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ABSTRACT 
 

Various sources of uncertainties including material, modeling, and record-to-record (RTR) 

uncertainties can have a significant influence on prediction of earthquake-induced damage and 

estimates of the collapse risk of a building obtained through the performance-based earthquake 

engineering framework. As a first-step toward quantifying the influences of these uncertainties on 

the collapse risk of buildings, this paper systematically quantifies the influence of material, 

modeling, and record-to-record uncertainties on the performance of structural steel beam-columns. 

In this study, material uncertainty is characterized by probability distribution functions (PDFs) 

developed using available material coupon data. These PDFs are employed in stochastic 

simulations to quantify the influence of material uncertainty on the calculated maximum drift ratio 

of beam-columns. The influence of employing different modeling techniques and software 

packages, i.e., modeling uncertainty, on the predicted response of steel beam-columns is also 

quantified, by development of multiple nonlinear models for a beam-column tested 

experimentally. The dynamic analysis results of the nonlinear models are used to develop a set of 

PDFs representing the variability in the drift response due to the modeling uncertainty. The 

uncertainty in the applied ground motions, i.e., RTR uncertainty, is quantified by performing 

Incremental Dynamic Analysis on an analytical model of a beam-column specimen, which is 

calibrated to and validated against the experimental results. The variation in the response of the 

beam-column is quantified via a set of PDFs as well as means, medians, and standard deviations 

of the drift response for each source of uncertainty at multiple intensity measures (Sa(T1)). The 

results show the record-to-record uncertainty as having the greatest and material uncertainty as 

having the least influence on the uncertainty in the predicted maximum drift ratio.  
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In this study, material uncertainty is characterized by probability distribution functions (PDFs) 

developed using available material coupon data. These PDFs are employed in stochastic simulations 

to quantify the influence of material uncertainty on the calculated maximum drift ratio of beam-

columns. The influence of employing different modeling techniques and software packages, i.e., 

modeling uncertainty, on the predicted response of steel beam-columns is also quantified, by 

development of multiple nonlinear models for a beam-column tested experimentally. The dynamic 

analysis results of the nonlinear models are used to develop a set of PDFs representing the variability 

in the drift response due to the modeling uncertainty. The uncertainty in the applied ground motions, 

i.e., RTR uncertainty, is quantified by performing Incremental Dynamic Analysis on an analytical 

model of a beam-column specimen, which is calibrated to and validated against the experimental 

results. The variation in the response of the beam-column is quantified via a set of PDFs as well as 

means, medians, and standard deviations of the drift response for each source of uncertainty at 

multiple intensity measures (Sa(T1)). The results show the record-to-record uncertainty as having 

the greatest and material uncertainty as having the least influence on the uncertainty in the predicted 

maximum drift ratio.  

 
 

Introduction 
 

In recent years, the development of a probabilistic framework as part of the Performance-Based 

Earthquake Engineering (PBEE) philosophy, has provided a mechanism for incorporating the 

influences of uncertainty into seismic assessment of structures. Three main sources of uncertainty 

contribute to uncertainty in the seismic assessments: (1) uncertainty due to inherent variation of 

the material properties (i.e., material uncertainty); (2) uncertainty embedded in simulations (i.e., 

modeling uncertainty); and (3) uncertainty due to the selected ground motion (GM) used in the 

analysis (i.e., record-to-record (RTR) uncertainty). Quantification of these three sources of 

uncertainty plays an important role in evaluating the accuracy of structural assessments. Of these 

sources of uncertainty, the influence of the RTR uncertainty on performance assessments of 
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structures is reasonably well established; however, the influences of material and modeling 

uncertainties have not yet been systematically integrated into PBEE.  

 

 The influence of material uncertainty on the structural response is often ignored in the 

seismic assessment of structures by using determinant material properties, which in practice may 

represent mean, lower bound or expected material properties. In most previous studies concerned 

with quantifying material uncertainty, the influence of material uncertainty is lumped together with 

the modeling uncertainty [e.g., [1-2]], and is not separately quantified. This study quantifies the 

sole influence of material uncertainty on the response of a steel beam-column for a given modeling 

approach. Past research has also studied the impact of modeling uncertainty on the seismic 

assessment of buildings by varying modeling parameters such as component strength and stiffness, 

but within a single model developed using a unique modeling approach, for example, lumped 

plasticity [2]–[4]. This approach, however, neglects uncertainties stemming from the employed 

modeling approach or software [5]. In other words, the uncertainty calculated based on this 

approach is specifically conditioned on the use of that unique modeling technique. This paper does 

account for modeling uncertainty, by varying the properties of the building component using 

multiple different software packages and modeling approaches [6]. To the authors’ knowledge, 

this aspect of uncertainty has not yet been investigated for steel beam-columns. The RTR 

uncertainty stems from variation in the structural response or mode excited by GMs with different 

frequency content or other characteristics. RTR uncertainty is incorporated in the PBEE 

framework through development of robust techniques for GM selection and scaling [2]. This study 

uses Incremental Dynamic Analysis (IDA) to quantify the influence of RTR uncertainty on the 

response of the steel beam-column. 

 

 Understanding the relative influences of various sources of uncertainty on the response of 

the structure will help to identify their importance in quantifying the overall uncertainty in the 

structural response. It is generally assumed that the influence of RTR uncertainty outweighs that 

of material and modeling uncertainty. However, no systematic study has been undertaken to 

quantify and compare the relative influences of these three sources of uncertainty. 

 

Methodology of the Study 

 

This study quantifies the influence of each of three sources of uncertainty (material, modeling, and 

RTR) on the drift response of a steel beam-column. The relative importance of each source of 

uncertainty is quantified by conducting multiple nonlinear time history analyses that reflect 

variations in the material properties, modeling approaches, or input GMs for the selected steel 

beam-column. The W24×146 section tested by Elkady and Lignos [7] is selected for this study, as 

a cross-section that is frequently used in structural engineering design practice. 

 

 Different acceleration-time history GM records, which vary in terms of intensity level, 

shape of the record, and frequency content, can be selected for performing nonlinear time history 

response analysis. One might expect that uncertainty in the response of a structure would increase 

as the level of excitation increases; however, there is no guarantee that a particular record will 

induce a sufficiently large excitation to push the structural response into the highly-nonlinear 

range. To overcome this issue without the need for repeating the nonlinear time history analysis at 

increasing excitation levels, the nonlinear dynamic analysis is conducted using an Endurance Time 



Acceleration Function (ETAF) [8]. The ETAF is an intensifying dynamic load that shakes the 

structure from a low- to high-excitation levels. Dynamic analysis conducted using the ETAF 

acceleration time-history is equivalent to nonlinear dynamic pushover analysis, where the 

structural response ranges from elastic to highly-nonlinear, and finally to collapse. Over a given 

period of time, the response spectrum of the ETAF increases proportionately with a selected target 

spectrum. Fig. 1(a) shows the acceleration-time history of the selected ETAF, and Fig. 1(b) shows 

the response spectrum of the record at the target times indicated in Fig. 1 (a). Three target times 

are selected here to represent various ground motion intensity levels, which result in a range of 

responses of the numerical model.  

 

   
Figure 1.    (a) Acceleration-time-history for the selected ETAF, and (b) the response spectrum of 

the selected ETAF at three target times of 2.5 s, 5.95 s, and 9.25 s. 

 

 The material uncertainty is quantified for ASTM A992 [9] steel based on a database of 73 

samples. The material uncertainty is represented by probability distribution functions (PDFs) 

selected using the Kolmogorov-Smirnov (K-S) test to measure their goodness-of-fit [10]. A set of 

n realizations are generated to capture the uncertainty in the population of material properties of 

the steel used in the selected beam-column. Nonlinear time-history analysis is conducted for each 

realization, on a nonlinear model calibrated to the experimental test results. The maximum drift 

ratios are recorded at different excitation levels (target times). These drift ratios represent the 

variation (uncertainty) in the calculated drifts due to the variation in the material properties, while 

the other two sources of uncertainty are held constant by using the same nonlinear model and the 

ETAF acceleration record. The drift ratios are employed to quantify the mean, median, and 

dispersion in the drift results. 

 

 To quantify the modeling uncertainty, twelve nonlinear models are developed for the steel 

beam-column. These models differ in terms of their modeling formulation and resolution, i.e. high-

fidelity, fiber, or lumped plasticity, the software package performing the calculation, and their 

modeling parameters (such as the assumed plastic hinge length), while holding the material 

properties and record-to-record uncertainty constant between analyses. These analyses are 

intended to isolate and quantify the individual influence of variations in modeling uncertainty on 

the response of the column. These models are developed by three different individuals, and each 

is without any calibration to the experimental results. The models are analyzed for the selected 

ETAF record, and the maximum drift ratios at various excitation levels (target times) are recorded 

and employed to quantify the modeling uncertainty in the selected steel column. 

 

(a) (b) 



The RTR uncertainty is quantified using incremental dynamic analysis [11], where multiple 

nonlinear analyses are performed on a single calibrated model at different levels of seismic 

excitation, while holding the material properties and the analysis-type (and resolution) constant 

between analyses. The variation in the maximum drift ratios is calculated as a function of GM 

intensity, i.e., Sa(T1). The distributions in the maximum drift ratio for three sources of uncertainty, 

as well as additional statistical information associated with each distribution are computed at the 

multiple excitation-levels and compared against one another. 

 

Material Uncertainty 

 

A database comprising 73 stress-strain curves collected from 73 individual steel material coupon 

tests is compiled for three grades of ASTM A992 structural steel. Data for the grade A992 steels 

were compiled from a set of relatively light wide-flange sections tested by [12], and from relatively 

heavy wide-flange sections tested by [7] and [12]. From the stress-strain curve resulting from each 

steel coupon test, six material parameters were extracted: the modulus of elasticity 𝐸, yield strength 

𝜎y, yield strain 𝜀y, ultimate tensile strength 𝜎u, uniform strain 𝜀u, and elongation at fracture 𝜀f 

(Fig. 2). The modulus of elasticity is determined as the slope of the linear regression of the initial 

portion of the stress-strain curve between 20 % and 60 % of the upper-yield strength. The yield 

strength is determined using the 0.2 % offset method (employing the calculated modulus of 

elasticity). The uniform strain and the ultimate tensile strength were determined as the strain and 

stress, respectively, at the peak of the engineering stress-engineering strain curve. The fracture 

strain is determined as the final strain value of the engineering stress-strain curve. 

 

 
Figure 2.    Schematic of material parameters extracted from each stress-strain curve. 

 

 As described above, a statistical distribution is fitted to the histogram of the values for each 

material parameter to capture its natural uncertainty. In addition to the individually fitted 

distributions, the material parameters were also assembled into a correlation matrix, so that the 

covariance between each material parameters could be evaluated. A total of 100 realizations are 

generated for the material parameters considering the multivariant correlation among parameters. 

 

 To isolate and characterize the influence of only the material uncertainty on the response 

of the column, 100 analyses are conducted while varying only the material properties for the 

calibrated lumped plasticity model developed in OpenSees [13], holding the analysis-type (and 

resolution) and the RTR uncertainty constant between analyses. The maximum drift ratios at 

multiple excitation levels are computed to quantify the uncertainty in the drift ratios due to material 

uncertainty. It is acknowledged here that the impact of material uncertainty will be a function of 

the modeling approach used in this study. 



 

Modeling Uncertainty 

 

The W24×146 column tested by Elkady and Lignos [7] is employed to quantify modeling 

uncertainties. The column has a length of 13 ft (3.96 m), an elastic modulus of 29,000 ksi 

(200 GPa), and a moment of inertia of 4580 in4 (1.91×109 mm4). The column is fixed at its base 

and has a fixed roller at its top, giving an initial flexural stiffness of 419.8 k/in (73.52 kN/mm). 

The mass of 10.63 k-s2/in (1861 Mg) is assigned at the top of the column to give a period of 

vibration of 1.0 s. A critical damping ratio of 2 % is assumed for the column. Geometric 

nonlinearity is based on the gravity load of 473 kip (2104 kN) applied at the top of the column. 

Material nonlinearity is addressed using plastic hinges, where applicable, located at the ends of the 

column. Twelve models are developed using different modeling techniques and software packages. 

The plastic hinges are modeled using either lumped plasticity or distributed plasticity. 

 

Model 1: OpenSees with Elastic-Perfectly-Plastic Material Lumped Plasticity Model 

The uniaxial STEEL01 material in OpenSees with input moment-curvature relationship is used to 

model the column with two plastic hinges at 6 in (152 mm) away from the ends. This offset allows 

capturing the plasticity over the full curvature length. The plastic hinges exhibit elastic-perfectly-

plastic relationship with a moment capacity of 25,080 k-in (2834 kN-m) and no strength loss.  

 

Model 2: OpenSees with Lumped Plasticity Model - BILIN 

The uniaxial BILIN material in OpenSees with moment-curvature relationship as shown in 

Fig. 3(a) is used to model the column with two plastic hinges located 6 in (152 mm) away from 

the ends. The modeling parameters are computed based on empirical equations in [14] with a minor 

modification; the equation for calculating the effective yield strength is modified such that it does 

not account for cyclic hardening. Kinematic hardening with strength loss is included in the model 

with no cyclic degradation.  

 

Model 3: OpenSees with ASCE41-Backbone Material Lumped Plasticity Model 

The uniaxial BILIN material in OpenSees with moment-curvature relationship based on 

ASCE/SEI 41 [15] as shown in Fig. 3(b) is used to model the column with two plastic hinges 

located 6 in (152 mm) away from the ends. Kinematic hardening with strength loss is included in 

the model with no cyclic degradation.  

 

Model 4: OpenSees with Lumped Plasticity Model - CLOUGH 

The uniaxial CLOUGH material in OpenSees with moment-rotation relationship as shown in 

Fig. 3(c) is used to model the column with two plastic hinges having no offset. The modeling 

parameters are computed based on empirical equations in [14]. Kinematic hardening with strength 

loss is included in the model with no cyclic degradation.  

 

Model 5: OpenSees with 12-Inch-Fiber Distributed Plasticity Model 

The uniaxial STEEL02 material in OpenSees is used to model the column with 12.8 in (325 mm) 

fibers at the ends. These fibers have the stress-strain relationship as shown in Fig. 3(d). Isotropic 

hardening with strength loss is included.  

 



 
Figure 3.    Moment-plastic rotation backbone curves for OpenSees models. 

 

Model 6: OpenSees with 25 Inch Fiber Distributed Plasticity Model 

This model is the same as that in Model 5, but with 25.6 in (650 mm) fibers at the ends. 

 

Model 7: Perform-3D with Elastic-Perfectly-Plastic Material Lumped Plasticity Model 

The steel column model with P-M interaction in Perform-3D is used, along with two plastic hinges 

at 6 in (152 mm) from the column ends. These plastic hinges exhibit elastic-perfectly-plastic 

behavior with a moment capacity of 25,080 k-in (2834 kN-m) and no strength loss.  

 

Model 8: Perform-3D with Cyclic Backbone Material and Lumped Plasticity 

The column model is the same as that in Model 7, but the plastic hinges exhibit the moment vs. 

plastic rotation relationship shown in Fig. 4(a). Kinematic hardening with strength loss is included 

in the model with no cyclic degradation.  

 

Model 9: Perform-3D with Monotonic Backbone Material and Distributed Plasticity 

The fiber column model in Perform-3D is used with fibers having 12 in (305 mm) lengths at the 

column ends. These fibers exhibit the stress vs. plastic strain relationship based on the calibrated 

monotonic backbone curve [14] as shown in Fig. 4(b). Kinematic hardening with strength loss is 

included in the model. 

 

Model 10: LS-DYNA with Elastic-Perfectly-Plastic Material and 12 Inch Finite Element 

The Integration Beam element in LS-DYNA [16] with 21 integration points is used to model the 

column with two plastic hinges having 12 in (305 mm) finite elements at the column ends. These 

elements exhibit elastic-perfectly-plastic behavior with a yield stress of 60 ksi (414 MPa) and no 

strength loss. 

 

Model 11: LS-DYNA with Monotonic Backbone Material and 12 Inch Finite Element 

The Integration Beam element in LS-DYNA with 21 integration points is used to model the column 

with two plastic hinges having 12 in (305 mm) finite elements at the column ends. These elements 

exhibit the stress vs. plastic strain relationship shown in Fig. 4(c). Isotropic hardening and strength 

loss are included in the model. 

 

Model 12: LS-DYNA with Monotonic Backbone Material and 24 Inch Finite Element 

The Integration Beam element in LS-DYNA with 21 integration points is used to model the column 

with two plastic hinges having 24 in (610 mm) finite elements at the column ends. These elements 

exhibit the stress vs. plastic strain relationship shown in Fig. 4(d). Isotropic hardening and strength 

loss are included in the model. 
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Figure 4.    Stress-plastic strain backbone curves for Perform-3D and LS-DYNA models. 

 

 Each of the 12 models is then subjected to the ETAF GM to investigate the uncertainty in 

the computed drift ratios of the column due to modeling uncertainty. 

 

Record-to-Record Uncertainty 

 

The nonlinear model developed using the measured material properties and the lumped plastic 

hinges based on the CLOUGH parametric equations (i.e., Model 4 above) is calibrated to the 

experimental results to minimize the influence of modeling uncertainty in the quantification of 

RTR uncertainty. The calibrated model is analyzed for 44 GM records in the FEMA P-695 far-

field set [17]. The IDA results of the nonlinear model are presented in Fig. 5. This figure shows 

how the response of the same nonlinear model varies when different GM records, having different 

frequency content and characteristics, are used for the analysis. The FEMA P-695 set is used here 

for illustration. Using the IDA curves, the uncertainty in the calculated drift values is quantified at 

any intensity level, Sa(T1), in terms of a PDF, as shown in Fig. 5. As the intensity level increases, 

the uncertainty in the drift ratio increases. 
 

 
Figure 5. Incremental dynamic analysis results for OpenSees model calibrated to the cyclic test. 

[The distribution function is intended to schematically illustrate the uncertainty in the drift ratios 

at a particular intensity level]. 

 

 The distribution of drift responses of the steel beam-column due to material, modeling, and 

RTR uncertainty at three excitation levels, Sa(T1) = 0.20, 0.35, and 0.75 (g), is shown in Fig. 6 

using lognormal PDFs. The best-fit distribution based on the K-S test for various sources of 

uncertainty and even for the same source of uncertainty but at different excitation levels may differ. 

The lognormal distribution is selected here since it is commonly used in the field of structural 

engineering to represent the uncertainty in the drift response of structures. Fig. 6(a) shows the 

PDFs fitted to the maximum drift response of the models developed to represent the uncertainty in 

the material properties, modeling approaches, and GM characteristics at Sa (T1=0.20 g). Fig. 6(a) 

shows that at the low-level excitation, the variation in the material properties of the column leads 
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to the least variability in the response, as indicated by a narrowest-width of the distribution, while 

the RTR variability leads to the largest variability, indicated by the widest width of the distribution, 

among the three sources of uncertainty. Fig. 6(b)-(c) shows similar distributions at the higher 

excitation levels of 0.35 and 0.75 (g). These figures show that the RTR and material uncertainties 

lead to the largest and smallest contributions to uncertainty in the calculated drift response of the 

column, respectively, regardless of excitation level. 

 

 Fig. 6(d) overlays the column responses from Fig. 6(a)-(c) to demonstrate that as the 

excitation level increases, the uncertainty in the predicted drift ratio due to the individual sources 

of uncertainty increases. This trend is expected, since as the response of the structure becomes 

more nonlinear, the stiffness of the model decreases and the drift response becomes more sensitive 

to the input demand parameters such as acceleration. In other words, minor changes in the input 

parameters lead to significant changes in the drift response as the structural response becomes 

highly nonlinear. In terms of modeling uncertainty, the variation of predictions between various 

models increase as the amount of nonlinearity increases due to the high sensitivity of the drift to 

acceleration when in the nonlinear range. In addition, the response of the column in the nonlinear 

range is more complicated and less understood in comparison with the linear range. In terms of 

material uncertainty, two factors contribute to this trend: (1) the uncertainty associated with the 

ultimate tensile strength and uniform strain are larger than those for the modulus of elasticity and 

yield stress (i.e., the uncertainties in the inelastic material properties are larger than those for the 

elastic material properties), and (2) the increased numbers of cycles as the level of excitation 

increases leads to an accumulation the small differences in material properties, leading to increased 

dispersions in the hysteretic response of the column. 

 

Fig. 6(d) also shows that considering modeling uncertainty, in comparison with solely considering 

material uncertainty leads to a shift in the median drift response toward higher drift values. This 

shift in the median response becomes even more apparent by comparing modeling to RTR 

uncertainty. Fig. 6(d) demonstrates that considering RTR uncertainty leads to a significant increase 

in the computed mean drift response relative to only considering material or modeling 

uncertainties.  

 

 Table 1 summarizes the mean, median, and standard deviation of the drift response 

calculated due to material, modeling, and RTR variabilities, at three excitation levels, Sa(T1) = 

0.20, 0.35, and 0.75 (g). This table represents the statistical parameters for the probability 

distribution functions presented in Fig. 6 (a-c). The drift statistical parameters are computed using 

a lognormal distribution. The mean (𝜇) and median (𝜇̅) are computed according to Eq. 1, where 

𝑢̅𝑙𝑛𝑥 is the mean of the natural logarithm of drift values, and 𝜎𝑙𝑛𝑥 is the standard deviation of the 

natural logarithm of drift values (reported in Table 1).    

 

 𝜇 = 𝑒𝑢𝑙𝑛𝑥 ∗ 𝑒
𝜎𝑙𝑛𝑥
2

2  

 𝜇̅ = 𝑒𝑢𝑙𝑛𝑥  

 

(1) 

 

Trending from material to modeling and RTR uncertainty, the mean and median of the calculated 

drift ratios increase at each excitation level. The results in Table 1 also show that the computed 

standard deviation due to RTR variability is about 1.8 to 4.5 times and 6.5 to 14.5 times greater 

than that for modeling and material variabilities, respectively. This finding shows that the influence 



of RTR variability on the uncertainty of the computed drift results is more significant than that for 

the material and modeling variabilities.  

 

Table 1 reports that the standard deviation due to RTR variability decreases as we move from the 

Sa(T1) = 0.35 (g) to 0.75 (g). This observation is counterintuitive, and does not match with the 

results shown in Fig. 6(d). The reason for the lower standard deviation at higher excitation level is 

that, at the higher excitation level more records lead to collapse, and as a result most of the analyses 

result in an ultimate drift ratio of 15 % (preset in the analysis), which influence calculation of 

standard deviation. This observation shows that the representation of the uncertainty results in 

terms of lognormal distribution, may unwittingly lead to neglecting important information related 

to quantification of uncertainty. Thus, it is critical to use information on the proportion of 

simulations that lead to collapse of the structure in conjunction with other statistical parameters, 

when quantifying the uncertainty.  

 

The last column in Table 1 reports the total uncertainty as the square-root-of-sum-of-squares of 

the uncertainties (standard deviations) due to material, modeling, and RTR variabilities, as 

suggested in FEMA P-695 [17]. Comparing the total uncertainty in the drift response to the 

uncertainty due to RTR variability shows that the total uncertainty is about 2 to 15% bigger than 

that for RTR variability. This small difference is due to the significant difference in the magnitude 

of the standard deviation computed for RTR variability in comparison with that for material and 

modeling variabilities. 

 

                 

   
Figure 6.    PDFs for drift of the steel column due to material, modeling, and RTR uncertainties at: 

(a) Sa(T1) = 0.2, (b) Sa(T1) = 0.35, (c) Sa(T1) = 0.75, (d) Sa(T1) = 0.2, 0.35, 0.75 (g). 
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Table 1. Statistical parameters on the drift response of the selected column due to material, 

modeling, and RTR variabilities. [The results are presented in terms of natural logarithm of the 

drift values.] 

Statistics 
Sa(T1) 

[g] 

Source of Variability Total 

Uncertainty 

(SRSS) Material  Modeling  RTR  

Mean Drift 

0.20 0.010 0.009 0.020 

N/A 

0.35 0.020 0.025 0.077 

0.75 0.023 0.031 0.141 

Median Drift 

0.20 0.010 0.009 0.018 

0.35 0.020 0.024 0.052 

0.75 0.023 0.030 0.131 

Standard 

Deviation of 

Drift Results 

0.20 0.056 0.305 0.546 0.628 

0.35 0.061 0.197 0.888 0.912 

0.75 0.060 0.210 0.383 0.441 

 

 

Summary and Conclusions 
 

This study quantifies the influences of material, modeling, and record-to-record (RTR) 

uncertainties on the drift response of steel beam-columns, and compares their influences relative 

to one another. Material uncertainty is quantified by conducting multiple dynamic analyses on a 

nonlinear model developed for a single steel beam-column, each time varying the input material 

properties generated based on data collected from coupon tests on ASTM A992 steel. The 

modeling uncertainty is quantified by developing multiple models in different software packages 

and different modeling resolutions for a single steel beam-column. The RTR uncertainty is 

computed using incremental dynamic analysis.  

 

The influences of material, modeling, and RTR uncertainties on the predicted response of 

a steel beam-column is computed and compared against each other using a set of probability 

distribution functions representing the variation in the drift response of the column at multiple 

ground motion intensity levels. The results show that the record-to-record uncertainty accounts for 

the largest portion of the uncertainty in the predicted drift response in comparison with the material 

and modeling uncertainties. The analysis results also show that the representation of the 

uncertainty solely in terms of the standard deviation may lead to neglecting information related to 

quantification of uncertainty. The results show that the standard deviation of the lognormal 

distribution as a measure of the response uncertainty need to be used in conjunction with other 

statistical information such as number of simulations lead to collapse, to achieve a better 

understanding of the response distribution. Future studies should investigate the impact of each 

sources of uncertainty as well as the combination of various sources of uncertainty on the 

assessment of the system level response of structures. 
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