons to a genomic subset 
(e.g. exons / regions captured by targeted sequencing). For more details see SI A.  We developed 
a framework for standardized benchmarking of variant calls (Fig. 1), which addresses the 
challenges discussed in detail in the following sections. 

 
Figure 1: The GA4GH Benchmarking Team’s reference implementation of a comparison 
framework, annotated with free-floating text describing the team’s innovations.  The framework 
takes in a Truth VCF, Query VCF, confident call regions for the Truth and/or Query, and optionally 
BED files to stratify performance by genome context.  A standardized intermediate output (VCF-
I) from the comparison engines allows them to be interchanged and for TP, FP, and FN to be 
quantified in a standard way. 

Variant representation 

The primary challenge with comparing two VCF files is handling complex variant representations 
correctly. In a VCF file, we describe two haplotype sequences by means of REF-ALT pairs and 
genotypes. These variant calls do not always uniquely represent the same haplotype sequences. 
Alignments are not always unique even when using a fixed set of gap and substitution scores; 
different variant calling methods may produce different variant representations. While some of 
these differences can be handled using pre-processing of VCF files (e.g. variant trimming and 
left-shifting), others cannot be fixed easily. As a result we cannot compare VCF files accurately 
by comparing VCF records and genotypes directly. Approaches were developed to standardize 
indel representation by means of left-shifting and trimming the indel alleles.19,20 These methods 
determine the left-most and right-most positions at which a particular indel could be represented 
in a VCF file (Fig. 2a). These methods work well when considering each VCF record 
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independently. However, when multiple VCF records are used to represent a complex haplotype, 
normalization methods can cause errors and more sophisticated comparison methods are 
required (Fig. 2b-d).  Different types of variant representation challenges are detailed in 
Supplementary Information E. 

When benchmarking, these variant representation differences can also give rise to different 
notions of giving partial credit for variant calls. One example is where we may have called only 
one SNV in an MNP with the correct genotype. When assigning TP/FP/FN status on a per-VCF-
record basis, a variant caller that chooses to represent calls using single MNP records would not 
get credit for calling this SNV correctly since the overall MNP record does not reproduce the 
correct haplotype. Another example would be phasing switch-errors: a choice needs to be made 
whether to use phasing-aware benchmarking for a particular evaluation. Handling these cases is 
important since adding phasing information provides additional information to the users of a 
variant caller, but may lead to FPs / FNs when running a benchmarking comparison when 
comparing to a method which does not provide phasing information and outputs all alleles in 
decomposed form for maximum credit in the benchmarking comparison. Our tools attempt to give 
partial credit when possible, and we generally recommend using vcfeval as the comparator to 
provide the most partial matches. 

  



 

 
Fig. 2: Four examples of cases where variants can be represented in multiple forms in VCF format.  
(a) Three representations of a deletion in a homopolymer. (b) The insertion can be represented 
as one 4-bp insertion or two 2-bp insertions. (c) An MNP can be represented as 3 SNVs or one 
larger substitution. (d) Four different representations of a complex variant. Note that 
representations include phasing information in these examples where it is necessary to 
unambiguously describe the variant. If phasing was not described for these variants, it would 
impossible to normalize their representations, but our sophisticated variant comparison tools can 
determine that they could describe the same two haplotypes. 
 

(a) 

(b) 

(c) 

(d) 



Matching Stringencies and Defining Performance Metrics 

Due to the inherent complexity of the human genome, and the challenge that genotype 
comparisons do not cleanly fall in a binary classification model, TP, FP, and FN can be defined in 
different ways.  Our reference implementation for benchmarking uses a tiered definition of variant 
matches, a standardized VCF format for outputting matched variant calls, and a common counting 
and stratification tool (see SI A). We consider three types of variant matches from most to least 
stringent: (1) “genotype match”, for which only sites with matching alleles and genotypes are 
counted as TPs, (2) “allele match”, for which any site with matching alleles is counted as TP, even 
if genotypes differ, and (3) “local match”, for which any site in the query with a nearby truth variant 
is counted as a TP, even if alleles and genotypes differ.  “Genotype match” is used by our current 
tools to calculate TP, FP, and FN.  

In Table 1, we enumerate the types of matches that are clear TP, FP, and FN as well as various 
kinds of partial matches that may be considered TP, FP, and/or FN depending on the matching 
stringency, and how they are counted by our tools. Our tools calculate TP, FP, and FN requiring 
the genotype to match, but output additional statistics related to how many of the FPs and FNs 
are allele matches (FP.GT) or local matches (FP.AL).  Note that we have chosen not to include 
true negatives (or consequently specificity) in our standardized definitions. This is due to the 
challenge in defining the number of true negatives, particularly for indels or around complex 
variants. In addition, precision is often a more useful metric than specificity due to the very large 
proportion of true negative positions in the genome. 

To reconcile the comparison methods and metrics discussed above into a simple summary, we 
have implemented in hap.py a standardized report that can be generated from the tabular output 
of the benchmarking workflow.21 An example of the metrics and plots displayed in such a report 
is shown in Fig. 3. Definitions and formulas for all performance metrics, including derived metrics 
such as precision and recall, are detailed in the Online Methods and Supplementary Table 1.   

 

  



Table 1: Contingency table describing the GA4GH definitions of true positive (TP), false positive 
(FP), false negative (FN), allele mismatch (FP.AL), genotype mismatch (FP.GT), and unknown 
(UNK). Matches counted as FP.GT and FP.AL are additionally counted as both FP and FN, since 
our tool’s default matching stringency requires genotypes to match. Query variants outside the 
Truth bed file are counted as UNK. 

  Truth   

 Genotype ref/ref ref/var1 var1/var2 var1/var1 
Outside 

bed 

Query 

ref/ref - FN FN FN - 
ref/var1 FP TP FP.GT FP.GT UNK 
ref/var2 - FP.AL FP.GT FP.AL - 
ref/var3 - - FP.AL - - 

var1/var2 FP FP.GT TP FP.GT UNK 
var1/var3 - - FP.GT - - 
var2/var3 - FP.AL FP.GT FP.AL - 
var3/var4 - - FP.AL - - 
var1/var1 FP FP.GT FP.GT TP UNK 
var2/var2 - FP.AL FP.GT FP.AL - 
var3/var3 - - FP.AL - - 

 
 

  



 

 

 
Figure 3: Example standardized HTML report output from hap.py.  (a) Tier 1 high-level metrics 
output in the default view. (b) Tier 2 more detailed metrics and stratifications by variant type and 
genome context. (c) Precision-recall curve using QUAL field, where the black point is all indels, 
the blue point is only PASS indels, the dotted blue line is the precision-recall curve for all indels, 
and the solid blue line is the precision-recall curve for PASS indels. 

(a) 

(b) 

(c) 



Benchmark callsets 
Benchmarking of variant calls requires a specific genome and an associated set of calls that 
represent the “right answers” for that genome. Such call sets have the property that they can be 
used as “truth” to accurately identify false positives and negatives. That is, when comparing calls 
from any sequencing method to this set of calls, at least half (and ideally more) of the putative 
false positives and false negatives should be errors in the method being assessed. Because it is 
treated as the truth, this benchmark set will be referred to in this manuscript as the “truth” set, but 
other terms used for this include the “gold-standard” set, the “high-confidence” set, the “reference 
callset,” or “benchmarking data.”  
 
We describe three sources of benchmark callsets in detail in the Online Methods.  Briefly, the 
Genome in a Bottle Consortium (GIAB) is an ongoing public-private-academic consortium hosted 
by the National Institute of Standards and Technology (NIST) to perform authoritative 
characterization of a small number of broadly consented and disseminated human genomes. 
Currently, five human genomes are available as NIST Reference Materials with benchmark small 
variant and reference calls for approximately 90% of GRCh37 and GRCh38.4,6,23  In addition to 
the benchmarking data produced by the GIAB consortium, Illumina Platinum Genomes (PG) has 
also created a benchmarking data set for small variants (SNVs and Indels) using the 17-member 
pedigree (1463) from Coriell Cell Repositories that includes the GIAB pilot sample 
NA12878/HG001.5 This pedigree includes 11 children of the parents (NA12877 and NA12878), 
producing a fully phased dataset that allows to validate the accuracy of variant calls through 
genetic inheritance patterns. Finally, a new “synthetic-diploid” benchmark callset was created 
from long read assemblies of the CHM1 and CHM13 haploid cell lines, in order to benchmark 
small variant calls in regions difficult to analyze with short reads or in diploid genomes, which are 
currently excluded from the GIAB and Platinum Genomes high-confidence regions.7  A current 
limitation is that CHM1 and CHM13 cell lines are not available in a public repository. 

Example comparisons 

Lessons from PrecisionFDA Challenges 
The PrecisionFDA team held two challenges in 2016, with participants publicly submitting results 
from various mapping/variant calling pipelines (more information at 
https://precision.fda.gov/challenges/).. While both challenges asked participants to analyze short 
read WGS datasets, the first “Consistency” challenge used a sample with high-confidence calls 
already available (HG001/NA12878) and the second “Truth” challenge used a sample without 
high-confidence calls yet available (HG002 from GIAB, made available by GIAB upon the close 
of the challenge).  
 
Note that both the “truth” sets and the comparison methodology in the truth challenge were newly 
introduced, with GA4GH comparison methodology, truth sets, and variant calling methods under 
active development. The challenge results available on precisionFDA should be considered only 



initial evaluation, with the rich data set resulting from the challenge inviting further exploration. It 
is especially critical to recognize that performance metrics indicate performance for the “easier” 
variants and regions of the genome, so that precision and recall estimates are higher than if more 
difficult variants and regions were included.  It is likely that some methods will perform worse than 
other methods for easier variants while performing better for harder variants (e.g., methods using 
a graph reference or de novo assembly may do better calling in regions not assessed like the 
MHC or large insertions, while not performing as well for easier variants because the methods 
are less mature). It is also important to manually curate a subset of FPs and FNs to ensure they 
are actually FPs and FNs and to understand their cause.  Interestingly, stringency of matching 
can also significantly influence performance metrics.  For example, Figure 4 shows how the 
number of FP indels for the assembly-based fermikit submission is much higher than the RTG 
submission when counting genotype errors as FPs, but the number of FPs is lower for fermikit 
when matching only the allele or performing distance-based matching.  Additional information 
about relative strengths and weaknesses of the pipelines could also be gained through 
stratification, as discussed in the next section. 
 

 
Figure 4: Matching stringency can affect relative performance of algorithms. Number of false 
positives for two PrecisionFDA Challenge submissions is shown for different matching 
stringencies, showing that the fermikit submission has many more false positives if genotype 
errors are counted as FPs, but that it has fewer FPs if matching only the allele or performing 
distance-based matching. Note that this is intended to illustrate the importance of matching 
stringency and is likely not indicative of the performance of these methods with optimized 
parameters or current versions. 
 



Stratification illuminates challenging regions sequenced with and 
without PCR amplification 
Our team has defined a large number of regions of different genome contexts (e.g., GC content 
and repeats of different sizes and types) to enable users to stratify performance and understand 
strengths and weaknesses of a particular method.  As an example of using stratification, we 
compare recall and precision in different genome contexts for whole genome sequencing assays 
with and without a PCR amplification step.  Table 2 shows that indel recall and precision are lower 
when using PCR amplification than when using PCR-free sequencing.  Stratification highlights 
that this difference almost entirely results from PCR-related errors in homopolymers and tandem 
repeats, since performance is similar when excluding variants that occur within 5bp of 
homopolymer sequences longer than 5bp and tandem repeats longer than 10bp.  Performance 
in regions with low GC content is similar, but PCR results in lower SNV and indel recall where GC 
content is > 85%.   
 
Further stratification by type of repeat can illuminate particularly challenging genome contexts.  
For example, when sorting strata by recall, indels in 51-200 bp AT dinucleotide tandem repeats 
have substantially lower recall and precision than all other strata for both PCR and PCR-free 
results.  Also, 86 out of 114 truth indels in 51-200 bp AT dinucleotide tandem repeats are 
compound heterozygous, and 89% fall outside the high-confidence regions, so our stratification 
and benchmarking methods help illuminate that these appear to be highly polymorphic and 
difficult variants to characterize. 
  



Table 2: Recall and Precision stratified by genomic context (e.g., GC content and tandem 
repeat (TR) type) and variant type for Illumina whole genome sequence assays with and 
without a PCR step 

Genomic context Type Recall 
(PCR-free) 

Recall 
(with-
PCR) 

Recall 
(PCR 
effect) 

Precision 
(PCR-free) 

Precision 
(with-PCR) 

Precision 
(PCR 
effect) 

All 
SNV 98.4 98.4 0 99.9 99.9 0 

indel 97.1 85.8 -11.3 99.3 97.6 -1.7 

Not in homo-
polymers or TRs 

SNV 98.5 98.6 0.1 99.9 99.9 0 

indel 98.4 98.3 -0.1 99.4 99.3 -0.1 

In homo-
polymers or TRs 

SNV 97.2 95.6 -1.6 99.9 99.7 -0.2 

indel 96.4 78.2 -18.2 99.3 96.3 -3 

GC content > 
85% 

SNV 94.4 84.7 -9.7 100 100 0 

indel 97.3 73.2 -24.1 97.3 96.5 -0.8 

51-200 bp AT 
dinucleotide TRs indel 28.0 12.0 -16 64.0 39.0 -25 

All 51-200 bp 
dinucleotide TRs indel 81.0 45.0 -36 94.0 84.0 -10 

 
  



Benchmarking Best Practices 
Box 1: GA4GH recommendations for best practices for germline variant call 
benchmarking 

Benchmark 
sets 

Use benchmark sets with both high-confidence variant calls as well as high-confidence regions (e.g., 
from GIAB or Platinum Genomes).  

Stringency 
of variant 
comparison 

Determine whether it is important that the genotypes match exactly, only the alleles match, or the 
call just needs to be near the true variant.  For example, if you confirm and/or manually curate all 
variants to ensure you have the correct allele and genotype, then local matching may be sufficient. 
While the default TP, FP and FN require genotype and allele matching, the additional metrics FP.GT 
and FP.AL output by the GA4GH tools enable users to calculate performance at different 
stringencies. 

Variant 
comparison 
tools 

Use sophisticated variant comparison engines such as vcfeval, xcmp, or varmatch that are able to 
determine if different representations of the same variant are consistent with the benchmark call 
(examples in Fig. 1).  Subsetting by high-confidence regions and, if desired, targeted regions, should 
only be done after comparison to avoid problems comparing variants with different representations. 

Manual 
curation 

Manually curate alignments, ideally from multiple data types, around at least a subset of putative 
false positive and false negative calls in order to ensure they are truly errors in the user’s callset and 
to understand the cause(s) of errors.  Report back to benchmark set developers any potential errors 
found in the benchmark set (e.g., using https://goo.gl/forms/ECbjHY7nhz0hrCR52 for GIAB or 
https://github.com/Illumina/PlatinumGenomes/issues/new for PG). 

Interpret-
ation of 
metrics 

All performance metrics should only be interpreted with respect to the limitations of the variants and 
regions in the benchmark set.  Performance is unknown for variant types and genome contexts not 
well represented in the benchmark set. Performance metrics are likely to be lower for more difficult 
variant types and regions that are not fully represented in the benchmark set, such as those in 
repetitive or difficult-to-map regions. When comparing methods, note that method A may perform 
better in the high-confidence regions, but method B may perform better for more difficult variants 
outside the high-confidence regions. 

Stratifi-
cation 

Performance results should be stratified by variant type. Stratification by genomic region should also 
be considered to gain additional insights into strengths and limitations of the sequencing pipeline, as 
it can highlight regions that are not sufficiently represented. Stratification should only be done after 
comparison to avoid problems comparing variants with different representations. 

Confidence 
Intervals 

Confidence intervals for performance metrics such as precision and recall should be calculated.  
This is particularly critical for the smaller numbers of variants found when benchmarking targeted 
assays and/or less common stratified variant types and regions. 

Additional 
bench-
marking 
approaches 

We recommend using other benchmarking approaches in addition to those discussed in this paper 
to understand performance of a pipeline, including: 
● Confirming results found in samples over time 
● Synthetic DNA spike-ins with challenging and common clinically relevant variants  
● Engineering variants into cell lines 
● Finding existing samples with challenging and common clinically relevant variants 
● Simulation methods, such as read simulators, adding variants into real reads, and modifying the 

reference 
● Run-specific metrics such as base quality score distributions, coverage distributions, etc. can also 

be useful to identify outlier runs 



Conclusions 
 
The GA4GH Benchmarking Team has developed a suite of methods to produce standardized 
performance metrics for benchmarking small germline variant calls.  These sophisticated tools 
address challenges in standardizing metrics like recall and precision, comparing different 
representations of variant calls, and stratifying performance by variant type and genome context.  
We have developed a set of best practices for benchmarking variant calls to help users avoid 
common pitfalls and misinterpretations of performance metrics. 
 
Moving forward there will be a continual need for improvements in benchmarking of variant 
discovery methodologies. Technological evolution will enable laboratories to characterize 
increasingly difficult variants and genomic regions, which will require improved benchmarks. 
Simultaneously, this evolution can contribute to improved characterization of reference materials 
through ongoing work by groups like GIAB.   For example, the types of variants being analyzed 
will increase in scope: most current benchmarking focuses on relatively small variations, and quite 
different techniques will be needed to consider structural variants. In addition to the genotype, 
allele, and local matching stringencies we describe for small variants, comparison tools for 
structural variants will need to consider stringencies for breakpoint matching, size predictions, 
and inserted sequence predictions.  
 
Assessment of somatic variants also introduces challenges different from germline variants. 
Different benchmarking approaches are needed to handle somatic issues like assessing the 
accuracy of variant allele frequency. A good germline variant caller will not perform well for 
somatic detection, and vice versa. A global consortium around benchmarking of somatic  variant 
detection has been established, called the ICGC-TCGA DREAM Somatic Mutation Calling (SMC) 
group, and has been benchmarking both detection of individual variants and of broader processes 
like subclonal variation.24 
 
Moving forward, groups will also need to modify benchmarking strategies to address changes in 
the way the human genome itself is represented. Today the most common way of representing 
the human genome involves a set of linear chromosomes (e.g., the most common usage of 
GRCh37). There are key advantages to non-linear representations of the genome, including 
ability to recognize copy-number and other polymorphisms directly in the reference, and as a 
result more graphical structures are in development.25 The GRCh38 build of the human genome 
makes a key step towards this with its use of ALT loci, which provide multiple distinct versions of 
specific regions of the genome.26 These ALT loci are not well-accounted for by most aligners or 
the benchmarking tools we describe, and their impact on benchmarking studies is largely 
unexplored and likely would require a variety of samples with differing ALT alleles. It is likely that 
the core representation of the genome will continue to evolve over time, and benchmarking tools 
will continue to evolve. 
 
This work provides a framework of principles for further development of benchmarking tools to 
address new challenges in variant calling and other high-throughput measurement challenges. 
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PrecisionFDA Challenge and benchmarking results are available at https://precision.fda.gov/.   
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Online Methods 

Code availability 

All code for benchmarking developed for this manuscript are linked to from the GA4GH 
Benchmarking Team GitHub repository at https://github.com/ga4gh/benchmarking-tools. The 
hap.py benchmarking toolkit is available at https://github.com/Illumina/hap.py.  

Variant representation 

A variety of approaches have been recently developed to address the challenges in variant 
representation.9–11,21,22  Real Time Genomics (RTG) developed the comparison tool vcfeval, which 
introduced the idea of comparing variants at the level of the genomic haplotypes that the variants 
represent as a way to overcome the problems associated with comparing complex variants, where 
alternative yet equivalent variant representations can confound direct comparison methods.9 
Variant “normalization” tools help to represent variants in a standardized way (e.g., by left-shifting 
indels in repeats), but they demonstrated that “variant normalization” approaches alone were not 
able to reconcile different representations of many complex variants.  In contrast, global 
optimization permits evaluation of alternate representations that minimize the number of 
discrepancies between truth and test set caused by differences in representations of the same 
variant. Similarly, VarMatch was developed to resolve alternate representations of complex 
variants, with additional ability to tune the matching parameters depending on the application.10  
Finally, hap.py  includes a comparison tool to perform haplotype-based comparison of complex 
variants in addition to sophisticated functionality to stratify variant calls by type or region.21  We 
use the hap.py framework with the vcfeval comparison tool in this work. 

Variant counting 

The GA4GH Benchmarking Team developed consensus definitions and recommendations for 
expressing performance metrics for small germline variant calls. Assessing the performance of 
variant callers does not easily lend itself to the typical binary classification performance 
assessment model of simply determining true and false "positives" and “negatives”. Several 
characteristics of the genome do not fit well in a binary classification model: 

1. More than two possible genotypes exist at any given location. For SNVs (if ignoring 
phasing), any location can have one of 10 different true genotypes (i.e., A/A, A/C, A/G, 
A/T, C/C, C/G, …). For indels and complex variants, an infinite number of possible 
genotypes exists (e.g., any length of insertion). 

2. A number of variant callers distinguish between "no-calls" and homozygous reference 
calls at some genome positions or regions. Some variant callers even output partial no-
calls, calling one allele but not the other.  “No-calls” at a true variant site could be treated 
as false negatives or be excluded from counting. 



3. In addition to the challenges comparing different representations of complex variants (i.e., 
nearby SNVs and/or indels) discussed above, there are challenges in standardizing 
counting of these variants. Complex variants can be treated as a single positive event or 
as multiple distinct SNV and indel events when counting the number of TP, FP, and FN 
variants. In addition, only part of a complex variant may be called, which poses challenges 
in defining TP, FP, and FN. 

4. Methods for assessing accuracy of phasing have not been fully developed or 
standardized, but accurate phasing can be critical, particularly when multiple 
heterozygous variants exist in a small region (e.g., complex variants). 

 

Matching Stringencies 

Due to the inherent complexity of the human genome, TP, FP, and FN can be defined in different 
ways.  Our reference implementation for benchmarking uses a tiered definition of variant matches, 
a standardized VCF format for outputting matched variant calls, and a common counting and 
stratification tool (see SI A).  

We consider the following types of variant matches from most to least stringent, with “Genotype 
match” being used by our current tools to calculate TP, FP, and FN: 

● Genotype match: Variant sets in truth and query are considered TPs when their unphased 
genotypes and alleles can be phased to produce a matching pair of haplotype sequences 
for a diploid genome. Each truth (and query) variant may be replayed onto one of two truth 
(or query) haplotypes. A maximal subset of variants that is replayed to produce matching 
haplotype sequences forms the TP variants, query variants outside this set are FP, truth 
variants outside this set are FN. The method only considers haploid or diploid samples but 
could be extended to higher ploidy also. Enumerating the possible assignments for 
haplotype generation is computationally expensive. Vcfeval solves this problem using 
global optimization methods supplemented with heuristic pruning. Genotype match 
statistics are the default TP, FP, and FN output by our tools.  Genotype matching has been 
implemented in the hap.py tool xcmp and in vcfeval. 

● Allele match: Truth and query alleles are counted as TP_AM if they contain any of the 
same (trimmed and left-shifted) alleles. This method is more specific than local matching 
(e.g. repeat expansions must be called with the correct length in order to get an allele 
match), but could also be susceptible to spurious mismatches when truth and query 
variant alleles are decomposed differently. Genotype mismatches (FP.GT in Table 1) are 
considered TPs in this matching method. We indicate allele matches in scenarios where 
variants can be matched when ignoring the genotype.  Allele match statistics (TP_AM, 
FP_AM, and FN_AM) can be calculated from the GA4GH outputs (which require 
genotypes to match): TP_AM=QUERY.TP+FP.GT; FP_AM=QUERY.FP-FP.GT; 
FN_AM=TRUTH.FN-FP.GT.  Allele matching has been implemented in the hap.py tool 
scmp-somatic and in vcfeval with the --squash-ploidy option.   



○ Note that vcfeval --squash-ploidy and scmp-somatic differ. scmp-somatic checks 
if the VCF records give the same alleles after normalization and trimming. This will 
match alleles that overlap on the reference as long as they can be matched directly 
after left-shifting and trimming. When comparing somatic variant calls, this is 
probably the best option since technically, every variant could be on a different 
(low-frequency) haplotype. vcfeval --squash-ploidy does haplotype-based 
comparison but assumes all variants are hom-alt and there is only one haplotype. 
This will match different representations unless they overlap on the reference 
(which is also possible using xcmp via the force-gt command line option in hap.py 
which changes the GTs before comparing). 

● Local match: Truth and query variants are counted as TP_LM if their reference span 
intervals are closer than a pre-defined local matching distance, i.e. all yellow categories in 
Table 1 are considered TPs, including “F” matches that are within a specified number of 
basepairs. This approach has previously been implemented.7,21 An advantage of this 
matching method is that it is robust towards representational differences. A drawback for 
many applications is that it does not measure allele or genotype accuracy. We use local 
matches as the lowest tier of matching to label variants which are close-by but cannot be 
matched with other methods. Local match statistics (TP_LM, FP_LM, and FN_LM) can be 
calculated from the GA4GH outputs (which require genotypes to match): 
TP_LM=QUERY.TP+FP.GT+FP.AL; FP_LM=QUERY.FP-FP.GT-FP.AL; 
FN_LM=TRUTH.FN-FP.GT-FP.AL.  If only local matching is required, this has been 
implemented in the hap.py tool scmp-distancebased. 

 
A fourth, most stringent matching, which is not yet fully implemented in the GA4GH framework, 
requires phasing information to match: 

● Phased genotype match: When VCF files specify phasing information, we can compare 
on a haplotype level: variants will only be matched if they produce matching haplotype 
sequences under phasing constraints. Both vcfeval and hap.py’s xcmp method support 
phased matching when both callsets include variants that are globally phased (i.e. specify 
a paternal and maternal haplotype for each chromosome). To our knowledge, no current 
comparison method supports phasesets and local phasing to compare variants. Moreover, 
assessing phasing requires us to consider not only phasing variant accuracy, but also 
completeness of phasing coverage. In our current methods we do not implement phased 
genotype matching beyond the basic support provided by vcfeval and xcmp. 

 
 

Defining True Positives, False Positives, and False Negatives 

In Table 1, we enumerate the types of matches that are clear TP, FP, and FN as well as various 
kinds of partial matches that may be considered TP, FP, and/or FN depending on the matching 
stringency, and how they are counted by our tools. Our tools calculate TP, FP, and FN requiring 
the genotype to match, but output additional statistics related to how many of the FPs and FNs 
are allele matches (FP.GT) or local matches (FP.AL).  Note that we have chosen not to include 



true negatives (or consequently specificity) in our standardized definitions. This is due to the 
challenge in defining the number of true negatives, particularly around complex variants. In 
addition, precision is often a more useful metric than specificity due to the very large proportion 
of true negative positions in the genome. 

Another key question is how to count both matching and mismatching variant calls when they are 
differently represented in the truth dataset and a query. When representing MNPs as multiple 
SNVs, we may count one variant call for each SNV, or only one call in total for the MNP record. 
Similar considerations apply to counting complex records. We approach variant counting as 
follows: 

● We count the truth and query VCF files separately. A set of  truth records may be 
represented by a different set of query records. 

● To get comparable recall, we count both TPs and FNs in their truth representation. When 
comparing different variant calling results to the same truthset, these counts will be based 
on the same variant representation. 

● Precision is assessed using the query representation of variants. We give a relative 
precision to the number of truth variants in query representation. If a variant caller is 
consistent about the way it represents variants, this approach mitigates counting-related 
performance differences. 

● We implement a “partial credit” mode in which we trim, left-shift and decompose all query 
variant calls before comparison. This resolves the MNP vs. SNV comparison issues and 
also simplifies the variant types we use for stratification, rather than having a category of 
complex variant calls which has results that are difficult to interpret, we account for every 
atomic indel and SNV call independently.  

● Variants are stratified into a canonical set of types and subtypes (see SI B). 
● When stratification regions are applied, we match variants by their trimmed reference 

span. If any part of a deletion overlaps the stratification region, it is counted as part of that 
stratum.  Insertions receive special treatment by requiring both the base before and the 
base after to be captured. Importantly, this stratification is performed after comparison to 
deal appropriately with representation issues.   

Benchmarking metrics report 

To reconcile the comparison methods and metrics discussed above into a simple summary, we 
have implemented in hap.py a standardized report that can be generated from the tabular output 
of the benchmarking workflow.21 This report displays the metrics we believe are most important 
in an accessible fashion (Tier 1 metrics), while also allowing to examine the data in more detail 
(Tier 2 metrics). An example for the metrics and plots displayed in such a report is shown in Fig. 
3.  

From the TP, FP, and FN counts defined in Table 1, we calculate: 



METRIC.PRECISION = QUERY.TP / (QUERY.TP + QUERY.FP) 
METRIC.RECALL = TRUTH.TP / (TRUTH.TP + TRUTH.FN)  

We use the count of TPs based on the query representation (QUERY.TP) to calculate precision, 
and we use the count of TPs based on the Truth representation (TRUTH.TP) to calculate recall, 
in order to account best for cases where the Truth may tend to split a complex variant into multiple 
varaints and the Query may combine them into a single variant, or vice versa. Definitions and 
formulas for all performance metrics are detailed in Supplementary Table 1.   

An alternative to precision is false positive rate (FPR) = FP / megabase.7 It can easily be obtained 
from GA4GH/hap.py extended csv by taking FP / 1e6 * Subset.Size (or Subset.IS_CONF.Size, 
the number of confident bases in each stratification region). Precision approximates the 
probability that a given query call is true, while FPR approximates the probability of making a 
spurious call. Note that we do not define “True negatives” or “specificity” because these are not 
cleanly applicable to genome sequencing.  For example, there are an infinite number of possible 
indels in the genome, so there are an infinite number of true negatives for any assay.   

In addition, the GA4GH Benchmarking framework is able to produce precision-recall curves, 
which are graphical plots that illustrate the performance of a variant quality score of a test call set 
as its discrimination threshold is varied, compared to the reference call set (see Figure 4). The 
curve is created by plotting the precision against the recall at various quality score threshold 
settings. Commonly used quality scores include QUAL, GQ (genotype quality), DP (depth of 
coverage), and machine-learning derived scores such as VQSLOD and AVR. Because some 
methods use multiple annotations for filtering, precision-recall curves can be generated for a 
particular quality score either before or after removing filtered sites. Examining the precision-recall 
curves for various call-sets has two main advantages. Firstly, it allows the user to consider how 
accuracy is affected through the precision/recall trade-off. Secondly, different call sets may have 
effectively selected different precision/recall trade-off criteria, so simply comparing full call set 
metrics may reflect more about the different trade-off points than the call sets themselves at some 
shared trade-off criteria. 

Benchmark callsets 
Benchmarking of variant calls requires a specific genome and an associated set of calls that 
represent the “right answers” for that genome. Such call sets have the property that they can be 
used as “truth” to accurately identify false positives and negatives. That is, when comparing calls 
from any sequencing method to this set of calls, >50% of the putative false positives and false 
negatives should be errors in the method being assessed. Because it is treated as the truth, this 
benchmark set will be referred to in this manuscript as the “truth” set, but other terms used for this 
include the “gold-standard” set, the “high-confidence” set, the “reference callset,” or 
“benchmarking data.”  
 



Genome in a Bottle 
The Genome in a Bottle Consortium  (GIAB) is a public-private-academic consortium hosted by 
the National Institute of Standards and Technology (NIST) to perform authoritative 
characterization of a small number of human genomes to be used as benchmarks.  GIAB 
published a benchmark set of small variant and reference calls for its pilot genome, NA12878, 
which characterized a high-confidence genotype for approximately 78% of the bases with 
sequence information (i.e., bases that are not an “N”) in the human genome reference sequence 
(version GRCh37).3  Since this publication, GIAB has further developed integration methods to 
be more reproducible, comprehensive, and accurate, and has incorporated new technologies and 
analysis methods.  The new integration process has been used to form benchmark small variant 
and reference calls for approximately 90% of GRCh37 and GRCh38 for NA12878, as well as a 
mother-father-son trio of Ashkenazi Jewish ancestry and the son in a trio of Chinese ancestry 
from the Personal Genome Project (v3.3.2 at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/).4,6,23  
The five GIAB-characterized genomes are available as NIST Reference Materials (RMs 8391, 
8392, 8393, and 8398), which are extracted DNA from a single, homogenized, large growth of 
cells for each genome.  These samples are also all available as cell lines and DNA from the Coriell 
Institute for Medical Research.  The Personal Genome Project samples are also consented for 
commercial redistribution,23 and several derived products are commercially available, including 
FFPE-preserved and in vitro mutated cell lines, or with DNA spike-ins with particular variants of 
clinical interest.  GIAB is continuing to improve the characterization of these genomes to 
characterize increasingly difficult variants and regions with high-confidence. 

Platinum Genomes 
In addition to the benchmarking data produced by the GIAB consortium, Illumina Platinum 
Genomes (PG) has also created a benchmarking data set for small variants (SNVs and Indels) 
using the 17-member pedigree (1463) from Coriell Cell Repositories that includes the GIAB pilot 
sample NA12878/HG001.5 Every sample of this pedigree was sequenced to ~50x depth on an 
Illumina HiSeq2000 system. Variant calls were made from this data using different combinations 
of aligners and variant callers. This pedigree includes 11 children of the parents (NA12877 and 
NA12878), producing a fully phased dataset that allows to validate the accuracy of variant calls 
through genetic inheritance patterns. The HiSeq2000 sequence data used to create these 
benchmarking calls can be obtained from the Database of Genotypes and Phenotypes (dbGaP; 
https://www.ncbi.nlm.nih.gov/gap) under accession number phs001224.v1.p1. Additionally, the 
sequence data for six of the members of this pedigree are released through the European 
Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) under accession number ERP001960. The 
DNA and cell lines for all samples are available from the Coriell Institute for Medical Research, 
and DNA from a single, homogeneous batch of NA12878 is also available as NIST Reference 
Material 8398.  

Merged PG and GiaB 
Since the two resources mentioned above constitute two different methods for generating “truth” 
call sets for NA12878, we have merged these into a single and more comprehensive dataset. 



Such a “hybrid” truth set can leverage the strengths of each input, namely the diversity of 
technologies used as input to Genome in a Bottle and the robust validation-by-inheritance 
methodology employed by Platinum Genomes. 
 
As a first pass, we have compared the call sets in NA12878 and identified the intersection as well 
as the ones unique to each (Supplementary Figure 2). Next, starting from the union, we have 
used a modified version of the k-mer validation algorithm described in [PG] to validate the merged 
calls (Supplementary Methods).  This hybrid benchmark call set includes more total variants than 
either input set (67-333k additional SNVs and 85-90k additional indels), allowing us to assess 
more of the calls made by any sequencing pipeline without a loss in precision (see below).  
 
This new benchmarking set represents the first step towards a more comprehensive call set that 
includes both “easy” to characterise variants and those that occur in difficult parts of the genome. 
Despite this significant advance, there remain areas for continued improvement, such as 
adjudication between conflicting calls and the merging of confident regions. We will continue to 
develop this integration method in order to further expand the breadth of coverage of this hybrid 
truth set resource. 
 
Currently, neither PG nor GIAB makes high-confidence calls on chromosome Y or the 
mitochondrial genome.  In addition, GIAB currently has chromosome X calls only for females, but 
PG has haploid chromosome X calls for the male NA12877 as well.  Hap.py has an optional 
preprocessing step to guess male/female from the truth VCF. For male samples it converts 
haploid 1 GT calls on chrX/Y to 1/1 so that they get compared correctly by xcmp.  For vcfeval, 
haploid 1 GT calls are treated as the same as 1/1, so this conversion is not necessary. 

Synthetic Diploid 
A new “synthetic-diploid” benchmark callset was created from long read assemblies of the 
CHM1 and CHM13 haploid cell lines, in order to benchmark small variant calls in regions difficult 
to analyze with short reads or in diploid genomes, which are currently excluded from the GIAB 
and Platinum Genomes high-confidence regions.7  Because it is based on long reads, 
performance metrics are likely less biased toward any short read sequencing technology or 
informatics method, and it enables benchmarking in regions difficult to map with short reads.  
However, because it currently contains some errors that were not corrected in the long reads, it 
requires a less stringent benchmarking methodology similar to the “local match” method 
described below. It also excludes 1bp indels from performance assessment since long read 
assemblies contain 1bp indel errors, and >50bp indels because these are not analyzed.  
Therefore, it is currently not as useful for assessing accuracy of genotypes or accuracy of the 
exact sequence change predicted in the REF and ALT fields.  When using GA4GH tools 
requiring genotypes to match, the majority of FPs and FNs may not be errors in the query 
callset, though work is underway to improve this.  Nevertheless, it is likely to be complementary 
to the GA4GH benchmarking strategy by enabling users to assess accuracy in more difficult 
regions that GIAB and Platinum Genomes currently exclude from their high confidence regions.  
In particular, because the truth set was not developed from short reads, and errors in the truth 



may be different from errors in short reads, it may better assess of relative performance 
between short read-based methods, particularly in more difficult genomic regions. A current 
limitation is that CHM1 and CHM13 cell lines are not available in a public repository. 
 

PrecisionFDA Challenges 
The PrecisionFDA team held two challenges in 2016, with participants publicly submitting results 
from various mapping/variant calling pipelines. While both challenges asked participants to 
analyze short read WGS datasets, the first challenge used a sample with high-confidence calls 
already available (HG001/NA12878) and the second one without high-confidence calls yet 
available (HG002 from GIAB, made available by GIAB upon the close of the challenge).  
 
In the first, “Consistency” Challenge, 30x Illumina WGS of the HG001/NA12878 sample was 
provided from two different sequencing sites, and the VCF file results from 17 participants were 
assessed for reproducibility and accuracy against the GIAB v2.19 Benchmark VCF. It is possible 
to generate reproducible results without much variability but substantial differences from the truth. 
Additionally, the pipelines that generated the variant calls could be tuned to HG001, which, in 
many situations, was used to train or optimize pipelines.  
 
Therefore, in the second, “Truth” Challenge, participants were asked to use their pipelines with 
50x Illumina WGS to predict variants from at the time yet unknown reference sample 
HG0002/NA24385. Challenge results were compared using two benchmarking comparator tools, 
RTG Tools vcfeval for Consistency Challenge, and Vcfeval + Hap.py Comparison for Truth 
Challenge (more information at https://precision.fda.gov/challenges/). There were 35 entries in 
the Truth Challenge and the responses were submitted and ranked according to precision and 
recall for SNVs and indels vs. the GIAB v3.3.2 high-confidence calls for each genome (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/).  This was the first time Vcfeval + Hap.py GA4GH 
comparison methodology was applied at scale across the large number of entries submitted by 
pipeline developers. It helped highlight the utility of the tools and the need for further development 
and careful interpretation of results. Based in part on feedback from the challenges, an improved 
benchmarking app “GA4GH Benchmarking” uploaded by user peter.krusche is now available on 
precisionFDA. 
 
 
 

 


