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ABSTRACT
Robotic bin picking requires using a perception system to

estimate the pose of the parts in the bin. The selected singula-
tion plan should be robust with respect to perception uncertain-
ties. If the estimated posture is significantly different from the ac-
tual posture, then the singulation plan may fail during execution.
In such cases, the singulation process will need to be repeated.
We are interested in selecting singulation plans that minimize
the expected task completion time. In order to estimate the ex-
pected task completion time for a proposed singulation plan, we
need to estimate the probability of success and the plan execution
time. Robotic bin picking needs to be done in real-time. There-
fore, candidate singulation plans need to be generated and eval-
uated in real-time. This paper presents an approach for utilizing
computationally efficient simulations for generating singulation
plans. Results from physical experiments match well with predic-
tions obtained from simulations.1

1 Introduction
The use of robots for bin picking applications has been ef-

fective to singulate a wide variety of parts when the estimate of
the part posture in the bin is accurate or the part is of simple ge-
ometry and is not entangled with neighboring parts. Singulation

∗Address all correspondence to this author.
1DISCLAIMER: Any commercial product or company name in this paper is

given for informational purposes only. Their use does not imply recommendation
or endorsement by NIST or University of Maryland or Old Dominion University
or University of Southern California.

is defined as the concatenation of five stages, including approach,
grasp, extract, transport, and drop-off. Singulation planning con-
sists of first synthesizing candidate plans and then using an evalu-
ation method to score each candidate plan and select the best one
for execution. A computationally efficient evaluation method is
a crucial requirement in this context since all the candidate plans
need to be evaluated in near real-time so that the robot’s idle time
during planning can be minimized. This paper is focused on the
evaluation aspect of singulation planning.

Fig. 1 illustrates an example of a singulation plan. If the
part posture is known accurately, then the singulation plan will
succeed if the robot constraints are not violated. If the estimated
part posture is uncertain (as illustrated in Fig. 2), the singulation
planner might fail to extract the part from the bin. Fig. 3 illus-
trates possible outcomes of a singulation plan under perception
uncertainty. The frame denoted by x̂, ŷ, and ẑ indicates the grasp
point computed based on the posture estimate obtained from the
perception system and the frame denoted by xp, yp, and zp in-
dicates the actual grasp point on the part. The gripper frame is
denoted by xg, yg, and zg. The outcome of a singulation plan
under perception uncertainty can be one of the following:

1. Successful grasp. Some uncertainties get updated during
the execution of the singulation plan. Fig. 3(a) illustrates a
case in which the uncertainty in rotation about zg is reduced
when the grippers are closed. Some uncertainties might
propagate to further stages of the singulation task. Fig. 3(b)
illustrates a case in which the uncertainty in rotation about yg
and translation in zg is propagated after a successful grasp.
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FIGURE 1. Example of a singulation plan

FIGURE 2. Illustration of perception uncertainty in the part location
- Estimated posture might differ from the actual part posture.

2. Failure due to collision. Fig. 3(c) illustrates uncertainty in
the yg direction leading to collision with the gripper.

3. Failure due to grasp miss. - Fig. 3(d) illustrates high uncer-
tainty in translation along the xg direction leading to a grasp
miss.

In case of Fig. 3(a) and Fig. 3(b), the time for completing
the task would be equal to the time required to execute the sin-
gulation plan once; that is, Te. There can be some side effects
caused when the exact location of the part is not known within
the gripper. For instance, the robot has to account for high toler-
ances for waypoints in the singulation plan so that the part held
within the gripper does not collide with the bin during extraction.
In addition, these propagated uncertainties might lead to a drop-
off with bouncing effects on the part and the part settling outside
acceptable tolerance limits. This causes uncertainty to propagate
to the tasks following bin picking. In case of Fig. 3(c) and Fig.
3(d), the robot has to execute the singulation plan again.

Since the outcome of the singulation plan is probabilistic in
the presence of perception uncertainty, p and Te can be consid-
ered as the main factors during the evaluation of the expected

task completion time. The singulation plan being different for
every grasp strategy defined for a part introduces the need to es-
timate expected task completion time online after each plan has
been generated. Te for a singulation plan can be computed on-
line, using the joint angle differences at consecutive waypoints
and joint velocity. Monte Carlo simulations can be used for on-
line estimation of success probability. After all the candidate
plans are evaluated, the singulation plan with the least expected
task completion time will be selected for execution. This paper
is an extended version of our previously published conference
paper [1] and presents an approach for utilizing computationally
efficient simulations for generating singulation plans.

2 Related Work
Pose uncertainty is a well-addressed problem in bin picking

applications. Many previous attempts on a systems approach to
bin picking mainly focused on the perception problem [2–8], de-
coupled from motion planning of the robot. Akizuki et al. [9]
used a simulator to compute the observability factor of a 3D
vector pair from multiple viewpoints to estimate the pose of the
part. In reality, the pose estimate from the perception system
is not accurate. There is always an uncertainty associated with
the estimate. The work done by Fuchs et al. [10] assumed sig-
nificant uncertainty in object pose estimate and the object was
grasped only when the reliability of the pose hypothesis was be-
low a certain threshold. Otherwise, a different camera was used
to have a different viewpoint. Harada et al. [11] applied prob-
abilistic properties to the pick-and-place motion planner of an
object. They planned a pick-and-place motion with a set of re-
gions in combination with the probabilistic properties. Liu et al.
[12] presented a directional, chamfer-matching-based, object lo-
calization and pose estimation in the presence of heavy clutter
in the bin. Papazov et al. [13] evaluated recognition hypothesis
quality by defining an acceptance function, comprising a visi-
bility term and a penalty term. Another work by Pronobis and
Caputo [14] used a support vector machine approach to quantify
the level of confidence in performing a visual, place-recognition
task.

Many attempts have been made to define grasp strategies
offline and evaluate them online using collision checks. A re-
view of analytical approaches to grasp synthesis can be seen in
[15]. A survey on data-driven grasp synthesis can be found in
[16]. Dupuis et al. [17] presented a two-finger grasp generation
method and target selection for bin picking of randomized parts.
They generated a dense set of grasp points and evaluated them
using factors like the sensitivity of grasp point with a small vari-
ation in grasp point and based on the feasibility and stableness of
neighboring grasps. Ellekilde et al. [18] used learning methods
to improve success probability of grasps for bin picking. They
chose a set of grasps offline and applied the learning process for
a day or two in an industrial environment to improve success
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FIGURE 3. Possible outcomes of a singulation plan: [a] Successful grasp; certain uncertainties like rotation about zg being updated during grasp. [b]
Successful grasp; certain uncertainties like rotation about yg and translation along zg will propagate through the successive stages. [c] Failure due to
collision with the part upon lowering the gripper due to uncertainty in translation along yg. [d] Failure due to grasp miss as the uncertainty in translation
along xg is high.

probability. Kendall et al. [19] used a Bayesian convolutional
neural network to estimate relocalization uncertainty and regress
the pose obtained from the camera. Zheng et al. [20] presented
a force closure analysis approach to handle uncertainties in fric-
tion and contact position. Berenson et al. [21] used Task Space
Regions (TSRs) and modified them to handle pose uncertainty.

Chang et al. [22] developed a framework for representing
possible strategies of interactive singulation of items from a pile
of cluttered objects. They used a perception module to evaluate
the outcome of pushing actions. In our previous work [23, 24],
any failure in the automatic pose estimation was handled with
the help of human assistance. The human operator used an in-
terface to estimate the pose of the part and sent it back to the
robot. Simple sensorless fine positioning moves were used after
the part was dropped off to correct uncertainties present in the fi-
nal part location. The extraction planning presented in [25] used
the relationship between object geometries and executed simple
extraction motions to resolve occlusions. In [26], a data-driven
approach was used to evaluate singulation plans based on percep-
tion uncertainty, grasp quality, approach quality, and extraction
quality. The singulation plan with minimum probability of fail-
ure was chosen for execution.

3 Problem Formulation
Consider a bin with known dimensions containing an in-

stance of the part chosen for singulation. Define a finite set of

grasp strategies G = [G1,G2...Gn] for the chosen part. Let the
estimate of the six-dimensional (6D) pose of the part be repre-
sented as P = {x,y,z,α,β ,γ}. Let U = [Ut ,Uo] represent the
uncertainty in P, where Ut represents uncertainty in position es-
timate and Uo represents uncertainty in orientation estimate.

Given P and U, the task is to build a singulation plan S for
every strategy in G, evaluate its expected task completion time by
estimating p and Te, and execute the best plan based on this eval-
uation. Expected task completion time, E(Tc), can be computed
as

E(Tc) = pTe +(1− p)(2pTe)+(1− p)2(3pTe)+ · · · , (1)

where pTe estimates the time required for plans that succeed
in the first attempt, (1− p)(2pTe) estimates the time required
for plans that succeed in the second attempt, and so on. For
an arithmetico−geometric sequence, the sum to infinite terms is
given by

lim
n→∞

Sn =
a

1− r
+

dr
(1− r)2 . (2)

Substituting a = pTe; r = (1− p); d = pTe, we get

E(Tc) =
pTe

1− (1− p)
+

pTe(1− p)
(1− (1− p))2 ,

3



FIGURE 4. Illustration of seven grasp strategies for the chosen part (row 1) and corresponding seven drop-off strategies (row 2).

E(Tc) =
Te

p
. (3)

To select the singulation plan Sbest corresponding to the grasp
strategy with minimum E(Tc), we use the following approach.

1. Obtain the point cloud of the scene, the pose of the part to
be singulated, and the drop-off location.

2. For every available grasp strategy, compute the grasp points,
grasp orientation, and the approach vector based on the pose
of the part. Compute the drop-off offset and the drop-off ori-
entation for the corresponding drop-off strategies (see Sec-
tion 4 for details).

3. Generate singulation plan for every grasp strategy and check
if the generated plans are feasible (see Section 5 for details).

4. Invoke Monte Carlo simulator to estimate p and estimate Te
(see Section 6 for details). Compute E(Tc) of every singula-
tion plan using Eqn. 3.

5. Choose the singulation plan which has the minimum E(Tc).

4 Representing Singulation Plans
4.1 Grasp Strategies

Grasp strategy is the strategy with which the gripper ap-
proaches the part and grasps it. Grasp strategy directs the sin-
gulation planner to orient the gripper to a specific point on the
part during approach and grasp phases. In this paper, we have
considered seven grasp strategies for the chosen part (Fig. 4 -
Row 1) to be able to approach and grasp the part in seven dif-
ferent ways. Each grasp strategy can be parameterized by the
following four components:

1. Grasp offset (Gx,Gy,Gz) specifies the translational offset
between the part origin and the grasp point expressed in the
part frame.

FIGURE 5. Illustration of grasp parameters for strategy 1.

2. Grasp orientation (Gα ,Gβ ,Gγ) specifies the orientation of
the grippers with respect to the part frame during grasp.

3. Approach vector Gv specifies the direction in which the
grippers must approach the part for grasp.

4. Tolerance Gt specifies the tolerance in the xg and zg direc-
tion for a grasp to be successful (Fig. 3(a) and Fig. 3(b)).
Every grasp strategy has different tolerance value; that is,
they handle different levels of uncertainty based on the grasp
offset and orientation. The closing action of the gripper cor-
rects small uncertainties in the yg direction. If uncertainty in
the yg direction is large, it either leads to collision between
the part and the gripper (Fig. 3(c)) or a grasp miss (Fig.
3(d)). These cases are explained in section 6.1.

Table 1 lists parameters for seven grasp strategies considered for
the chosen part. Grasp orientation terms follow ZY X Euler angle
ordering. Grasp parameters for strategy 1 are shown pictorially
in Fig. 5. These parameters correspond to row 1 in Table 1. The
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TABLE 1. Parameters for grasp and drop-off for seven strategies

Strategy Gx,Gy,Gz
(cm)

Gα ,Gβ ,Gγ

(degrees)
Gv

Gt
(cm)

Dx,Dy,Dz
(cm)

Dα ,Dβ ,Dγ

(degrees)

1 2.5,2.5,3.5 −90, 90, 0 0,1,0 ±1.75 2.5,2.5,3.5 −90,90,0

2 2.5,2.5,9.0 −90, 90, 0 0,1,0 ±1.00 2.5,2.5,9.0 −90,90,0

3 2.5,1.5,9.0 90, 0,−90 1,0,0 ±0.50 2.5,1.5,9.0 −45,0,90

4 2.5,1.5,9.0 −90,180, 0 0,0,1 ±1.00 2.5,1.5,9.0 90,0,180

5 2.5,1.5,9.0 −90, 0,−90 −1,0,0 ±1.00 2.5,1.5,9.0 45,0,90

6 2.5,2.5,3.5 −90,135, 0 0,0.707,0.707 ±1.75 2.5,2.5,3.5 −90,90,0

7 2.5,2.5,3.5 −90, 45, 0 0,0.707,−0.707 ±1.75 2.5,2.5,3.5 −90,90,0

planner generates waypoints such that the gripper frame exactly
coincides with the grasp point, computed relative to the estimated
part posture.

4.2 Drop-off Strategies
After the part has been extracted from the bin and trans-

ported to the drop-off location, the planner has to plan the moves
to drop the part gently. The strategy to place the part on a flat sur-
face depends on the position and orientation of the grasped part
within the grippers. So, each grasp strategy has a unique drop-off
strategy as illustrated in Fig. 4 - Row 2. Drop-off strategy can be
parameterized by the following two components:

1. Drop-off offset (Dx,Dy,Dz) specifies the offset between the
gripper frame and the drop-off point (specified by the user).
This compensates for the offset that was used during the
grasping operation.

2. Drop-off orientation (Dα ,Dβ ,Dγ) specifies the gripper ori-
entation just before the drop-off such that the dropping ac-
tion introduces minimal uncertainties in the final part posi-
tion. For some grasp strategies (like strategies 3, 4, and 5),
the gripper might not be able to place the part gently because
of kinematic constraints of the arm. In such cases, the arm
will orient as closely as possible to the drop-off frame.

Table 1 lists the parameters for seven drop-off strategies cor-
responding to the seven grasp strategies. Drop-off orientation
terms follow ZY X Euler angle ordering.

4.3 Pose Uncertainty Updates During Plan Execution
Assuming that the singulation task is performed using a

parallel-jaw gripper and the part is being gripped on a flat sur-
face, for every successful case, it is certain that the closing ac-
tion of the gripper jaws updates some of the uncertainties in the
part pose. For instance, Fig. 6(a) illustrates that the gripping ac-
tion updates uncertainty in translation along the yg direction. In

a similar way, the uncertainty in the rotation about xg is updated
as illustrated in Fig. 6(b). In Fig. 6(c), upon gripper closure, the
uncertainty in the rotation about zg is updated. These cases may
occur in unison or individually based on the uncertainty in the
posture estimate. Gentle drop-off at the endpoint also updates
some uncertainties. Fig. 6(d) illustrates this scenario in which
the vertical constraints posed by the flat surface at drop-off up-
date the pose uncertainty in translation along zg and the rotation
about yg. The only uncertainty that is not updated during the ex-
ecution is translation along xg. This uncertainty can be corrected
with fine positioning moves [27].

Let us consider that the part is being grasped according to
strategy 1. For a successful plan, the uncertainty in xp,αp, and
βp is updated when the part is grasped within the parallel jaw
grippers. For a gentle drop-off, the uncertainty in zp and γp is
updated by the constraints introduced by the horizontal drop-off
surface. Upon performing fine positioning moves, uncertainty in
yp is updated. Table 2 summarizes the effect of these actions on
the uncertainty of the part pose.

5 Generating Singulation Plans
The singulation planner is responsible for generating way-

points for approach, grasp, extract, transport, and drop-off of a
chosen part from the bin, checking the feasibility of these way-
points, invoking the evaluation module for the feasible singula-
tion plans, and choosing a singulation plan for execution based
on this evaluation. In Algorithm 1, a singulation plan S is gener-
ated for each grasp strategy. The point cloud of the scene consist-
ing of the part to be singulated is referred to as ScenePointCloud.
If the waypoints in S are infeasible, then the singulation plan is
discarded. If all the waypoints are feasible, the singulation plan-
ner estimates its expected task completion time (Section 6). The
singulation plan with minimum expected task completion time
(Sbest ) is executed.

The following two conditions need to be validated to ensure
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TABLE 2. Action and corresponding uncertainty update

Uncertainty update

Translation RotationAction

xp yp zp αp βp γp

Grasp X X X

Drop-off X X

Fine-positioning X X X

Algorithm 1 SingulationPlanner
1: Input: Part pose P, pose uncertainty U, set of grasp

strategies G = [G1,G2, ...Gn] , ScenePointCloud
2: Sbest ←{ /0}
3: for ∀ Gi ∈ G do
4: Generate S =̂ Gi.
5: if (FeasiblePlan(S) = 1) then
6: E(Tc)← EvaluatePlan(S,P,U,ScenePointCloud)
7: if E(Tc) is lowest then Sbest ← S
8: end if
9: end for

10: Execute (Sbest )

feasibility of waypoints in the singulation plan:
Condition 1a- Inverse kinematics: Each waypoint in the

generated singulation plan is specified as position and orienta-
tion of the gripper frame with respect to the robot base frame B.
The generated waypoints have to be validated if the robot can
actually move to these points. A feasible singulation plan is one
which has an inverse kinematic solution at every waypoint. If the
inverse kinematic solution does not exist at any waypoint, then
the singulation plan is termed infeasible.

Condition 1b- Checking for collision with the bin: The col-
lision detection module checks for any possible collision of the
robot arm with the bin during the execution of the singulation
plan. For checking the validity of condition 1b, the following
representation is used:
Robot arm - The computer-aided design (CAD) model of the
robot arm is approximated with a set of rectangular bounding
boxes.
Bin - The CAD model of the bin is represented as a point cloud.
This point cloud is referred to as BinPointCloud in the paper.

The motion of the arm during approach and extraction is
simulated by computing the swept volume of the approximated
bounding box of the arm along the approach vector. If any
point in the BinPointCloud lies within this swept volume, then
the singulation plan is discarded because of possible collisions.
Algorithm 2 validates condition 1a and condition 1b for a given

singulation plan.

6 Evaluating Singulation Plans

Algorithm 2 FeasiblePlan(S)
1: Input: BinPointCloud
2: J← Inverse kinematic solution for waypoints in S.
3: . Condition 1a
4: Compute swept volume of the robot arm along Gv.
5: C← Check for collision between computed swept volume

and BinPointCloud . Condition 1b
6: if {∃ J ∀ waypoints in S & C= { /0}} then
7: return 1 . Plan is feasible
8: else
9: return 0 . Plan is infeasible

10: end if

The Monte Carlo simulator estimates success probability of
a singulation plan by simulating the gripper motion during the
approach, the grasp, and the extract phases and checking for any
occurrences of collision. The parallel jaw grippers are approxi-
mated with a set of two bounding boxes as shown in Fig. 7. The
computation of the swept volume of the approximated bounding
box of the gripper during approach, grasp, and the extract phases
is shown in Fig. 8. During the extract phase, the CAD model
becomes an integral part of the gripper indicating that the part
has been gripped. Hence the bounding box of the gripper will
include the part as well.

The algorithm takes the singulation plan, the estimate of the
part pose, the uncertainty in the pose estimate, and the point
cloud of the scene as input. A Gaussian noise is added to the pose
of the part, to represent that the reality might differ from the cam-
era pose estimate. The simulator checks for failure conditions
(explained in condition 2a and condition 2b) and if both condi-
tions are negative, the singulation plan is considered a pass. The
simulator outputs the ratio of the number of trials being marked
successful over the total number of trials as success probability
of the singulation plan.

6.1 Estimating Probability of Success for a Singula-
tion Plan

A singulation plan is termed successful if the gripper is able
to grasp the part without colliding with the part or the neighbor-
ing parts. Each simulation trial should introduce uncertainty in
the part pose and check if the grippers collide with any part in the
bin. If the uncertainty is too high, the evaluator must check the
condition for a grasp miss and evaluate success probability for a
singulation plan accordingly.
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FIGURE 6. Illustration of uncertainty update during plan execution. [a] Uncertainty in translation along yg being updated during grasping action;
[b] Uncertainty in rotation about xg being updated during grasp. [c] Uncertainty in rotation about zg being updated during grasp. [d] Uncertainty in
rotation about yg and translation about zg being updated during drop-off on a flat surface.

Algorithm 3 EvaluatePlan (S,P,U,ScenePointCloud)
1: Initialize s = 0 . Number of trials being successful
2: Initialize N . Total number of trials
3: Te← 0
4: for every trial in Monte Carlo simulation do
5: Pnew ← P∼N (0 , U2) . Adding Gaussian noise to P
6: Check condition 2a . Condition for collision check
7: Check condition 2b . Condition for grasp miss
8: if condition 2a & 2b is negative then
9: s← s+1

10: end for
11: p← s/N
12: Estimate Te using Eqn. 4 and Eqn. 5
13: E(Tc)← Te/p
14: return E(Tc)

FIGURE 7. Parallel jaw grippers of the robot and the bounding box
approximation of the grippers for collision check.

Condition 2a- Failure due to collision with the part or
neighboring parts: This condition checks for any occurrence of
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FIGURE 8. Swept volume of the approximated gripper bounding box
during [a] Approach, [b] Grasp, and [c] Extract phase. The black
cuboids indicate the approximated bounding box of the gripper and the
red cuboids indicate the swept volume of the approximated bounding
box during the execution. The yellow-red dot indicates the grasp point
on the part from the side view and the green dot indicates the grasp point
on the gripper from the side view.

collision between the gripper and the parts in the bin. For check-
ing the validity of condition 2a, the following representation is
used:
Robot grippers - Parallel jaw grippers are approximated with a
set of two rectangular bounding boxes.
Neighbor parts - Represented as a point cloud by subtracting the
point cloud belonging to the part chosen for singulation from the
point cloud of the scene.
CAD model of the part- The CAD model of the part is rep-
resented as a point cloud. In simulations, the point cloud
of the CAD model is rendered at the estimated pose of the
part. The combined point cloud of the neighboring parts and
the CAD model of the part to be singulated constitute the
ScenePointCloud.

The swept volume of the gripper computed for approach,
grasp, and extraction phases is aligned along the axes of the robot
base frame and the ScenePointCloud is transformed to match the
relative orientation. This simplifies the collision detection to just
checking if any point in the ScenePointCloud lies within the x, y,
and z limits of the swept volume. If the number of points in the
swept volume is non-zero, then the grasp strategy is discarded
because of a possible collision.

Condition 2b- Failure due to grasp miss: The grasp point
and the tolerance region are represented using a bounding box as
shown in Fig. 9. For a successful plan, the tolerance bounding
box and the swept volume of the grippers should not touch or
intersect during approach. During grasp, the tolerance bounding
box touches the swept volume of the gripper motion. Fig. 9 -
Row 1 illustrates examples of successful singulation plans even
under uncertainty. In all these cases the bounding boxes touch

with the swept volume during grasp. For failure cases due to
collision, these two regions would intersect each other during
approach indicating that the grippers would collide with the part
if the plan was executed. In the case where the uncertainty is too
high and the estimated pose is way too off from the actual part
location, the plan fails due to grasp miss. For these cases, the
tolerance bounding box and the bounding box of the grippers do
not touch each other during approach or grasp. Fig. 9 - Row 2
illustrates examples where the singulation plan fails because of
grasp miss.

6.2 Estimating Execution Time for a Singulation Plan
The execution time of a singulation plan is the time required

by the robot to move from the first waypoint to the last waypoint
in the singulation plan. The time required for executing a singu-
lation plan is dependent on the joint velocity of the robot arm and
the joint angle differences between the waypoints. When all of
the joint angles are commanded simultaneously at the same joint
velocity, the execution time depends only on the joint which has
the maximum difference among the others. If the waypoints in
the singulation plan and the joint velocity of the robot arm are
known, the time required for execution can be estimated before
executing the singulation plan. Execution time is the ratio of the
sum of the maximum difference in joint angles to the joint ve-
locity. If J represents the joint angles obtained from the inverse
kinematic solver at a particular waypoint and Jprev represents the
joint angles at the previous waypoint, then ∆J is the maximum
of the difference between J and Jprev. Equation 4 and Eqn. 5
mathematically represent the estimation of time for execution of
a singulation plan.

∆J= max[J∼ Jprev] , (4)

Te =

∑
w∈S

∆J

Joint Velocity
. (5)

Using Te and p, Algorithm 3 computes E(Tc) for a singula-
tion plan. Let us consider a case as shown in Fig. 10. Table 3
shows the output of singulation planner. Each line indicates the
evaluation result for a grasp strategy. Since the singulation plan
corresponding to strategy 6 has lowest expected time for com-
pletion, it is chosen for execution (row marked by ‘*’ in Table
3).

7 Experimental Results
The estimated success probability from the simulator was

validated with physical experiments. The experimental setup in-
cluded a Baxter Research Robot with an Asus Xtion Pro 3D cam-
era mounted on the left arm and a parallel jaw gripper mounted
on the right arm as shown in Fig. 11. The joint resolution of
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FIGURE 9. Illustration of successful grasp under uncertainty (row 1) and failure due to grasp miss (row 2). The yellow-red dot indicates the ideal
grasp point on the part. The yellow bounding box indicates the tolerance region for every grasp strategy. In row 1, the bounding box of the grasp
tolerance touches the bounding box of the grippers during grasp. In row 2 the bounding box of the grasp tolerance does not touch the bounding box of
the grippers during grasp.

FIGURE 10. Illustration of grasp strategies that are feasible for an
estimated part pose. Grasp strategy 6 is chosen for execution as it has
minimum expected completion time (Table 3).

the robot arm was set to achieve best possible precision. The
joint velocity of all seven joints in the robot arm was set to 0.35
radians/second.

Thirty trials were conducted for each grasp strategy. The
part was placed in the bin and the boundary of the part was
marked such that the part could be placed in the same position
and orientation for later parts of the experiment. The point cloud
of the scene was captured and a user interface designed in MAT-
LAB was used to estimate the pose of the part by manually dock-
ing the CAD model of the part in the point cloud [23]. The points
belonging to the part were deleted from the point cloud and the
point cloud of the CAD model was rendered at the pose of the
part. Pose uncertainty was simulated by adding Gaussian noise
of σ = 5 mm for Ut and 5 degrees for Uo to the estimated pose
of the CAD point cloud. The feasibility of every singulation plan

TABLE 3. Output of singulation planner for the case shown in Fig.
10.

Strategy Evaluation outcome E(Tc)

1 p = 0.85,Te = 9.3 s 10.9411 s

2 p = 0.75,Te = 9.1 s 12.1333 s

3 Condition 1a invalid -

4 Condition 1a invalid -

5 Condition 1b invalid -

6 p = 0.95,Te = 9.25 s 9.7368 s∗

7 Condition 1b invalid -

was checked for condition 1a and 1b. For every feasible plan, the
simulation checked if the gripper was able to extract the part by
validating condition 2a and 2b. Fig. 12 illustrates collision check
during the approach phase of the singulation plan. At the end, the
simulator outputs success probability of the singulation plan. For
the physical trials, the part was placed in the marked region and
the same noise was added as that of the simulation trials. The
robot was commanded to pick the part using the noisy pose and
the number of successful grasps were counted. The comparison
of the probability of success estimated by the simulator and the
physical trials is shown in Fig. 13. The plot shows that the online
simulator gives a good estimate of success probability for every
grasp strategy.

Next, experiments to validate the estimated execution time
of the singulation plan were conducted. Thirty trials were con-
ducted for each grasp strategy and the average error between esti-
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FIGURE 11. Experimental setup with Baxter Research Robot
equipped with an Asus Xtion Pro camera mounted on the left arm and a
parallel jaw gripper on the right arm.

FIGURE 12. Experimental data: Collision check between gripper and
part during approach.

mated execution time and actual execution time were computed.
For every trial, joint angles were computed at every waypoint
using Baxter’s inbuilt Inverse Kinematics solver to estimate the
execution time of the singulation plan as explained in section
6.2. The robot was commanded to move through these way-
points (with zero settling time at intermediate waypoints) and
the time taken by the robot to completely execute the singulation
plan was calculated. Errors obtained by these two cases were

FIGURE 13. Comparison of success probability estimated by the
simulator and physical trials.

FIGURE 14. Error between estimated execution time and actual time
for execution.

averaged over thirty trials for every grasp strategy. The error be-
tween estimated execution time and actual time taken is shown
in Fig. 14. The vertical bar represents mean and the error bar
represents standard deviation. The plot shows that the mean er-
ror in the method used for estimation of execution time is within
14 ms.

Experiments were also conducted to use the estimate of suc-
cess probability to select an appropriate gripper width during the
execution of the singulation plan. For each grasp strategy, a clut-
tered scene was considered (shown in Table 4 Row 1). The suc-
cess probability was estimated for a singulation plan with various
gripper widths. Experiments showed an initial increase in suc-
cess probability with the increase in gripper width. The values
showed a steep dip due to collisions with the neighboring parts
as the gripper width was increased beyond a certain value. The
outcome of the experiment for seven grasp strategies is shown in
Table 4.

Experiments were also conducted to observe the variation of
success probability with the variation in the uncertainty of the

10



TABLE 4. Variation of success probability for each grasp strategy with gripper width. The scene considered for each grasp strategy is shown in row
1. The part of interest is marked with a red dot.

Gripper

Width (cm)

Grasp Strategy

1 2 3 4 5 6 7

3 0.4 0.3 0.2 0.033 0.266 0.4 0.4

4 0.833 0.666 0.5 0.5 0.466 0.833 0.833

5 0.933 0.8 0.266 0.733 0.233 0.833 0.933

6 0.966 0.866 0.066 0.9 0.1 0.933 0.933

7 1 0 0 0.966 0 1 1

8 1 0 0 0 0 0 1

9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

TABLE 5. Variation of success probability with uncertainty levels for
grasp strategy 1.

Ut (mm)

Uo (deg)
5 8 10 12 15

5 0.9667 0.9667 0.9 0.8333 0.8

8 0.9667 0.9 0.8333 0.8 0.7333

10 0.8667 0.8 0.7333 0.6667 0.6333

12 0.8333 0.7333 0.7 0.6333 0.5667

15 0.7333 0.6333 0.6333 0.6 0.5333

pose estimate. Ut and Uo were varied separately and success
probability was estimated in each case. A point cloud was cap-
tured with a single part in the scene and grasp strategy 1 with
gripper width as 6 cm was chosen during the experiment. The
experimental results are shown in Table. 5. It can be seen that the
success probability decreases as the uncertainty level increases.

8 Conclusions
This paper presented a simulation-based approach to evalu-

ate singulation plans. This approach can be used to select a grasp
strategy and associated motion plan based on the estimated ex-
pected time of completion. Each plan is evaluated with a Monte
Carlo simulation that runs in real time to estimate the expected
time for completion. The proposed method uses simplified col-
lision detection to speed up computation. Comparison of esti-
mated success probability with physical trials showed that the

two numbers were very close. The maximum mean error be-
tween the estimated execution time and actual execution time
was very small. The method can also be used to select optimum
gripper width such that success probability is maximum for the
chosen grasp strategy. The method can also be used to check the
performance of any system for a given perception uncertainty.

We assumed the pose uncertainty to follow a Gaussian dis-
tribution with a sigma level of 5 mm and 5 degrees in transla-
tion and orientation, respectively. Empirical experiments demon-
strate that this choice of the uncertainty distribution resulted in a
close agreement between the success probability estimated by the
simulator and the physical trials. More experiments need to be
conducted in the future to obtain a better characterization of pose
uncertainty. The future work in this area also includes extending
the approach to handle other types of grippers and using active
perception to reduce uncertainty. We can use the work presented
in [28–30] to replicate the collision detection model.
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