
1 Journal of Computer Security 0 (2018) 1
IOS Press

Surviving Unpatchable Vulnerabilities
through Heterogeneous Network Hardening
Options

Daniel Borbor a,∗, Lingyu Wang a and Sushil Jajodia b Anoop Singhal c

a Concordia Institute for Information Systems Engineering, Concordia University, Quebec, Canada
E-mails: d_borbor@ciise.concordia.ca, wang@ciise.concordia.ca
b Center for Secure Information Systems, George Mason University, MD, USA
E-mail: jajodia@gmu.edu
c Computer Security Division, National Institute of Standards and Technology, VA, USA
E-mail: anoop.singhal@nist.gov

Abstract. The administrators of a mission critical network usually have to worry about non-traditional threats, e.g., how to
live with known, but unpatchable vulnerabilities, and how to improve the network’s resilience against potentially unknown
vulnerabilities. To this end, network hardening is a well-known preventive security solution that aims to improve network
security by taking proactive actions, namely, hardening options. However, most existing network hardening approaches rely on
a single hardening option, such as disabling unnecessary services, which becomes less effective when it comes to dealing with
unknown and unpatchable vulnerabilities. There lacks a heterogeneous approach that can combine different hardening options
in an optimal way to deal with both unknown and unpatchable vulnerabilities. In this paper, we propose such an approach by
unifying multiple hardening options, such as service diversifcation, frewall rule modifcation, adding, removing, and relocating
network resources, and access control, all under the same model. We then apply security metrics designed for evaluating
network resilience against unknown and unpatchable vulnerabilities, and consequently derive optimal solutions to maximize
security under given cost constraints. Finally, we study the effectiveness of our solution against unpatchable vulnerabilities
through simulations.

Keywords: Network Hardening, Heterogeneous Hardening, Unpatchable Vulnerabilities, Security Metrics, Diversity

1. Introduction

Today’s computing networks are playing the role of nerve systems in many mission critical infras-
tructures, such as cloud data centers and industry control systems. However, the scale and severity of
security breaches in such networks have continued to grow at an ever-increasing pace, which is evi-
denced by many high-profle security incidents, such as the recent large-scale DDoS attacks caused by
the Mirai Botnet on the Dyn DNS, and the cyber-physical attack on the Ukrainian power grid in 2015 [1].
The so-called zero-day attacks, which exploit either previously unknown or known, but unpatched vul-
nerabilities, are usually behind such security incidents, e.g., Stuxnet employs four different zero day
vulnerabilities to target SCADA [2]. Therefore, administrators of a mission critical network usually

*Corresponding author. E-mail: d_borbor@ciise.concordia.ca.

mailto:d\unhbox \voidb@x \penalty \@M \hskip \z@skip _\protect \discretionary {\char \hyphenchar \font }{}{}\penalty \@M \hskip \z@skip borbor@ciise.concordia.ca
mailto:wang@ciise.concordia.ca
mailto:jajodia@gmu.edu
mailto:anoop.singhal@nist.gov
mailto:d\unhbox \voidb@x \penalty \@M \hskip \z@skip _\protect \discretionary {\char \hyphenchar \font }{}{}\penalty \@M \hskip \z@skip borbor@ciise.concordia.ca

2 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

need to worry about not only patching known vulnerabilities and deploying traditional defense mech-
anisms (e.g., frewalls, IDSs, and IPSs), but also non-traditional security threats, e.g., how to live with
known, but unpatchable vulnerabilities, and how to improve the network’s resilience against potentially
unknown vulnerabilities.

In fact, it is known that cybercriminals frequently leverage vulnerabilities that are not publicly known.
On the other hand, even for known vulnerabilities, patching is not always a viable option. For example,
a patch may not be readily available at the time of the attack (e.g. the remote exploit vulnerability CVE-
2016-4502 [3]), or the system may have reached their end-of-support with no more patch available (e.g.
the Atom-Bombing windows vulnerability [4]); patching a vulnerability may cause unacceptable service
disruptions on a regular basis; even worse, patching a vulnerability may sometimes reintroduce other
security vulnerabilities that have previously been fxed (e.g., Apache MINA SSHD 2.0.14 introduces an
SSL regression previously fxed in 2.0.13 [5]).

Consequently, security professionals need to block the exploitation of such vulnerabilities through
other means, such as adding, removing, or relocating services, as well as modifying frewall rules, ser-
vice diversifcation, or access control. A critical question is How to optimally combine such options in
order to both improve the security and lower the cost? To this end, network hardening is a well-known
preventive security solution that aims to improve network security by taking proactive actions, namely,
hardening options. However, most existing network hardening approaches rely on a single hardening
option, such as disabling unnecessary services [6, 7] or service diversifcation [8] (a detailed review of
related work will be given later in Section 5). Such a solution becomes less effective when it comes to
dealing with unknown and unpatchable vulnerabilities. There lacks a heterogeneous approach that can
combine different hardening options in an optimal way to deal with such vulnerabilities.

In this paper, we develop such an approach to optimally combine heterogeneous hardening options in
order to increase a network’s resilience against both unknown and unpatchable vulnerabilities under var-
ious cost constraints. Specifcally, we frst devise a unifed model for heterogeneous hardening options.
We also design a cost model and discuss how hardening cost may be estimated in a realistic fashion. We
then formulate network hardening as an optimization problem and develop optimization and heuristic
algorithms to derive optimal solutions under given cost constraints. We evaluate our approach through
simulations in order to study the effect of optimization parameters on accuracy and running time, as well
as the effectiveness of hardening against unpatchable vulnerabilities and for different types of networks.
In summary, the main contribution of this paper is the following.

• To the best of our knowledge, this is the frst effort on network hardening that covers a spectrum
of heterogeneous hardening options, including service diversifcation, adding, removing, and re-
locating resources, as well as frewall and access control rule modifcation.

• In constrast to previous works, which typically assume ad-hoc hardening cost assignments, we
provide a refned cost model and cost estimation criteria that take into account real world variables
in calculating hardening costs.

• As evidenced by the simulation results, our optimization and heuristic algorithms are effcient and
effective, and hence they provide a practical solution for network administrators to improve their
networks’ resilience against unknown and unpatchable vulnerabilities.

• Finally, by focusing on unknown and unpatchable vulnerabilities, our work provides a more en-
compassing complementary solution to existing network hardening approaches that focus on fx-
ing known vulnerabilities.

3 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

The preliminary version of this paper has previously appeared in [9]. In this paper, we have substan-
tially improved and extended the previous version. The most signifcant extensions are as follows. First,
in addition to the hardening options already covered in the previous version, i.e., service diversifcation
and frewall rule modifcation, we have further introduced three new hardening options in this paper, i.e.,
adding new resources, removing existing resources, and relocating resources between given locations in
the network (detailed in Sections 2.1). Integrating those new options into the existing model allows us to
further improve the capability of surviving unpatchable vulnerabilities. Second, in addition to the cost
model proposed in the preliminary version, we have further provided realistic methods for estimating
the costs of all the hardening options we propose (detailed in Section 2.3). Third, we have provided an
additional analysis on the steps taken to instantiate our metric for given networks (Section 2.4). Fourth,
a new heuristic algorithm for effciently computing the hardening metric in special cases is provided
(Section 3.3). Finally, we have conducted a series of new simulations to demonstrate how our solution
performs in the presence of the newly added hardening options (Section 4).

The remainder of this paper is organized as follows: The rest of this section frst builds the motivation
through a running example. In Section 2, we present the model and formulate the optimization problem,
and in Section 3 we discuss the methodology and show case studies. Section 4 shows simulation results.
Section 5 reviews related work and Section 6 concludes the paper.

1.1. Motivating Example

We frst consider a concrete example to demonstrate why deriving an optimal solution with hetero-
geneous hardening options can be a tedious and error-prone task if done manually and would therefore
beneft from a systematic and automated approach, even if the considered network is of a small size.
Figure 1 shows a hypothetical network for a typical cloud data center [10] based on the OpenStack ar-
chitecture [11]. Despite its relatively small scale, it mimics a typical cloud network: The client layer
connects the cloud network to the internet through a router (CRS 7600); a frewall (ASA v1000) sep-
arates the outside network from the inner one; there is a security/authentication layer (authentication
server, Neutron server, etc.) as well as a virtual machine (VM) and application layer (web and applica-
tion servers); fnally, a storage layer is separated and protected by another frewall (ASA 5500) and an
MDS 9000 multilayer switchesMultilayer Switches [10].

We make the following assumptions about the network. We assume the two frewalls and other host-
based security mechanisms (e.g., personal frewalls or iptables) together enforce the connectivity de-
scribed inside the connectivity table shown in the fgure. External users (including attackers) are repre-
sented with host h0, and the most critical asset is assumed to be the Xen database server (h4), which
may be accessed through the three-tier architecture [12] involving hosts h1, h2, and h3. We assume the
network is free of any known vulnerabilities, except for an unpatchable vulnerability on the applica-
tion server running SecurityCenter 5.5 (which cannot be changed due to functionality requirements),
and another one on the database server running MySQL 5.7 which may be changed to MSQL 2012 or
PostgreSQL 9. For simplicity, we exclude exploits and conditions that involve frewalls in this example.

To measure the network’s resilience against zero-day attacks, we apply the h safety metric [9]. This
metric counts how many distinct services must be compromised using unknown vulnerabilities before
an attacker may compromise the critical asset (i.e., the number of distinct services along the shortest
path) while also taking into consideration the potentially uneven distribution of distinct services along
the shortest path [13, 14] (e.g., a path consisting of three http and one Xen would be considered slightly
“shorter”, or less secure, than a path consisting of two http and two Xen services, although both paths
have the same number of resource instances and resource types).

D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

4

Cloud User

Nexus 5000

Service Control
Embedded Services:

IDS/IPS/SSL/DDoS

DNS / Neutron
Server Authentication Server

SSH

HTTP server VM
http, ssh

rsh

Xen Server for
HTTP service

SSH

APP server VM
http, ssh
app

Xen Server for
APP service

SSH

Nexus 5000

MDS 9000
DB Server VM

http, ssh
rsh, db

Nexus 7000

ASA 5500
(f2)

Nexus 7000

CRS 7600 ASA v1000

Xen Server for DB
Xen, ssh
rsh

Connectivity Table

Http, rsh,
ssh

80,514,
22

Services Ports Source host

Any

App,
http, ssh

4070,
80,22 h1: 10.160.70.101

DB,ssh,rsh
http

1433,22
514,80 h2: 10.160.70.102

Destination host

h1: 10.160.70.101

h2: 10.160.70.102

h3: 10.160.70.103

Xen, rsh,
ssh

5900,
514,22 h3: 10.160.70.103 h4: 10.160.70.104

h4

h1

f2

f1

h0

h3

h2

Firewall 2 (F2) Firewall 1 (F1)

Allow
Local user to all

Modifiable firewall rules

Rules

1: Connectivity

2: Application

Allow
from h0 to h2

N/A

3: AD Domain
Access Control

Allow connect
rsh from h2 to h3

Allow
Local user to all

N/A

App on h2 is unpatchable
and not diversifiable

Http on h2 can be
removed

Db on h3 is unpatchable
but diversifiable

Rsh on h1 can be
relocated to h4

Http on h3 can be added

Additional Information

Fig. 1. An Example Network.

For hardening options, we consider the following options: i) adding new resources, ii) removing ex-
isting resources, iii) relocating existing resources from one host to another, iv) changing the frewall or
access rules, and v) changing the service types through service diversifcation. More specifcally,

• We assume the administrator may enable or disable frewall rules on both the frewall ASA v1000
(f 1) and on the frewall ASA 5500 (f 2).

• On f 1 the administrator has a rule that allows the connection from the cloud user (h0) to the app
VM (h2);

• The administrator also has the option to allow local user access to the web server VM (h1) and h2.
• The frewall f 2 has a rule where he allows the rsh connection on the database server VM (h3)

from h2, as well as local user access to h3 and the Xen server (h4).
• The administrator has the possibility to remove the http service on h2 if he/she would want to stop

web access to the application server VM; he/she also has the option to add the http service on h3
to administer the database via a web interface;

• The frewall f 2 has a rule to allow the rsh connection on the database server VM (h3) from h2, as
well as local user access to h3 and the Xen server (h4).

• The administrator also has the option to relocate the rsh service from h1 to h4 to execute shell
commands on the Xen Server holding the database VM.

� �

5 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Based on above assumptions, the administrator needs to carefully analyze which of those options, if
any, will help to make the network more resilient against zero-day attacks. The administrator must also
consider the causal relationships between network resources (e.g., some resources can only be reached
as a result of compromising other resources), the dependency between hardening options, and fnally the
different costs associated with different typs of hardening options (e.g., the cost can vary signifcantly
between adding, removing or relocating a resource, and also for diversifying services and changing
frewall or access rules). Specifcally,

• How would adding a new resource, removing an existing one, or relocating a resource from one
host to another, impact the overall network resilience against unknown and unpatchable vulnera-
bilities?

• How would using different instances of a service (diversifying) help with the network resilience?
• How would enabling or disabling predefned frewall rules help hardening the network?
• How would the fact that some services are not patchable (whether or not they can be diversifed)

impact the efforts to secure the network?
• How to make sure that the options that are chosen respect predefned costs?

Clearly, even with such a small scale network, to answer those questions through manual efforts or
experiences would obviously be a tedious and error-prone task and thus demands a systematic and auto-
mated approach, which is the subject matter of this paper.

2. Model

We frst defne our model to capture network services and their relationships; we then present the
heterogeneous hardening control, our cost model and discussions on how to estimate costs, followed by
an analysis of the metrics that we will be using, and the optimization problem formulation.

2.1. Extended Resource Graph

The frst challenge is to model different resources, such as services (e.g., Web servers) that can be
remotely accessed over the network, different instances of each service (e.g., Apache and IIS), and the
causal relationships existing among resources (e.g., a host is only reachable after an attacker gains a
privilege to another host). This challenge applies to both unpatchable and unknown vulnerabilities. An
additional challenge is how to model the addition of new resources into the network, the removal of
existing ones, and the relocation of predefned resources within the network, as well as considering any
potential dependency among different options. Finally, there is also the added complexity of considering
predefned frewall rules which may affect initially satisfed conditions.

To address these challenges, we adopt the concept of Extended Resource Graph [8, 9], which is syntac-
tically equivalent to attack graphs, but models network services instead of known vulnerabilities [13, 14].
This graph introduces the notion of Service Instance to indicate which instance (e.g., Apache) of a par-
ticular service (e.g., Web server) is being used on a host. Like the original extended resource graph,
we only consider services that can be remotely accessed. The extended resource graph of the running
example is shown in Figure 2 and detailed below.

In Figure 2, each pair shown in a rectangle is a security-related condition. If the condition is a privi-
lege, it is represented as ×privilege, host ; if it is connectivity, it is represented as ×source, destination .

�

6 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

<user,0>

<root,1>

<root,2>

<http,0,1>

<ssh,1,1>

<app,1,2>

<DB,2,3>

<ssh,2,2>

<ssh,3,3>

<root,3 >

<Xen,3,4>

<ssh,4,4>

<root,4 >

<http,1,2>

<http,0,2>

<rsh,2,3>

<http,2,3>

<app,0,2>

0

1

d <rsh, f2, 1>

Disabled

Rule 2 Enabled:
MVRSHD 2.24

1

u <0, 1>

Enabled

2
1

3
4

d <http, 1>

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

1
2

d <0, f1, 2>

Only Rule 1 Enabled
Rule 1 and 3 Enabled

0 No Rule Enabled

2
1

3
4

a <ssh, 1>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

1

u <app, 2>

SecurityCenter5.5
r <http, 2>

0

2
1

3
4

Disabled

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

0

2

d <user, f1, 1>

Normal condition
(No rule enabled)

Initial condition
(Rule 1 and 3 enabled)

2

1

3

d <DB, 3>

MSQL 2012

MySQL 5.7

PostgreSQL 9

1

u <Xen, 3>

XenServer 7.1

1

u <3, 4>

Enabled

1

u <2, 3>

Enabled

2
1

3
4

d <ssh, 2>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

1

d <1, 2>

Enabled

0

2

d <user, f1, 2>

Normal condition
(No rule enabled)

Initial condition
(Rule 1 and 3 enabled)

2
1

3
4

d <ssh, 3>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

2
1

3
4

d <ssh, 4>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

0

2

d <user, f2, 3>

Normal condition
(No rule enabled)

Initial condition
(Rule 2 and 3 enabled)

0

2

d <user, f2, 4>

Normal condition
(No rule enabled)

Initial condition
(Rule 2 and 3 enabled)

a <http, 3>

2
1

3
4

0

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

Disabled

<rsh,0,1>

0

1

m <rsh, 1>

Disabled

MVRSHD 2.24

1

0

m <rsh, 4>

MVRSHD 2.24

Disabled <rsh,3,4>

Firewall 1 Rules Firewall 2 Rules
0 Rules 1 and 2 are disabled 0 Rules 2 and 3 are disabled

Flag code Color code 1 Rule 1 enabled 1 Rule 2 enabled

2 Rules 1 and 2 enabled 2 Rules 2 and 3 enabled
d Diversifiable

u Unchangeable

a Addable

r Removable

m Movable

Unpatchable/not diversifiable

Can be removed Modifiable firewall rules

Can be added

Can be moved

Unpatchable/diversifiable

Disabled

Firewall 2 (F2) Firewall 1 (F1)

Allow
Local user to all

Rules

1: Connectivity

2: Application

Allow
from h0 to h2

N/A

3: AD Domain
Access Control

Allow rsh
from h2 to h3

Allow
Local user to all

N/A

Fig. 2. The extended resource graph of our running example.

If a frewall affects a security-related condition, it is represented as ×privilege, f irewall, host or as

�

�

�
�

�

�
�

� �
� � �

�

7 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

×source, f irewall, destination . Each one of the rows below the rectangle indicate different hardening
options available for that condition. The option currently in use is indicated by the highlighted integer
and other potential instances are in a lighter text (e.g., 0 means disabled; in the case of service diversif-
cation for the http service, 1 means Apache, and 2 means IIS, etc.). For the conditions modifable by a
frewall rule, the rows below the rectangle indicate the frewall rules that affect it.

Each exploit node (oval) is a tuple that consists of a service running on a destination host, the source
host, and the destination host (e.g., the tuple ×http, 1, 2 indicates a potential zero-day vulnerability in the
http service on host 2, which is exploitable from host 1). If the exploit is diversifable, it is represented
by the texture linked to a condition with d fag (e.g., ×DB, 2, 3); if it is unpatchable, it is represented by
the texture linked to a condition with u fag (e.g., ×app, 1, 2); if an exploit is a result of a service that can
be added to a host, then it is represented by the texture linked to a condition with a fag (e.g., ×http, 2, 3);
if it is a result of a service that can be removed from a host, it is represented by the texture linked to a
condition with r fag (e.g., ×http, 1, 2); if the exploit comes from a service that can be relocated from one
host to another, then it is represented by the texture linked to a condition with m fag (e.g., ×rsh, 3, 4).
These different types of exploits will contribute to the calculation of the security metric value as detailed
later. The self-explanatory edges point from preconditions to an exploit (e.g., from ×0, 1 and ×http, 1 to
×http, 0, 1), and from the exploit to its post-conditions (e.g., from ×http, 0, 1 to ×user, 1).

We make three design choices here. First, we associate the service instance concept as a property
(label) of a condition (e.g., ×http, 1), instead of an exploit (as in our previous work [8]). The reason
is an administrator only has control over initial conditions [15]. This label can then be inherited by the
corresponding exploits. We will use this label to specify which service instance of a particular service is
currently chosen. Second, as with the service instance, we add an additional condition property, called a
service fag, as a label, to specify if that condition or service is unchangeable (u), diversifable (d), or if
this condition/service can be relocated (m) to a different host, can be added (a) if it was previously not
present on the network, or if it can be removed (r) completely from the network. Finally, while some
conditions indicate the involved frewall rules, the actual label values that they will take will depend on
the number of predefned modifable rules in the frewall itself. Therefore, for each frewall, instead of
modeling service instances, we model the number of modifable frewall rules that can be enabled.

The service fag has an important implication in our extended resource graph when considering the
removal of existing services, the addition of services not initially present, and the relocation of services
from one host to another. This fag is used to validate if a condition (and by extension, an exploit) is
to be considered when optimizing the security of a network. For example, if a service that is currently
enabled on the network, is removed (r service fag), then this service and the exploits associated to it,
will not form part of the topology used to calculate the hardening metric. We further discuss this in
Section 3.3. Additionaly, because our extended resource graph models services that may not be present
(due to the addition, removal, or relocation of said services), it will contain a small increase in the number
of additional conditions and exploits. We believe this is acceptable if we consider that an administrator
typically only deals with a limited number of possibilities to add, remove, or relocate resources. For the
case of frewall rules, this would help to avoid the need for introducing new conditions and exploits into
the extended service graph when frewall rules are to be disabled and hence we may work with a fxed
structure of the extended service graph. Defnitions 1 to 4 formally introduce these concepts.

Definition 1 (Service Pool and Service Instance). Denote S the set of all services and Z the set of
integers, for each service s ∈ S , the function sp(.) : S → Z gives the service pool of s which represents
all available instances of that service.

�

�

�
�

8 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Definition 2 (Service Flag). Denote S the set of all services and D = {d, u, r, a, m} the set of flag values,
for each service s ∈ S , the function d(.) : S → D gives the service flag of s.

Definition 3 (Firewall Rule Pool and Firewall Rule). Denote F the set of all firewalls and Z the set of
integers, for each firewall f ∈ F, the function r(.) : F → Z gives the firewall rule pool of f which
represents all modifiable firewall rules of that firewall.

Definition 4 (Extended Resource Graph). Given a network composed of

• a set of hosts H,
• a set of services S , with the service mapping serv(.) : H → 2S , and service flag d(.) : s → d,
• the collection of service pools S P = {sp(s) | s ∈ S },
• the collection of firewall rules FR = {r(f) | f ∈ F},
• a set of firewalls F, with the rule mapping r(.) : F →| FR |,
• and the labeling function v(.) = v f (.) ∪ vc(.) where v f (.) : f → F and vc(.) : C → S P.

Let E be the set of exploits {×s, hs, hd �| hs ∈ H, hd ∈ H, s ∈ serv(hd)}, Rr C × E and Ri E × C
be the collection of pre and post-conditions in C, RF F × C be the relationship between firewall rules
and conditions, RB C × D be the relationship between conditions with their service flag, We call the
labeled directed graph, ×G(E ∪ C, Rr ∪ Ri ∪ RF ∪ RB), v the extended resource graph.

2.2. Heterogeneous Hardening Control

We employ the notion of heterogeneous hardening control as a model to account for all hardening op-
tions in a network where we represent each initial condition as an optimization variable. We formulate
the heterogeneous hardening control vectors using those variables as follows. The number of optimiza-
tion variables present in a network will depend on the number of initial conditions that are affected by
one or more hardening options (many exploits may share the same service instance, and hence the opti-
mization variable). Since we only consider remotely accessible services in the extended resource graph
model, we would expect in practice the number of optimization variables to grow linearly in the size
of the network (i.e., the number of hosts). We will further evaluate and discuss the scalability of our
solution in Section 4.

Definition 5 (Network Hardening and Hardening Option). Given an extended resource graph ×G, v ,
the collection of any instance of service or rule in S P ∪ F, is called a hardening option, ∀sp(s) ∈ S P
and ∀ f ∈ F. The process of optimally selecting these options to maximize security with respect to given
cost constraints is called network hardening.

Definition 6 (Optimization Variable and Heterogeneous Hardening Control). Given an extended re-
source graph ×G, v , ∀c ∈ C and ∀ f ∈ F, v(c) and v(f) are optimization variables. A hardening control
vector is the integer valued vector V = (v(c1), v(c2), ..., v(c|C|) ∪ (v(f1), v(f2), ..., v(f|F|)

Changing the value of an optimization variable has an associated hardening cost and the collection
of such costs is given in a hardening cost matrix in a self-explanatory manner. Like in most existing
works (e.g., [6, 7, 16]), we believe an administrator can estimate the hardening costs based on monetary,
temporal, and scalability criteria like i) installation cost, ii) operation cost, iii) training cost, iv) system

�

�

�

� � � �

9 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

downtime cost and, v) incompatibility cost. Taking this criteria as a point of reference, subsection 2.3
provides a guideline on how our hardening costs are estimated. We defne the hardening cost, hardening
cost matrix, and the total hardening cost as follows.

Definition 7 (Hardening Cost). Given s ∈ S and sp(s), and given f ∈ F and r(f), the cost to change
from one specific hardening option to another is defined as the hardening cost.

Definition 8 (Hardening Cost Matrix). The hardening cost matrix (HCM) is defined as a matrix in
which the ith row and ith column both represent the ith hardening option. The collection of all hardening
costs for all hardening options are given as a hardening cost matrix HCM. For the different hardening
options, the element at ith row and jth column is the given cost of changing the ith hardening option to
the jth hardening option.

Definition 9 (Total Hardening Cost). Let vs(ci) be the service associated with the optimization variable
v(ci) and Vc0 the initial service instance values for each of the conditions in the network. Let v f (fi) be
the firewall associated with the optimization variable v(fi) and Vf 0 the initial firewall rule set values for
each of the firewalls in the network. The total hardening cost, Qh, given by the heterogeneous hardening
vector V is obtained by

|C|

i=1 i=1

The above defnition of hardening cost between each pair of service instances has three advantages.
First, in practice we can easily imagine cases where the cost is not symmetric, i.e., changing one service
instance to another (e.g., from Apache to IIS) carries a cost that is not necessarily the same as the
cost of changing it back (from IIS to Apache). Our approach of using a collection of two-dimensional

�

matrices allows us to account for cases like this. Additionally, by considering instance 0, it provides us
the advantage to model disabling (or removing) a service as a special case of service diversifcation if the
hardening option allows it. Second, our cost model concept can be used to specify many different types
of cost constraints which can be added to the base formula as will be discussed in the next section. For
example, an administrator might have confgured service groups to group related services together (e.g.,
SIP, RTP, and RTSP) and a change in one service might also affect the others. In other words, the way
our costs are calculated can be derived as a function of the status of other services or conditions. Finally,
another advantage of our defnition is the inclusion of negative costs. While at a frst glance this concept
may not seem self-evident, the inclusion of negative cost values can be interpreted as an incentive to
opt for a specifc option. For example, an administrator may want to phase out the use of rsh in favor
of a more secure protocol like ssh. This can be easily represented by negative cost values within our
two-dimensional matrix which effectively subtracts costs from the total hardening cost.

2.3. Cost Estimation

Our main assumption for the values of these cost is that they are assigned by security experts or
network administrators. While our cost model does consider that individual hardening costs can depend
on factors such as downtime costs or the status of other services, we believe a baseline cost can be
frst estimated to better inform and justify the hardening costs. Therefore, we make use of Gartner’s

F| |�
Qh = HCMvs(ci)(Vc0(i), Vc(i)) + HCMv f (fi)(Vf 0(i), Vf (i))

10 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

2003’s Total Cost of Ownership (TCO) analysis report [17] and Emerson-Ponemon Institute’s 2016’s
analysis report on the cost of data center outages [18] to establish a more realistic cost estimate which
a company might incur when selecting one or more hardening options. Based on Gartner’s report, a
company’s costs can be divided into two main categories: base costs and ongoing costs. The base costs
are mostly associated with planning costs that include, but are not limited to, server/software acquisition
and installation costs. The ongoing costs are the costs of keeping a server, or a service, up and running.
The ongoing costs are further divided into direct and indirect costs which include operational costs and
downtime costs, respectively. A more detail list of different costs and how these may be associated with
different hardening optiions is given in Table 1.

Next, we apply the TCO’s ongoing costs as a reference point for estimating the hardening costs. It
can be observed that direct costs (e.g., support costs, changes in upgrade costs or production control
costs), as well as indirect costs (e.g., downtime cost), are costs that need to be considered when imple-
menting a network hardening solution. Additionally, since the ongoing costs alone will incur on average
around 85% of the total costs of ownership, it is reasonable estimation to use the ongoing costs as the
baseline reference for hardening costs. Furthermore, since our hardening options (diversifying, adding,
removing, and relocating services, as well as modifying frewall rules) mainly involve existing service
instances (inside the service pool), we only consider ongoing costs for hardening and assume the base
costs (acquisition and installation) are already applied before the hardening process. As seen in Table 1,
because the indirect costs make up at least 50% of the total ongoing costs, we can further narrow down
the base of the hardening costs as being based on the indirect costs, in particular the system downtime
cost. In Emerson-Ponemon’s 2016’s [18] report on the downtime costs of a data center, the impact that
downtime costs can have on a network is highlighted. Based on their industry benchmarks and insights,
our hardening costs can be estimated by system administrators in making decisions about network hard-
ening. Although the hardening cost can be defned based on system downtimes in more rigorous ways,

¯

we will adopt the simple estimation method given in [19] as follows:

qhr(dt) Ēq(hr) × Ĕa f + R̄hr × R̆a f=

Where

•
•
¯ is the estimated average cost of one hour of downtime, qhr dt()
¯ is the estimated average employee costs per hour (i.e., the total salaries and benefts of E hr()q

employees per week divided by the average number of working hours, or the total revenue per
week divided by average number of open hours).
˘
¯

• Ea f is the estimated fraction of employees affected by the downtime,
• Rhr is the estimated average revenue per hour, and
• R̆a f is the estimated fraction revenue affected by the downtime.

Because the Fraction Employees Affected by Outage and the Fraction Revenue Affected by Outage are
not values readily available, an educated guesses based on about plausible range should be considered.

To better illustrate this, we take as an example the reported 2015 revenue for Amazon. This revenue
was reported at approximately $107 billion [20] with approximately 250,000 employees for that same
year [21]. From this information, the approximate revenue per hour (considering that Amazon is a 24/7
business) is about $12M. Assuming an average annual salary of an employee being around $100,000
then we can have approximate yearly expenditure of $25B on salaries or approximately $471M per

11 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Gartner’s TCO’s base costs D A R M Fc Fs Fa

Cost of Hardware
AcquisitionPlanning Cost of OS x xcostscosts Cost of Application x x x x

(Approx.
Hardware setup 15% of Installation

TCO) OS installation x xcosts
Application installation x x x x

Gartner’s TCO’s ongoing costs D A R M Fc Fs Fa

Indirect Downtime Planned downtime x x x x x x x
costs costs Unplanned downtime x x x x x x x
(Approx.

End-user Casual learning 50% of
costs Peer and self support TCO)

Communication fees x x x x x x x

costs IS commodity
expenditures

Insurance

Operational Leased asset fees x x x

Help desk x x x
Request and problem x x x

Support management
costs

Casual learning x x x x x x x

Direct Operating costs x x x x x x
Training x x x x x x x

x
costs Change planning x x x x x x x
(Approx. Changes in Asset management x x x x x x x
35% of upgrade Product evaluation and x x x x x x x
TCO) costs testing

Product procurement x x x x x x x
and implementation
User administration x x x x x x x
Security and virus Security

protectionmanagement
and failure LAN/WAN x x x x
control costs troubleshooting/repair

Disaster planning and
recovery

Hardware maintenance
fees

Event management x x x
Monitoring

Performance x x x xcosts
management
Physical site x x x x
management
Application x x x x x x x

Production management
control costs

Storage management x x x x x x x
Traffc management x x x x x x x

Table 1

The association between Gartner’s TCO costs and hardening options. D: Diversifying services; A: Adding a new service; R:
Removing an existing service; M: Relocating a service; Fc: Connectivity based frewall rule; Fs: Service based frewall rule;
Fa: Access control based frewall rule.

�

�
� � �

12 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

week for all staff. If we consider that an Amazon employee works on average 50 hours per week, then
the average expenditure per salary per hour is around $9.4M per hour. We assume that if an outage for
the ftp services affects 84% of the revenue, that would equate to a loss of around $10M. If it affects
85% of the employees, then that would equate to approximately $8M. Thus, the total revenue loss for an
outage would be valued at approximately q̄hr(dt) = $9.4M × 0.85 + $12M × 0.84 = $18M. This value
can be used as a base monetary reference to defne the costs to diversify the ftp service.

The above discussions only provide a starting point for both network administrators and security to
estimate hardening costs, and those can certainly be refned, e.g., by considering outage prevention
mechanisms which may reduce the downtime.

2.4. Hardening Metric

The security metric used in this paper is an extension of the k-zero-day safety metric [22]. Specifcally,
our metric is based on the minimum number of distinct resources, excluding those with unpatchable vul-
nerabilities, on the shortest attack path in the extended resource graph, with the extension for considering
the uneven distribution of services along that path [13, 14], as well as the unpatchable services. It is for-
mally defned below.

Definition 10 (h-Safety Metric). Given an extended resource graph ×G(E ∪ C, Rr ∪ Ri ∪ RF ∪ RB), v
and a critical asset cg ∈ C; let t be the total number of services, and let pj be the relative frequency of
each resource. For each c ∈ C and q ∈ seq(c) (attack path), denote R(q) for {s : s ∈ R, r appears in q,
r is not unpatchable}, we define the network’s h-safety metric (where min(.) returns the minimum value
in a set) h = minq∈seq(cg)r(R(q)); where r(R(q)) is the attack path’s effective richness of the services,

1defined as r(G) =�n pi [13]
1 pi

In Figure 3, we can see that while both paths have three unique exploits, their associated h metric will
be different due to the difference in the relative frequency of each exploit. Since h is the minimum value
between the two, the h value between these two paths would be equal to h2.

2.5. Problem Formulation

As demonstrated in our discussions about the motivating example in Section 1.1, hardening a network
with multiple options demands a systematic and automated approach. For any data center or cloud net-
work, to manually conduct the network hardening task is not feasible, as demonstrated earlier by the
small network in our motivating example. Applying the h-safety metric (or simply the h metric) defned
in previous section to Figure 3, it is not straightforward to see how changing the number of unique ex-
ploits and their relative frequency will affect the overall value of the h metric. On the other hand, it is
clear that by changing the service instances, modifying frewall rules, or adding, removing or relocat-
ing services, the network’s h metric value can likely be improved. This motivates for a systematic and
automated solution. Consequently, we consider the concrete network hardening problem of maximizing
the h metric value by optimally changing the hardening options, while respecting the available budget in
terms of given cost constraints. In the following, we formally defne this as an optimization problem.

Problem 1 (h-Optimization Problem). Given an extended resource graph ×G, v , find a heterogeneous
hardening control vector V which maximizes min(h(×G(V), v)) subject to the constraint Q � B, where
B is the available budget and Q is the total hardening cost as given in Definition 9.

13 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

<user,0>

<root,1>

<root,2>

<http,0,1>

<ssh,1,1>

<app,1,2>

<DB,2,3>

<ssh,2,2>

<ssh,3,3>

<root,3 >

<Xen,3,4>

<ssh,4,4>

<root,4 >

<http,1,2>

<http,0,2>

<rsh,2,3>

<http,2,3>

<app,0,2>

0

1

d <rsh, f2, 1>

Disabled

Rule 2 Enabled:
MVRSHD 2.24

1

u <0, 1>

Enabled

2
3
4

d <http, 1>

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

1
2

d <0, f1, 2>

Only Rule 1 Enabled
Rule 1 and 3 Enabled

0 No Rule Enabled

2
1

3
4

a <ssh, 1>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

1

u <app, 2>

SecurityCenter5.5
r <http, 2>

0

2
1

3
4

Disabled

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

0

2

d <user, f1, 1>

Normal condition
(No rule enabled)

Initial condition
(Rule 1 and 3 enabled)

2

1

3

d <DB, 3>

MSQL 2012

MySQL 5.7

PostgreSQL 9

1

u <Xen, 3>

XenServer 7.1

u <3, 4>

Enabled

1

u <2, 3>

Enabled

2
1

3
4

d <ssh, 2>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

1

d <1, 2>

Enabled

0

2

d <user, f1, 2>

Normal condition
(No rule enabled)

Initial condition
(Rule 1 and 3 enabled)

2
1

3
4

d <ssh, 3>

OpenSSH 7.4

m <rsh, 1>

MINA 2.0.14

Copssh 5.8
Attachmate 8

2 OpenSSH 7.4 0 (No rule enabled)
1

3
4

d <ssh, 4>

MINA 2.0.14

Copssh 5.8
Attachmate 8

0

2

d <user, f2, 3>

Normal condition
(No rule enabled)

Initial condition
(Rule 2 and 3 enabled)

2

d <user, f2, 4>

Normal condition
(Rule 2 and 3 enabled)

Initial condition

a <http, 3>

2
1

IIS 8.5
3
4

0

NGINX 1.9
Litespeed 5.0

Disabled
Apache 2.4

<rsh,0,1>

0 Disabled

1 MVRSHD 2.24

1 MVRSHD 2.24

0

m <rsh, 4>

Disabled <rsh,3,4>

<appv=1,0,2> <sshv=1,3,3> <Xenv=1,3,4> <sshv=14,4>
Number of unique exploits: 3
Relative frequency of each exploit: appv=1 1/3, sshv=1 2/3, Xenv=1 1/3ℎ =	 1 1/3 / · 2/3 / · 1/3 / = 2.726

<httpv=1,0,1> <httpv=1,1,2> <sshv=1,3,3> <Xenv=1,3,4> <sshv=14,4>
Number of unique exploits: 3
Relative frequency of each exploit: httpv=1 2/3, sshv=1 2/3, Xenv=1 1/3

Path 2

ℎ = 1 2/3 / · 2/3 / · 1/3 / = 2.476 ℎ = min ℎ , ℎ = ℎ = 2.476

Path 1

1

1

Fig. 3. h metric example.

14 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Since our problem formulation is based on an extended version of the resource graph, which is syn-
tactically equivalent to attack graphs, many existing tools developed for the latter (e.g., MULVAL [23]
or CAULDRON [24]) may be easily extended to generate extended resource graphs. Additionally, our
problem formulation assumes a very general model of budget B and cost Q, which allows us to account
for different types of budgets and cost constraints that an administrator might encounter in practice, as
will be demonstrated in the following section.

3. Methodology

This section details the optimization and heuristic algorithms used for solving the formulated harden-
ing problem and describes a few case studies.

3.1. Optimization Algorithm

Our frst task is to select an optimization algorithm that is suitable for solving the hardening prob-
lem. Generally, there exist mainly two types of optimization algorithms: Conventional methods or exact
algorithms and meta-heuristic approaches [25]. Exact (gradient-based) algorithms, such as Lagrangian
relaxation and branch and bound, consider all the solution spaces to give a global solution [26]. However,
it is well known that most of these methods require to satisfy mathematical properties like convexity or
differentiability [27], which are not applicable to our problem. The problem we want to solve includes
different if-then-else constructs to account for the different hardening techniques used (as well as the
cost constraints), and thus, an algorithm that allows to insert this construct is necessary. Meta-heuristic
approaches, such as genetic algorithm, particle swarm optimization, imperialist competitive algorithm,
etc., consider some parts of the solution space to reach a global optimum or near-solution optima, which
provides an advantage when dealing with discrete variable spaces [26], which closely match the re-
quirement of our hardening problem. They provide a simple and robust search method and optimization
technique. Because the problem we want to solve uses variables that are defned as discrete, a meta-
heuristic approach is needed.

In particular, the genetic algorithm (GA) provides a simple and clever way to encode candidate so-
lutions to the problem [28]. One of the main advantages is that we do not have to worry about explicit
mathematical defnitions (which allow for a quick implementation). For our automated optimization
approach, we chose GA, which is popular among the different evolutionary algorithms due to certain
characteristics: It requires little information to search effectively in a large search space in contrast to
other optimization methods (e.g., the mixed integer programming [26]); and that it uses both crossover
and mutation operators which makes its population more diverse and thus more immune to be trapped
in some local optima. While our work was inspired by [6], our main difference and contribution is that
we focus on multi-option hardening and not just on disabling services.

The extended resource graph is the input to our automated optimization algorithm where the func-
tion to be optimized (ftness function) is the h metric of the extended resource graph. There are two
important points to consider when optimizing the h metric function on the extended resource graph for
each generation of the GA: i) the graph’s service instance labels for the chosen hardening option will
dynamically change. ii) the actual shape of the graph will dynamically change due to the frewall rules
and the service flag labels which account for the added, removed, and relocated services. This in turn
will change the value of h, since the shortest path may have changed with each successive generation
of GA and the change in the hardening options (as well with the adding, removal, and relocation of

�

15 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

services) will enable or disable certain conditions, vulnerabilities, and paths. Our optimization tool takes
this into consideration. Additionally, if there are more than one shortest path that provides the optimized
h, our optimization tool gives priority to the paths by considering the uneven distribution and relative
frequency of resources in that path, thus addressing one of the limitations that was present in [8] where
no priority was provided.

The constraints are defned as a set of inequalities in the form of q � b, where q represents one or more
constraint conditions and b represents one or more budgets. These constraint conditions can be overall
constraints (e.g., the total hardening cost Qh) or specifc constraints to address certain requirements
or priorities while implementing the heterogeneous hardening options (e.g., the cost to diversify http
services should be less than 80% of the cost to diversify ssh; if http is added into h2, ssh and app
also incur a cost; the relocation of rsh could mean a negative cost (credit) and thus incentivizing its
relocation; etc.) Those constraints are specifed using the diversity control matrix.

The number of independent variables used by the GA (genes) are the optimization variables given by
the extended resource graph. For our network hardening problem, the GA will be dealing with integer
variables representing the selection of a hardening option. Because v(.) (optimization variable) is defned
as an integer, the optimization variables need to be given a minimum value and a maximum value. This
range is determined by the number of instances provided in the service pool of each service and frewall
rule pool of each frewall. The initial service instance for each of the services and the initial set of frewall
rules are given by the extended resource graph while the fnal heterogeneous hardening control vector V
is obtained after running the GA.

3.2. Use Cases

In the following, we demonstrate potential use cases of our method with varying cost constraints and
hardening options. For these use cases, the population size defned for our tool is set to be at least the
value of optimization variables (more details will be provided in the coming section). This way we
ensure the individuals in each population span the search space. We ensure the population diversity by
testing with different settings in genetic operations (like crossover and mutation). For all the use cases,
we have used the following algorithm parameters: population size = 100, number of generations = 150,
crossover probability = 0.8, and mutation probability = 0.2.

Use Case A: Qh � $500k with firewall rule constraints and the possibility to add, remove, relocate
services. We start with the simple case of one overall budget constraint (refer to Figure 4). There are
13 different services-based optimization variables and two frewall-based optimization variables. If we
allow the frewall rules to be modifed, and if we consider that some services can be added (http on h3),
removed (http on h2) or relocated (rsh from h1 to h4), we can see some interesting results. While the
algorithm does not enable < http, 3 >, it does disable < http, 2 > and relocates rsh to h4 (that is, it
disables < rsh, 1 > and enables < rsh, 4 >). It is worth noting that the cost function that governs the
relocation of rsh is such that it reduces the overall spending (this can be interpreted as an incentive to
relocate the service).

The solution provided by the GA is a h metric of 8. This total hardening cost satisfes both the overall
budget constraints. We can see that the hardening options enforced by the frewall rules and the relo-
cation of services in our optimization tool can affect the optimization. Nevertheless, additional budget
constraints might not allow achieving the maximum possible h value.

Use Case B: Qh � $500k with a critical service with an unpatched vulnerability. While Use Case A
shows how enabling or disabling predefned frewall rules can affect the h metric optimization, when

16 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

<user,0>

<root,1>

<root,2>

<http,0,1>

<ssh,1,1>

<app,1,2>

<DB,2,3>

<ssh,2,2>

<ssh,3,3>

<root,3 >

<Xen,3,4>

<ssh,4,4>

<root,4 >

<http,1,2>

<http,0,2>

<rsh,2,3>

<http,2,3>

<app,0,2>

1

0

d <rsh, f2, 1>

Rule 2 Enabled:
MVRSHD 2.24

Disabled

1

u <0, 1>

Enabled

1

3
4

2

d <http, 1>

Apache 2.4

NGINX 1.9
Litespeed 5.0

IIS 8.5

1
2

d <0, f1, 2>

Only Rule 1 Enabled
Rule 1 and 3 Enabled

0 No Rule Enabled

1

3
4

2

a <ssh, 1>

MINA 2.0.14

Copssh 5.8
Attachmate 8

OpenSSH 7.4

1

u <app, 2>

SecurityCenter5.5
r <http, 2>

2
1

3
4

0

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

Disabled

2

0

d <user, f1, 1>
Initial condition

(Rule 1 and 3 enabled)
Normal condition
(No rule enabled)

2

1

3

d <DB, 3>

MSQL 2012

MySQL 5.7

PostgreSQL 9

1

u <Xen, 3>

XenServer 7.1

1

u <3, 4>

Enabled

1

u <2, 3>

Enabled

2
1

4
3

d <ssh, 2>

OpenSSH 7.4
MINA 2.0.14

Attachmate 8
Copssh 5.8

1

d <1, 2>

Enabled

2

0

d <user, f1, 2>
Initial condition

(Rule 1 and 3 enabled)
Normal condition
(No rule enabled)

2
1

3
4

d <ssh, 3>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

2
1

3
4

d <ssh, 4>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

2

0

d <user, f2, 3>
Initial condition

(Rule 2 and 3 enabled)
Normal condition
(No rule enabled)

2

0

d <user, f2, 4>
Initial condition

(Rule 2 and 3 enabled)
Normal condition
(No rule enabled)

a <http, 3>

2
1

3
4

0

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

Disabled

<rsh,0,1>

0

1

m <rsh, 4>

Disabled

MVRSHD 2.24

1

0

m <rsh, 1>

MVRSHD 2.24

Disabled

<rsh,3,4>

Flag code Color code

Unpatchable/not diversifiable d Diversifiable

Firewall 1 Rules
0

1

2

Rule 1 enabled

Rules 1 and 2 enabled

Firewall 2 Rules
Rules 1 and 2 are disabled 0

1

2

Rules 2 and 3 are disabled

Rule 2 enabled

Rules 2 and 3 enabled

u Unchangeable

a Addable

r Removable

m Movable

Can be removed Modifiable firewall rules

Can be added

Can be moved

Unpatchable/diversifiable

Shortest Path Disabled

Firewall 2 (F2) Firewall 1 (F1)

Allow
Local user to all

Rules

1: Connectivity

2: Application

Allow
from h0 to h2

N/A

3: AD Domain
Access Control

Allow rsh
from h2 to h3

Allow
Local user to all

N/A

Fig. 4. Use Case A: Effect of modifable hardening options and budget constraints.

17 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

h metric value based on hardening options applied

Hardening Option Use Case One Two Three Use case
A’s h value unpatchable unpatchable unpatchable B’s h value

vuln. vuln. vuln.
No hardening option applied 4 4 4 4 4

Only Diversity Applied 4 4 4 4 4
Only Firewall Rules Apllied 2.828 2.828 2.828 2.828 2.828

Only Adding, Removing, Relocating Services 4 4 4 4 4
All hardening options applied 8 8 7.583 6.295 4.332

Table 2

h metric value for different hardening options for when no unpatchable vulnerabilities are present (Use Case A), up to 4
unpatchable vulnerabilities (Use Case B).

considering the effects of unpatchable vulnerabilities the h metric value will change. This use case
models such a scenario by assigning a restriction for the ssh services not to be diversifed or disabled.

In Figure 5, we can see that the ssh service is highlighted to represent the fact that it cannot be patched.
The solution provided by the GA is h=4.332. While the increase is less than when the ssh service can
be diversifed, we can still have an increase in the h metric even with unpatchable vulnerabilities on the
network.

It is interesting to note, based on the results shown on Table 2, that not all hardening options can help
increase the network’s resilience against zero-day attacks. Applying one set of options might have no
effect at all and some options can even reduce the resilience of the network, as seen in values of the h
metric when only frewall rules are applied. It is worth noting that our proposed solution is capable of
increasing the resilience of a network even in the presence of unpatchable vulnerabilities.

As seen from the above use cases, our model and problem formulation makes it relatively straightfor-
ward to apply any standard optimization techniques, such as the GA, to optimize the h metric through
combining different network hardening options while dealing with unpatchable vulnerabilities and re-
specting given cost constraints.

3.3. Heuristic Algorithm

All the test cases described above rely on two main assumptions i) that the frewall rules and relocation
of service will enable or disable conditions and exploits ii) that all the attack paths are readily available.
We will design an algorithm specifcally for the special cases where conditions and exploits are removed
from the extended resource graph (as a result from disabling or relocating services). As to the second
case, due to the well-known complexity that resource graphs have inherited from attack graphs due to
their common syntax [13, 14], it is usually computationally infeasible to enumerate all the available
attack paths in a resource graph for large networks. Therefore, we present a modifed version of the
heuristic algorithm [8, 9] to reduce the search complexity when calculating and optimizing the h metric
by only storing the m-shortest paths at each step, and which is shown in Figure 7.

The algorithm in Figure 6, which has lineal complexity (O(N)), is the one we use to check for the topo-
logical changes that the extended resource graph has whenever conditions (and exploits) are removed or
relocated. This algorithm starts by topologically sorting the graph (line 1). It then proceeds to go through
each one of the frewall rule. If the frewall rule is enabled, it checks which are the conditions that are
affected by that frewall rule and stores them on a list, τ(f), and marks the conditions as processed (lines

18 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

<user,0>

<root,1>

<root,2>

<http,0,1>

<ssh,1,1>

<app,1,2>

<DB,2,3>

<ssh,2,2>

<ssh,3,3>

<root,3 >

<Xen,3,4>

<ssh,4,4>

<root,4 >

<http,1,2>

<http,0,2>

<rsh,2,3>

<http,2,3>

<app,0,2>

1

0

d <rsh, f2, 1>

Rule 2 Enabled:
MVRSHD 2.24

Disabled

1

u <0, 1>

Enabled

1

3
4

2

d <http, 1>

Apache 2.4

NGINX 1.9
Litespeed 5.0

IIS 8.5

1
2

d <0, f1, 2>

Only Rule 1 Enabled
Rule 1 and 3 Enabled

0 No Rule Enabled

3
4

2
1

a <ssh, 1>

Copssh 5.8
Attachmate 8

OpenSSH 7.4
MINA 2.0.14 1

u <app, 2>

SecurityCenter5.5
r <http, 2>

2
1

3
4

0

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

Disabled

2

0

d <user, f1, 1>
Initial condition

(Rule 1 and 3 enabled)
Normal condition
(No rule enabled)

2

1

3

d <DB, 3>

MSQL 2012

MySQL 5.7

PostgreSQL 9

1

u <Xen, 3>

XenServer 7.1

1

u <3, 4>

Enabled

1

u <2, 3>

Enabled

2
1

4
3

d <ssh, 2>

OpenSSH 7.4
MINA 2.0.14

Attachmate 8
Copssh 5.8

1

d <1, 2>

Enabled

2

0

d <user, f1, 2>
Initial condition

(Rule 1 and 3 enabled)
Normal condition
(No rule enabled)

2
1

3
4

d <ssh, 3>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

2
1

3
4

d <ssh, 4>

OpenSSH 7.4
MINA 2.0.14

Copssh 5.8
Attachmate 8

2

0

d <user, f2, 3>
Initial condition

(Rule 2 and 3 enabled)
Normal condition
(No rule enabled)

2

0

d <user, f2, 4>
Initial condition

(Rule 2 and 3 enabled)
Normal condition
(No rule enabled)

a <http, 3>

2
1

3
4

0

IIS 8.5
Apache 2.4

NGINX 1.9
Litespeed 5.0

Disabled

<rsh,0,1>

0

1

m <rsh, 4>

Disabled

MVRSHD 2.24

1

0

m <rsh, 1>

MVRSHD 2.24

Disabled

<rsh,3,4>

Firewall 1 Rules Firewall 2 Rules
0 Rules 1 and 2 are disabled 0 Rules 2 and 3 are disabled

1 Rule 1 enabled 1 Rule 2 enabled Flag code Color code

Unpatchable/not diversifiable

Unpatchable/diversifiable

d Diversifiable

u Unchangeable

a Addable

r Removable

m Movable

2 Rules 1 and 2 enabled 2 Rules 2 and 3 enabled

Can be removed Modifiable firewall rules

Can be added

Can be moved

Shortest Path Disabled

Firewall 2 (F2) Firewall 1 (F1)

Allow
Local user to all

Rules

1: Connectivity

2: Application

Allow
from h0 to h2

N/A

3: AD Domain
Access Control

Allow rsh
from h2 to h3

Allow
Local user to all

N/A

Fig. 5. Use Case B: Effect of having an unpatchable vulnerability in the network.

� �

�

�

19 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Procedure Processed_Topological_Sort
Input: Extended resource graph G, v , hardening control vector H
Output: vlistp

Method:
1. Let vlistbe any topological sort of G
2. While all c f ∈ CI and (∀ f ∈ F)((f , c) ∈ RF c f unprocessed)
3. If f ∈ F is enabled
4. Let τ(f)← c f
5. Mark c f as processed
6. While all cs, cd ∈ CI such that (cs, cd) ∈ RB m unprocessed
7. If cs ∈ CI is enabled and d(cd) ∈ CI is enabled
8. Let τ(r)← cs, cd
9. Mark cs, cd as processed
10. Let τ(z) = τ(f) ∪ τ(r)
11. If τ(z) is empty
12. vlistp = vlist
13. Return vlistp

14. Else
15. While e ∈ E (e is not processed) (∀c ∈ τ(z)) (c, e) ∈ Rr

16. Let α(e) = a1 ∪ a2 . . . ∪ e : ai ∈ σ(ci), ci ∈ τ(z) 1 � i � n
17. Let τ(x)← e
18. Let τ(w)← α(e)
19. Let α(c) = a1 ∪ a2 . . . ∪ c : ai ∈ σ(ei), ei ∈ τ(x) 1 � i � n
20. Let τ(y)← α(c)
21. Let τ(k) = τ(w) ∪ τ(x) ∪ τ(y) ∪ τ(z)
22. Let vlistp = remove(vlist, τ(k))
23. Return vlistp

Fig. 6. Algorithm for eliminating infeasible conditions and paths

2-5). It then goes through each one of the conditions that have a relocation service fag (that is, if the
condition can me relocated from one host to another). If a condition with an m service fag is enabled on
both the source and the destination host, the algorithm stores it on a list, τ(r), and marks the source and
destination conditions as processed (lines 6-9). Both lists are combined into one list, τ(z) (line 10). If
τ(z) is empty, the algorithm ends by returning the initial topological sort, vlist (line 11-13). Otherwise,
using the list τ(z), the algorithm then proceeds to check which are the associated exploits and stores
them on a list, τ(x), as well as the attack paths, α(e) and α(c), and stores them on two other lists, τ(w)
and τ(y) (lines 14-20). The algorithm then proceeds to combine the lists τ(w), τ(x), τ(y), and τ(z) into
one list, τ(k) (line 21), which will be used to remove the conditions, the exploits and attack paths from
vlist using the function remove() (line 22), after which, the algorithm return the processed topological
sort, vlistp (line 23).

The algorithm on Figure 7 is similar to the previous one and thus also has an O(N) complexity. This
algorithm starts by fnding the processed topological sort of the graph, vlistp (line 1), and proceeds to
go through each one of the nodes on the resource graph (initial conditions, exploits, and privileges)
looking for the collection of attack paths, as set of exploits σ(), that reach that particular node. The main
loop cycles through each unprocessed node. If a node is an initial condition, the algorithm assumes that
the node itself is the only path to it and it marks it as processed (lines 6-8). For each exploit e, all its
preconditions are placed in a set (line 10). The collection of attack paths α(e) is constructed from the
attack paths of those preconditions (lines 10 and 11). In a similar way, σ (ov(e)) is constructed with
the function ov() which, aside of using the exploits includes value of element of the diversity control
vector that supervises that exploit. If there are more than m paths to that node, the algorithm will use
the function HeurER to frst look for unique combinations of service and service instance in α (ov(e))
and calculate the effective richness (it calculates the h metric). Then, the algorithm creates a dictionary

� �

� �

� � � � �

� �

� � �
�

� �

� �

�

�

20 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Procedure Heuristic_m-shortest
Input: Extended resource graph G, v , critical asset cg, number of paths m,

hardening control vector H, processed topological sort, vlistp

Output: σ(cg)
Method:
1. Let vlistp= Processed_Topological_Sort(G, v ,H)
2. While all vlistp elements are unprocessed
3. If c ∈ CI and c is unprocessed
4. Let σ(c) = c
5. Mark c as processed
6. Else if e ∈ E (e is not processed) and (∀c ∈ C)((c, e) ∈ Rr c is processed)
7. Let {c ∈ C : (c, e) ∈ Rr} = {c1, c2, . . . , cn}
8. Let α(e) = a1 ∪ a2 . . . ∪ e : ai ∈ σ(ci), 1 � i � n
9. Let α (ov(e)) = a1 ∪ a2 . . . ∪ e : ai ai, 1 � i � n
10. If n > m
11. Let σ(e) = S hortestM(α(e), | HeurER(α [ov(e)]) |� ,m))
12. Else
13. σ(e) = a1 ∪ a2 . . . ∪ e : ai ∈ σ(ci), 1 � i � m
14. Mark e as processed
15. Else (c s.t. (e, c) ∈ Ri and c is unprocessed)
16. If (∀e ∈ E)((e , c) ∈ Ri e is processed) �
17. Let α(c) = σ(e)e� s.t. (e� ,c)∈Ri �
18. Let α (c) = σ(ov(e))e� s.t. (e� ,c)∈Ri
19. If length(α(c)) > m
20. Let σ(c) = S hortestM(α(c), | HeurER(α [ov(c)]) |� ,m))
21. Else �
22. Let σ(c) = σ(e)e� s.t. (e� ,c)∈Ri
23. Mark c as processed
24. Return σ(cg)

Fig. 7. A Heuristic algorithm for calculating m-shortests paths

structure where the key is a path from α(e) and the value is the h metric value given by each one of
the respective paths in α (ov(e)). The function S hortestM() selects the top m keys whose values are the
smallest and returns the m paths with the minimum value of the h metric (line 13). If there are less than
m paths, it will return all the paths (line 15). After this, it marks the node as processed (line 16). The
process is similar when going through each one of the intermediate conditions (lines 17-24). Finally, the
algorithm returns the collection of m paths that can reach the critical asset cg. It is worth noting that the
algorithm does not make any distinction in if a path has a higher priority over another when they share
the same h value.

4. Simulations

In this section, we show simulation results. All simulations are performed using a computer equipped
with a 3.0 GHz CPU and 8GB RAM in the Python 2.7.10 environment under Ubuntu 12.04 LTS and
MATLAB 2015a’s GA toolbox. To generate many resource graphs for simulations, we frst construct a
small number of seed graphs based on realistic networks and then generate larger graphs from those seed
graphs by injecting new hosts and assigning resources in a random but realistic fashion (e.g., the number
of pre-conditions of each exploit is varied within a small range since real world exploits usually have a
constant number of pre-conditions). For the different hardening options that are implemented through
frewall rules, we randomly select 10% of the initial conditions. Additionally, to analyze the effect of
unpatchable vulnerabilities, our graphs include randomly assigned unpatchable services. The resource

21 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

graphs are used as the input for the optimization toolbox where the objective function is to maximize the
minimum h value subject to budget constraints.

Number of selected minimum paths
10

9

8

7

6

5

4

3

2

1

m
(the parameter for the number of shortest paths for the heuristic algorithm)

Fig. 8. The processing time.

To determine the genetic operators, we used the hill climbing algorithm. Our simulations showed that,
using the GA with a crossover probability of 80%, a mutation rate of 20%, and setting the number of
generations to 70 will be suffcient. Additionally, our experiences also show that, because our largest
resource graph had a heterogeneous hardening control vector of fewer than 100 variables, we could set
the population size equal to 200; nevertheless, we believe that when dealing with a bigger number of
optimization variables, the population size that is at least twice number of variables.

The complexity of our proposed solution will depend on the objective function, the population size,
and the length of hardening control vector. We note that the optimization problem here is NP-hard
since the sub-problem of fnding the shortest paths (within the objective function) in resource graphs is
already intractable by the well know results in attack graphs [13, 14] and the common syntax between
resource graphs and attack graphs. We will therefore rely on the heuristic algorithm presented in Section
3.3. Figure 8 shows that the processing time increases almost linearly as we increase the number of
optimization variables or the parameter m of the heuristic algorithm. The results show that the algorithm
is relatively scalable with a linear processing time.

The accuracy of the results presented in Figure 8 is evaluated through simulations. This is address
through the simulations depicted in Figure 9. Here the accuracy refers to the approximation ratio between
the result obtained for the h metric using our heuristic algorithm and that of simply enumerating and
searching all the paths while assuming all services and service instances are different (dHeuristic). The dBruteForce
heterogeneous hardening control vector provided by the GA is used to calculate the accuracy. A ratio
close to 1 indicates that our algorithm can provide a solution that is closer to the one provided by

P
ro

ce
ss

in
g

tim
es

 (
s)

5 optimization variables
10 optimization variables
15 optimization variables
20 optimization variables
25 optimization variables
32 optimization variables

1 2 3 4 5 6 7 8 9

22 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

54 nodes
1.8

1.5

50 100 150 200 250 300 350 400 450 500

1.55

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

1.45

1.4

1.35

1.3

Generations

Fig. 9. The accuracy vs. m (the parameter of the heuristic algorithm).

enumerating all paths (brute force). From the results, we can see that when m is greater or equal to 4 the
approximation ratio reaches an acceptable level. For the following simulations, we have settled with an
m value of 9.

We also consider the ratio between the difference in the h metric before and after optimization,
(dOptimized−dNotOptimized), which will be called the gain of the h metric (or simply the gain). The gain pro-dNotOptimized

vides us with an idea on how much room there is to improve the security with respect to given cost
constraints using our method. Figure 10 shows that the gain will increase linearly as we increase the
number of frewall-based hardening options. These results confrm that frewall-based hardening options
can positively affect our effort to provide better resilience for networks against zero-day attacks. Addi-
tionally, the fgure shows that the number of unpatchable vulnerabilities that are present in the network
will signifcantly reduce the gain that can be achieved through other hardening techniques. Since it is
not probable to fnd a large number of different unpatchable vulnerabilities all at the same time within a
network, we only consider up to three unpatchable vulnerabilities.

In Figure 11, we analyze the average gain in the optimized results for different sizes of graphs. In this
fgure, we can see that we have a good enough gain for graphs with a relatively high number of nodes.
As expected, as we increase the number of unpatchable vulnerabilities, the gain will decrease. However,
we can also see this decrease is linear. In the case where no unpatchable vulnerabilities are present, we
can see that the gain stops to increase after reaching a certain size of the graph, which can be explained
as that the number of available service instances is not large enough (in contrast to the increasing size of
the graph) to allow to optimize the h metric any further.

Figures 12 and 13 show the optimization results of different shapes of resource graphs in terms of
depth and degree of exposure, which roughly represents the extent to which the network is protected.
While it may be diffcult to exactly defne the depth of a resource graph, we have relied on the relative

1.75

1.7

1.65

1.6

A
cc

ur
ac

y

23 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Average gain as a function of
modifiable firewall rules

1 2 3 4 5 6 7

G
ai

n

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 unpatchable vuln.

1 unpatchable vuln.

2 unpatchable vuln.

3 unpatchable vuln.

4 unpatchable vuln.

5 unpatchable vuln.

6 unpatchable vuln.

The number of modifiable firewall rules

Fig. 10. The average gain based on the number of modifable frewall rules.

Average gain versus the number of nodes

50 100 150 200 250 300 350 400 450 500 550

The number of nodes

G
ai

n

1

1.5

2

2.5

3

3.5

4

0 unpatchable vuln.

1 unpatchable vuln.

2 unpatchable vuln.

3 unpatchable vuln.

Fig. 11. The average gain vs the number of nodes.

24 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

distance, i.e., the difference of the shortest path before and after all hardening options have been applied.
There is a linear increase in the gain as we increase the relative distance in the shortest path. This
is independent of the amount of unpatchable vulnerabilities. While this does not provide an accurate
description of the graph’s shape, it does provide an idea of how much our algorithm can increase the
minimum h for graphs with different depths, as shown in Figure 13, we can see the effect of the network’s
degree of exposure, which is defned as the number of exploits that are directly reachable by the attacker
from the external host h0. As we increase the degree of exposure, the gain in optimization decreases
(circles in the graph). That is, there will less room for hardening if the network is more exposed.

Gain based on h difference
2.8

2.6

2.4

2.2

2

G
ai

n

1.8

1.6

1.4

1.2

1

0.8

The h difference on the shortest path

Fig. 12. The h difference on the shortest path.

Figures 14 to 16 show the gain is affected by the inclusion, the removal, or the relocation of predefned
network services. In Figure 14 we can see that if no services are added, we get the maximum possible
gain. We can see that while there is a gain to be obtained when new services are introduced into the
network, the rate at which this gain increases decreases as the number of services that can be added
increases. This is to be expected since the increase of services also provides an increase in the number
of optimization variables. The more optimization variables present on a network, the greater the need
to have a greater amount of unique services to diversify. In Figure 15 we can see a different case. By
removing services from the network, we can see the gain increases at a higher rate. This can be explained
because we are removing potential zero-day vulnerabilities, and thus rendering our network more secure.
Finally, in Figure 16, we can see the effect that moving services has on the network. We can see that,
when no services are to be moved, the curve reaches a point where it fattens and where any additional
service instances would be needed to continue the growth. What is interesting to note here is that moving
services doesn’t have that limitation of the gain stopping when we increase the number of nodes, which
could allow for further optimization when there are no more instances available to diversify.

0 unpatchable vuln.

1 unpatchable vuln.

2 unpatchable vuln.

3 unpatchable vuln.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

25 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Gain based on number of exploits
2

1.8

1.6

G
ai

n

0 unpatchable vuln.

1 unpatchable vuln.

2 unpatchable vuln.

3 unpatchable vuln.

4 4.5 5 5.5 6 6.5 7 7.5 8

1.4

1.2

1

The number of directly reachable exploits

Fig. 13. The number of directly reachable exploits.

Average gain versus the number of
services that can be added

1.1

G
ai

n

no services added

<10 services added

>10 services added

100 200 300 400 500 600 700

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

The number of nodes

Fig. 14. The average gain based on the number of services that can be added.

http:66.577.58

26 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

Average gain versus the number of

G
ai

n

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
services that can be removed

no removable services

<10 removable services

>10 removable services

100 200 300 400 500 600 700 800

The number of nodes

Fig. 15. The average gain based on the number of services that can be removed.

Average gain versus the number of
services that can be relocated

1.3

G
ai

n

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

no services relocated
<10 services relocated
>10 services relocated

100 200 300 400 500 600 700 800 900
The number of nodes

Fig. 16. The average gain based on the number of services that can be moved.

27 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

5. Related Work

In general, the security of networks may be qualitatively modeled using attack trees [6, 16, 29] or
attack graphs [30, 31]. A majority of existing quantitative models of network security focus on known
attacks [32, 33], while few works have tackled zero day attacks [13, 14, 22, 34] which are usually
considered unmeasurable due to the uncertainties involved [35]. Early works on network hardening
typically rely on qualitative models while improving the security of a network [15, 31, 36]. Those works
secure a network by breaking all the attack paths that an attacker can follow to compromise an asset,
either in the middle of the paths or at the beginning (disabling initial conditions). Also, those works do
not consider the implications when dealing with budget constraints nor include cost assignments, and
tend to leave that as a separate task for the network administrators. While more recent works [33, 37]
generally provide a cost model to deal with budget constraints, one of the frst attempts to systematically
address this issue is by Gupta et al. [38]. The authors employed genetic algorithms to solve the problem
of choosing the best set of security hardening options while reducing costs.

Dewri et a. [6] build on top of Gupta’s work to address the network hardening problem using a more
systematic approach. They start by analyzing the problem as a single objective optimization problem and
then consider multiple objectives at the same time. Their work considers the damage of compromising
any node in the cost model to determine the most cost-effective hardening solution. Later, in [16] and in
[39], the authors extrapolate the network hardening optimization problem as vulnerability analysis with
cost/beneft assessment, and risk assessment respectively.

In [7] Poolsappasit et al. extend Dewri’s model to also consider dynamic conditions (conditions that
may change or emerge while the model is running) by using Bayesian attack graphs to consider the
likelihood of an attack. Unlike our work, most existing work on network hardening are limited to known
vulnerabilities and focus on disabling existing services.

There exist many research works on extending attack trees and attack graphs to security metrics. Most
of the current works deal with assigning numeric scores to rank known vulnerabilities (mostly based
on the CVSS) [40] to be able to model the impact that they have on a network. This ranking is based
on how likely and easily exploitable the known vulnerabilities are. This, however, is not the case for
unknown vulnerabilities. Because unknown vulnerabilities cannot be modeled using the same methods
used for known vulnerabilities, new metrics needed to be devised for them. The k-zero day safety metric
[22, 34] frst addressed this limitation in security metrics. The problem with this metric is that it counts
how many zero-day vulnerabilities are needed to compromise a critical asset which is not an easy task.

A probabilistic metric is applied to attack graphs to obtain an overall attack likelihood for the network
[41]. A Bayesian Network (BN) based security metric applies attack graphs to measure the security
level of a network [42]. The metric converts the CVSS scores of vulnerabilities into attack probabilities
and then obtain the overall attack likelihood for reaching critical assets. The National Institute of Stan-
dards and Technology (NIST) highlights the importance of using some sort of security metrics on cloud
systems and provides detailed frameworks and defnitions [43].

There exists a rich literature on employing diversity for security purposes. The idea of using design
diversity for tolerating faults has been investigated for a long time, such as the N-version program-
ming approach [44], and similar ideas have been employed for preventing security attacks, such as the
N-Variant system [45], and the behavioral distance approach [46]. In addition to design diversity and
generated diversity, recent work employs opportunistic diversity which already exists among different
software systems. For example, the practicality of employing OS diversity for intrusion tolerance is
evaluated in [47].

28 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

More recently, the authors in [13, 14] adapted biodiversity metrics to networks and lift the diversity
metrics to the network level. While those works on diversity provide motivation and useful models, they
do not directly provide a systematic solution for improving diversity. So far, the work done by [8], is one
of the frst work that has tried to provide a solution for this problem; their limitation, however, is that
their metric is too simplistic and does not consider additional hardening metrics, which is the topic of
this paper.

6. Conclusion

In this paper, we have provided a heterogeneous approach to network hardening to increase the re-
silience of a network against both unknown and unpatchable vulnerabilities. By unifying different hard-
ening options within the same model, we derived a more general method than most existing efforts that
rely on a single hardening option. Our automated approach employed a heuristic algorithm that helped
to manage the complexity of evaluating the security metric as well as limiting the time for optimization
to an acceptable level. We have addressed one limitation of our previous work by considering that not
all costs are additive but they depend on other conditions. We have further discussed realistic cost es-
timation methods based on existing works. We have tested the effciency and accuracy of the proposed
algorithms through simulation results, and we have also discussed how the gain in the metric will be
affected by the addition, the removal, and the relocation of services, as well as the number of available
modifable frewall rules, unpatchable vulnerabilities, and the different sizes and shapes of the resource
graphs.

We discuss several aspects of the proposed automated optimization technique where additional im-
provements and evaluations can be done.

• While this paper has proven that we can integrate different network hardening options under the
same model, a more comprehensive approach could be developed by considering other options
which might not immediately ft into this model.

• This study relies on a static network confguration. A future research direction would be to con-
sider a dynamic network model in which both attackers and defenders may cause incremental
changes in the network.

• We will evaluate other optimization algorithms in addition to GA to compare and potentially use
them in hybrid optimization schemes when searching the most effcient solution for our problem.

Acknowledgements. The authors thank the anonymous reviewers for their valuable comments. Authors
with Concordia University were partially supported by the Natural Sciences and Engineering Research
Council of Canada under Discovery Grant N01035. Sushil Jajodia was supported in part by the National
Science Foundation under grant IIP-1266147; by the Army Research Offce under grants W911NF-13-
1-0421 and W911NF-13-1-0317; and by the Offce of Naval Research under grants N00014-15-1-2007
and N00014-13-1-0703.
Disclaimer Commercial products are identifed in order to adequately specify certain procedures. In
no case does such identifcation imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the identifed products are necessarily the best available
for the purpose.

29 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

References

[1] D.U. Case, Analysis of the Cyber Attack on the Ukrainian Power Grid (2016).
[2] N. Falliere, L.O. Murchu and E. Chien, W32. stuxnet dossier, White paper, Symantec Corp., Security Response 5 (2011).
[3] D. Pauli, Easy remote exploit drops for unpatchable power plant controller, May, 2016.
[4] M. Bani, Duck and cover or how AtomBombing is really unnecessarily alarmism, Nov, 2016.
[5] Apache MINA project, Oct, 2016.
[6] R. Dewri, N. Poolsappasit, I. Ray and D. Whitley, Optimal security hardening using multi-objective optimization on attack

tree models of networks, in: Proceedings of the 14th ACM conference on Computer and communications security, ACM,
2007, pp. 204–213.

[7] N. Poolsappasit, R. Dewri and I. Ray, Dynamic security risk management using bayesian attack graphs, Dependable and
Secure Computing, IEEE Transactions on 9(1) (2012), 61–74.

[8] D. Borbor, L. Wang, S. Jajodia and A. Singhal, Diversifying Network Services Under Cost Constraints for Better Re-
silience Against Unknown Attacks, in: IFIP Annual Conference on Data and Applications Security and Privacy, Springer,
2016, pp. 295–312.

[9] D. Borbor, L. Wang, S. Jajodia and A. Singhal, Securing Networks Against Unpatchable and Unknown Vulnerabilities
Using Heterogeneous Hardening Options, in: IFIP Annual Conference on Data and Applications Security and Privacy,
Springer, 2017, pp. 509–528.

[10] K. Bakshi, Cisco cloud computing-Data center strategy, architecture, and solutions, CISCO White Paper. Retrieved Octo-
ber 13 (2009), 2010.

[11] T. Fifeld, D. Fleming, A. Gentle, L. Hochstein, J. Proulx, E. Toews and J. Topjian, OpenStack Operations Guide, "
O’Reilly Media, Inc.", 2014.

[12] J. Barr, Building three-tier architectures with security groups, June, 2010.
[13] L. Wang, M. Zhang, S. Jajodia, A. Singhal and M. Albanese, Modeling Network Diversity for Evaluating the Robustness

of Networks against Zero-Day Attacks, in: ESORICS 2014, Springer, 2014, pp. 494–511.
[14] M. Zhang, L. Wang, S. Jajodia, A. Singhal and M. Albanese, Network Diversity: A Security Metric for Evaluating the

Resilience of Networks against Zero-Day Attacks, IEEE Transactions on Information Forensics and Security (TIFS) 11(5)
(2016), 1071–1086.

[15] L. Wang, M. Albanese and S. Jajodia, Network Hardening: An Automated Approach to Improving Network Security,
Springer Publishing Company, Incorporated, 2014. ISBN 331904611X, 9783319046112.

[16] R. Dewri, I. Ray, N. Poolsappasit and D. Whitley, Optimal security hardening on attack tree models of networks: a
cost-beneft analysis, International Journal of Information Security 11(3) (2012), 167–188.

[17] L. Mieritz and B. Kirwin, Defning Gartner total cost of ownership, L. Mieritz, B. Kirwin (2005).
[18] Cost of Data Center Outages. Data Center Performance Benchmark Series, Jan, 2016.
[19] A. Gunasekaran, Organizational Advancements through Enterprise Information Systems: Emerging Applications and

Developments: Emerging Applications and Developments, IGI Global, 2009.
[20] Amazon.com, Inc. Revenue and Earnings Per Share (EPS), June, 2017.
[21] Number of Amazon.com employees from 2007 to 2016, June, 2017.
[22] L. Wang, S. Jajodia, A. Singhal, P. Cheng and S. Noel, k-Zero day safety: A network security metric for measuring the

risk of unknown vulnerabilities, Dependable and Secure Computing, IEEE Transactions on 11(1) (2014), 30–44.
[23] X. Ou, S. Govindavajhala and A.W. Appel, MulVAL: A Logic-based Network Security Analyzer., in: USENIX security,

2005.
[24] S. Jajodia, S. Noel and B. O’Berry, Topological Analysis of Network Attack Vulnerability, in: Managing Cyber Threats:

Issues, Approaches and Challenges, V. Kumar, J. Srivastava and A. Lazarevic, eds, Kluwer Academic Publisher, 2003.
[25] P. Festa, A brief introduction to exact, approximation, and heuristic algorithms for solving hard combinatorial optimization

problems, in: Transparent Optical Networks (ICTON), 2014 16th International Conference on, IEEE, 2014, pp. 1–20.
[26] H.M. Azamathulla, F.-C. Wu, A. Ab Ghani, S.M. Narulkar, N.A. Zakaria and C.K. Chang, Comparison between genetic

algorithm and linear programming approach for real time operation, Journal of Hydro-environment Research 2(3) (2008),
172–181.

[27] D.E. Golberg, Genetic algorithms in search, optimization, and machine learning, Addion wesley 1989 (1989).
[28] K. Deb, An effcient constraint handling method for genetic algorithms, Computer methods in applied mechanics and

engineering 186(2) (2000), 311–338.
[29] I. Ray and N. Poolsapassit, Using attack trees to identify malicious attacks from authorized insiders, in: ESORICS 2005,

Springer, 2005, pp. 231–246.
[30] P. Ammann, D. Wijesekera and S. Kaushik, Scalable, graph-based network vulnerability analysis, in: Proceedings of the

9th ACM Conference on Computer and Communications Security, ACM, 2002, pp. 217–224.
[31] O. Sheyner, J. Haines, S. Jha, R. Lippmann and J.M. Wing, Automated generation and analysis of attack graphs, in:

Security and privacy, 2002. Proceedings. 2002 IEEE Symposium on, IEEE, 2002, pp. 273–284.

http:Amazon.com
http:Amazon.com

30 D. Borbor et al. / Surviving Unpatchable Vulnerabilities through Multi-Option Network Hardening Options

[32] L. Wang, A. Singhal and S. Jajodia, Measuring the overall security of network confgurations using attack graphs, in:
Data and Applications Security XXI, Springer, 2007, pp. 98–112.

[33] M. Albanese, S. Jajodia and S. Noel, Time-effcient and cost-effective network hardening using attack graphs, in: Depend-
able Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on, IEEE, 2012, pp. 1–12.

[34] L. Wang, S. Jajodia, A. Singhal and S. Noel, k-zero day safety: Measuring the security risk of networks against unknown
attacks, in: ESORICS 2010, Springer, 2010, pp. 573–587.

[35] J. McHugh, Quality of protection: measuring the unmeasurable?, in: Proceedings of the 2nd ACM workshop on Quality
of protection, ACM, 2006, pp. 1–2.

[36] L. Wang, S. Noel and S. Jajodia, Minimum-cost network hardening using attack graphs, Computer Communications
29(18) (2006), 3812–3824.

[37] B. Yigit, G. Gur and F. Alagoz, Cost-Aware Network Hardening with Limited Budget Using Compact Attack Graphs, in:
Military Communications Conference (MILCOM), 2014 IEEE, IEEE, 2014, pp. 152–157.

[38] M. Gupta, J. Rees, A. Chaturvedi and J. Chi, Matching information security vulnerabilities to organizational security
profles: a genetic algorithm approach, Decision Support Systems 41(3) (2006), 592–603.

[39] S. Wang, Z. Zhang and Y. Kadobayashi, Exploring attack graph for cost-beneft security hardening: A probabilistic ap-
proach, Computers & security 32 (2013), 158–169.

[40] P. Mell, K. Scarfone and S. Romanosky, Common vulnerability scoring system, Security & Privacy, IEEE 4(6) (2006),
85–89.

[41] L. Wang, T. Islam, T. Long, A. Singhal and S. Jajodia, An attack graph-based probabilistic security metric, in: IFIP Annual
Conference on Data and Applications Security and Privacy, Springer, 2008, pp. 283–296.

[42] M. Frigault, L. Wang, A. Singhal and S. Jajodia, Measuring network security using dynamic bayesian network, in: Pro-
ceedings of the 4th ACM workshop on Quality of protection, ACM, 2008, pp. 23–30.

[43] NIST Special Publication 500-307: Cloud Computing Service Metrics Description (2015), Accessed September, 2017.
[44] A. Avizienis and L. Chen, On the implementation of N-version programming for software fault tolerance during execution,

in: Proc. IEEE COMPSAC, Vol. 77, 1977, pp. 149–155.
[45] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong and J. Hiser, N-variant

systems: a secretless framework for security through diversity, in: Usenix Security, Vol. 6, 2006, pp. 105–120.
[46] D. Gao, M.K. Reiter and D. Song, Behavioral distance measurement using hidden markov models, in: Recent Advances

in Intrusion Detection, Springer, 2006, pp. 19–40.
[47] M. Garcia, A. Bessani, I. Gashi, N. Neves and R. Obelheiro, OS diversity for intrusion tolerance: Myth or reality?, in:

Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st International Conference on, IEEE, 2011, pp. 383–394.

	Introduction
	Motivating Example

	Model
	Extended Resource Graph
	Heterogeneous Hardening Control
	Cost Estimation
	Hardening Metric
	Problem Formulation

	Methodology
	Optimization Algorithm
	Use Cases
	Heuristic Algorithm

	Simulations
	Related Work
	Conclusion
	References

