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Abstract  

Bayesian networks (BNs) represent a promising approach for the aggregation of multiple 
uncertainty sources in manufacturing networks and other engineering systems for the purposes of 
uncertainty quantification, risk analysis, and quality control.  A standardized representation for BN 
models will aid in their communication and exchange across the web. This paper presents an 
extension to the Predictive Model Markup Language (PMML) standard, for the representation of 
a BN, which may consist of discrete variables, continuous variables, or their combination. The 
PMML standard is based on Extensible Markup Language (XML) and used for the representation 
of analytical models. The BN PMML representation is available in PMML v4.3 released by the 
Data Mining Group. We demonstrate the conversion of analytical models into the BN PMML 
representation, and the PMML representation of such models into analytical models, through a 
Python parser. The BNs obtained after parsing PMML representation can then be used to perform 
Bayesian inference. Finally, we illustrate the developed BN PMML schema for a welding process. 
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1. Introduction 

Recent technological developments in sensors and data collection have resulted in the availability 
of large amounts of data from the operation of engineering systems such as manufacturing, 
aerospace, and civil infrastructure systems [1]. However, in the era of digital transformation, data 
collection alone is not enough to make smart decisions. To create a smart manufacturing 
environment where all available information—from within the plant floor and from along the 
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supply chain—is captured in real-time, data analytics techniques are used to derive actionable 
insights to improve the efficiency of the process and product quality. Such data-driven decision-
making can provide manufacturing sector with several advantages [2]. One of the key aspects 
within data mining is the construction of appropriate analytical (predictive) models from data to 
enable the required analyses such as surface roughness prediction [3], process monitoring [4], 
health management, prognostics and diagnostics [5–7], optimization [8], and uncertainty 
quantification [9,10].  Several types of analytical models to represent the data have been developed 
and used, such as support vector machines (SVMs), neural networks (NNs), Gaussian process 
regression (GPR), decision trees, and Bayesian networks (BNs). In addition to building such 
analytical models, it is also necessary to be able to exchange these models across different data 
mining environments. This model exchange capability enables collaborative development of 
analytical models and rapid model deployment without allocating the additional resources for 
rebuilding the models. For universal communication of models, standards and protocols [11] are 
necessary that result in standardized representations of the analytical models.  

There are two prominent standards that are being used for the communication of analytical models 
between two data mining environments: (1) Predictive Model Markup Language (PMML) [12], 
and (2) Portable Format for Analytics (PFA) [13]. PMML represents the de facto standard for the 
representation and communication of predictive analytic models [12,14]. PFA represents an 
emerging JSON-based standard for the representation of statistical models and their associated 
model and data transformations. Similar to PFA, PMML documents are also intermediate text files, 
in the Extensible Markup Language (XML) file format [14], produced by data analysis tools and 
later consumed by a scoring engine in the production environment. Both these standards are being 
developed and maintained by the Data Mining Group (DMG), an independent consortium that 
develops data mining standards [15]. A primary difference between the two formats is that PFA 
enables analytics along with model representation and PMML is primarily used for model 
representation. Between these two standards, PMML has been widely used and supported by 
several statistical programming tools such as R, Python and SAS, therefore, this paper primarily 
focusses on PMML. PMML defines a set of rules for the representation of analytical models (called 
the PMML schema) such that they can easily be exchanged. The entire model development and 
deployment can be carried out in the following steps: (1) An analytical model such as a BN is 
created using available data; (2) The analytical model is converted to a PMML representation 
(using a parser) and communicated to an appropriate practitioner; and (3) The practitioner imports 
the PMML representation into an analytical model and uses it for his/her needs accordingly. It 
should be noted that PMML representation is only a textual representation of a model and has no 
predictive capabilities. The PMML representation needs to be first converted to an analytical 
model in a programming language, such as R or Python, for prediction.  

As mentioned above, several types of manufacturing process analytics are carried out, one of which 
is uncertainty quantification, which refers to the quantification of several uncertainty sources, and 
the aggregation and effect on the quantities of interest (QoIs). The QoIs in the manufacturing 
domain typically refer to the Key Performance Indicators (KPIs) such as energy consumption per 
part, cycle time, total process time for manufacturing/machining a part, throughput, cost per part, 
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and overall equipment effectiveness (OEE). In complex multistage and multi-level manufacturing 
processes, the evaluation of KPIs and the uncertainty associated with them becomes increasingly 
difficult as the uncertainty aggregates from multiple individual processes that affect the overall 
KPIs. The different uncertainty sources in manufacturing analytics can be related to the inputs (i.e., 
variability in the input material properties such as density), process variability, models (i.e., 
uncertainty in the modeling of individual manufacturing processes), and sensors (associated with 
measurement errors). In our earlier work [9,16], we have used a BN as a mathematical framework 
for the aggregation of uncertainty from multiple sources to quantify the uncertainty in the KPIs. 
BNs facilitate two types of analyses: (1) Forward uncertainty propagation, where the uncertainty 
in the outputs (such as KPIs) can be estimated, given the uncertainty about various inputs, model 
parameters, and model errors, and (2) Bayesian inference, where unmeasured inputs or model 
parameters can be estimated given observations of the outputs.  

BNs have been used for various applications in manufacturing such as predicting surface 
roughness [17], tool wear [18,19], maintenance [20], fault diagnosis [21], job-shop scheduling 
[22], supply chain diagnostics [23], and life cycle analysis [24]. Their ability to incorporate various 
uncertainty sources and facilitate uncertainty quantification analysis makes them particularly 
useful for the manufacturing domain. To ease the adoption of BNs in manufacturing through a 
variety of commercial tools, we believe that it is beneficial to have a standardized representation 
of such models. To this end, this paper develops a standardized representation of a Bayesian 
network using PMML, which as mentioned above is the de facto standard for the representation 
and communication of predictive analytical models.  

The previous version of PMML, v4.2.1 [25], did not have a PMML schema for BN representation. 
However, a schema for a Naïve Bayes model was available. A Naïve Bayes model is a probabilistic 
classification model and can be considered as a special case of a two-level BN, where the input 
features are in the first level and the classification class is in the second level [26]. Since Naïve 
Bayes is a classification model, it cannot be used for the probabilistic prediction of KPIs, which 
needs to be performed using a regression model constructed using available data. On the other 
hand, a BN can accommodate dependence between several parameters/features, can facilitate 
multi-level modeling for the purposes of classification or regression, as opposed to a Naïve Bayes 
model, which is a two-level classification model that assumes independence between features 
when conditioned on the classification class. Therefore, we have developed a generalized schema 
for a BN, and it is available in the latest version of PMML, v4.3 [27]. In this paper, we explain the 
BN PMML schema and demonstrate its usage using a real-world case study of a welding process. 
It is worth mentioning that PMML v4.3 also has a schema for Gaussian process regression (GPR) 
[28], which provides probabilistic prediction. There are a few differences between a BN and a 
GPR. As mentioned earlier, a BN can be used for both forward uncertainty propagation and 
Bayesian inference whereas a GPR is typically used for prediction at new input values. A BN is 
used to aggregate uncertainty from multiple processes in a manufacturing network and estimate 
the overall uncertainty in the output QoIs resulting from several individual manufacturing 
processes [29]. A primary disadvantage of a BN compared to GPR is that the prediction or 
inference can be computationally expensive as it is mostly sampling-based, although there are 
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special cases of a BN where analytical estimation is possible; these cases are later mentioned in 
Section 2.2.  

The overall contributions made through this paper are: (1) Standardized representation of a BN 
using PMML; (2) Development of a Python-based parser for conversion of PMML representations 
into analytical models and vice-versa; and (3) Demonstration of proposed methods using a welding 
process case study.  

The rest of the paper is organized as follows. Section 2 provides a brief background of BNs, their 
construction, and inference techniques. Section 3 discusses the BN PMML representation, and 
Section 4 presents a BN PMML parser for conversion of a PMML descriptive model to an 
analytical model, which can be used for forward uncertainty propagation and Bayesian inference. 
Section 5 illustrates the proposed methodology using the case study of a welding process followed 
by concluding remarks and future work in Section 6. 

 

2. Theory of Bayesian Networks 

A BN represents the joint probability distribution of a set of random variables through a directed 
acyclic graphical model, consisting of nodes and directed arcs where nodes represent random 
variables and arcs represent the dependence between the nodes. Using the directional information 
from the graphical model, the joint probability of the random variables is represented as a product 
of conditional and marginal probability distributions. The joint probability of 𝑛𝑛 random variables, 
𝑿𝑿 = {𝑋𝑋1,𝑋𝑋2 …𝑋𝑋𝑛𝑛} can be represented as  

 
𝑓𝑓(𝑿𝑿) =  �𝑓𝑓(𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 (1) 

 

where 𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖 represents the set of parent nodes of  𝑋𝑋𝑖𝑖, i.e., nodes from which the arcs direct to 𝑋𝑋𝑖𝑖 
and 𝑓𝑓(𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖) represents the conditional probability distribution of 𝑋𝑋𝑖𝑖 conditioned on its parent 
nodes. If 𝑋𝑋𝑖𝑖 has no parent nodes (also referred to as root nodes), then 𝑓𝑓(𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖) represents the 
marginal distribution of 𝑋𝑋𝑖𝑖. It should be noted that the joint probability will be equal to the product 
of marginal probabilities when all the nodes are independent to each other. For illustration, 
consider a 5-node BN shown in Figure 1. Using the dependence information from Figure 1, the 
joint probability distribution of 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4, and 𝑋𝑋5 can be described as  

 𝑓𝑓(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5) = 𝑓𝑓(𝑋𝑋1)𝑓𝑓(𝑋𝑋2)𝑓𝑓(𝑋𝑋3|𝑋𝑋1,𝑋𝑋2)𝑓𝑓(𝑋𝑋4|𝑋𝑋3,𝑋𝑋1)𝑃𝑃(𝑋𝑋5|𝑋𝑋2) (2) 

Techniques for the construction of BNs are discussed in Section 2.1. BNs are primarily used to 
update our knowledge on a subset of random variables when another disjoint subset of random 
variables is observed. Depending upon the network complexity, several analytical and approximate 
techniques were developed in the literature to perform Bayesian inference; these techniques are 
discussed in Section 2.2. 
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Figure 1: An illustrative Bayesian network. 

 

2.1. Bayesian network construction 

Construction of a Bayesian network involves estimation of dependence relationships between 
variables, both qualitatively and quantitatively through marginal and conditional probability 
distributions. The techniques for the construction of BNs can be categorized into three types: (1) 
Using available mathematical models [16]; (2) Data-driven approaches [30]; and (3) Hybrid 
approaches [29,31]. The available mathematical models can be derived from the physics of the 
system, or empirical models constructed from a combination of expert knowledge and experiments 
regarding the system. When mathematical models are unavailable but data regarding system 
operation is available, the BN can be constructed using BN learning algorithms, which are 
discussed later in this section. In some cases, it may be possible that the available mathematical 
models explain some aspects of the system, and data is available regarding the unknown aspects 
of the system. In such scenarios, a hybrid approach for learning is implemented where a BN is 
built in two steps. In the first step, a partial BN is constructed using available mathematical models 
or expert domain knowledge. In the second step, the partial BN constructed in the first step is used 
as a starting point (as opposed to a completely unconnected graph in the case of data-driven 
approach) to learn the remaining dependencies between the variables. We discuss below the 
learning algorithms for BN construction from data. Constructing a BN involves learning the 
dependence between variables, both qualitatively and quantitatively. Qualitative learning is 
typically referred to as structure learning whereas quantitative learning involves the estimation of 
parameters of the conditional and marginal probability distributions associated with several nodes 
in the Bayesian network. The techniques for learning a BN structure is discussed below. 

Given an amount of data on a set of random variables, we first identify the BN structure (network 
topology) that best explains the dependence between the variables. The structure learning 
algorithms can be classified into three categories: (1) Constraint-based; (2) Score-based; and (3) 
Hybrid, i.e., a combination of constraint-based and score-based methods [30]. Constraint-based 
methods perform conditional independence tests between the random variables, and then identify 
the BN structure that satisfies the independence tests. Commonly used independence tests for 
discrete variables include Mutual Information Test (MIT), G-test and Chi-squared test, and those 
for continuous variables include MIT and conditional correlations [30,32]. The expressions of MIT 
for discrete and continuous variables are given in Eqs. 3 and 4, respectively. Note that MIT can be 
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used between discrete-discrete and continuous-continuous variable pairs but not for discrete-
continuous variable pairs.  

 
𝐼𝐼𝑋𝑋,𝑌𝑌 =  ��𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑦𝑦)

�
𝑋𝑋𝑌𝑌

 (3) 

 
𝐼𝐼𝑋𝑋,𝑌𝑌 =  � � 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑦𝑦)

�
𝑋𝑋𝑌𝑌

 (4) 

 

where 𝑓𝑓(𝑥𝑥,𝑦𝑦) represents the joint probability distribution of 𝑋𝑋 and 𝑌𝑌, and 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑦𝑦) represent 
the marginal distributions of 𝑋𝑋 and 𝑌𝑌, respectively. The conditional and marginal distributions of 
the considered variables in Eqs. 3 and 4 are derived from the available data in the learning process. 
Some constraint-based algorithms include the PC algorithm [33], Grow-Shrink [34], and 
Incremental Association Markov Blanket (IAMB) [35] along with its variants such as Fast 
Incremental Association and Interleaved Incremental Association [35,36] . 

Score-based methods assign a score for every possible BN; this score is calculated based on the 
goodness-of-fit of the BN in fitting the available data. Using the scoring measure, a set of heuristic 
optimization techniques are used to learn the BN structure that optimizes the defined score. 
Commonly used scoring measures include Likelihood, Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), Bayesian Dirichlet Equivalence (BDe), and Minimum 
Description Length (MDL) [30].  Some commonly used measures (BIC and BDe) are provided in 
Eqs. 5 and 6. The BDe score refers to the posterior probability of a BN given data.  

 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘 × ln(𝑛𝑛) − 2 × ln (𝐿𝐿) (5) 
 𝑓𝑓(𝐺𝐺|𝐷𝐷)  ∝ 𝑓𝑓(𝐷𝐷|𝐺𝐺) 𝑓𝑓(𝐺𝐺) = 𝑓𝑓(𝐺𝐺)�𝑓𝑓(𝐷𝐷|𝐺𝐺,Θ) 𝑓𝑓(𝛩𝛩|𝐺𝐺)𝑑𝑑Θ (6) 

 

In Eq. 5, 𝐿𝐿,𝑘𝑘, and 𝑛𝑛 represent the likelihood of observing the available data given a BN, the number 
of free parameters that are estimated, and the number of available data samples, respectively. In 
Eq. 6, 𝐺𝐺 and 𝐷𝐷 refer to a BN structure and available data, respectively. Some commonly used 
optimization techniques for obtaining an optimal BN include greedy search algorithms such as 
Hill-Climbing and Tabu search [30]. A key difference between the constraint-based algorithms 
and score-based algorithms is that the former may result in a partially directed graph whereas the 
latter always results in a directed graph. The inability of the constraint-based methods to obtain a 
directed graph is because the directions cannot be deduced from the available data. The 
directionality of the graph is particularly useful to decompose the joint probability distribution into 
a set of conditional and marginal probability distributions; this decomposition is useful to carry 
out Bayesian inference.  

Hybrid algorithms employ a combination of constraint-based and score-based techniques to obtain 
an optimal BN structure. The optimal BN through hybrid algorithms is obtained in two stages. In 
the first stage, constraint-based methods are used to obtain a partially directed graph. In the second 
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stage, the score-based methods are used to obtain the orientation of undirected edges in the partially 
directed graph that best explains the available data. Some examples of hybrid learning algorithms 
include Max-Min Hill Climbing and 2-phase Restricted Maximization [37]. The next step after 
obtaining an optimal BN structure is the estimation of the parameters in the conditional 
dependence relationships between the random variables. Typically, the principle of Maximum 
Likelihood is used for parameter learning.  

Incorrect Bayesian network learning can lead to incorrect model predictions, which can result in 
incorrect decision-making when the model is used for further analytics such as probabilistic design 
optimization and system health diagnosis and prognosis. When the Bayesian network is learnt from 
validated mathematical models, its structure (dependence relationships) may be known precisely. 
Conversely, Bayesian network learning from data often depends on the amount of available data, 
and the complexity of model (e.g., maximum number of parent nodes for a child node) [38]. In 
addition, different learning methods (constraint-based, score-based or hybrid) and different 
learning metrics within each method (e.g., different scoring metrics in score-based methods) may 
result in different Bayesian networks. Therefore, the constructed Bayesian network models need 
to be validated using additional data (collected independently of training data) before using them 
for further analytics and decision-making. The readers are referred to [39] for a review of 
validation techniques. 

 

2.2. Uncertainty propagation and Bayesian inference 

The BN constructed using the techniques in Section 2.1 can now be used for inferring the posterior 
distributions of unobserved variables (denoted as 𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖) using any data (𝑫𝑫) on the observable 
variables (𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐) via Bayes’ theorem as  

 
𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖|𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫) =  

𝑓𝑓(𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫|𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖)𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖)
∫𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫)  𝑑𝑑𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖

 (7) 

 

In Eq. 7, the terms 𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖|𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫), 𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖), and 𝑓𝑓(𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫|𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖) represent the 
posterior distributions of unobserved variables, their prior distributions, and the likelihood function 
of observed variables. The denominator term, ∫ 𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫)  𝑑𝑑𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖, refers to the 
probability of observable variables to be equal to the data; this is a deterministic value that can be 
computed by marginalizing over the unobservable variables. Updating in a generic BN can be 
computationally intractable due to high-dimensional integration, i.e., exact inference is 
prohibitively expensive. However, exact algorithms are available for updating in special classes of 
BNs such as discrete BNs, conditional linear Gaussian networks, and networks where conditional 
dependence relationships are modeled using mixtures of truncated exponentials or truncated 
polynomials [40]. When exact updating techniques are not available, sampling-based techniques 
are used to obtain the posterior distributions. In the case of forward uncertainty propagation when 
the observed variables are the inputs, the distributions of downstream variables can be obtained 
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using Monte Carlo sampling over the conditional dependence relationships. For Bayesian 
inference, techniques such as Markov Chain Monte Carlo (MCMC) methods [41], variational 
methods [42], bootstrap filters [43], approximate Bayesian computation (ABC) [44], and 
unscented transforms [45] can be used to obtain the posterior distributions of the upstream nodes 
given observations of the downstream nodes. The above BN learning procedure and Bayesian 
inference are summarized in the flowchart shown in Figure 2. 

 
Figure 2. Flowchart summarizing the Bayesian network learning and inference procedures. 

 

3. Bayesian Network – PMML Schema 

PMML is an XML-based standard that defines schemas for representing different machine 
learning models. The schemas are defined using the XML Schema Definition Language (XSD) 
standard [46]. In this section, we describe the schema that we developed to represent BNs. While 
we use some XSD terminology in describing this schema, the conceptual model may be applied in 
any notation or environment. The figures in this section were generated by a software tool for 
viewing and editing XSDs. The XSD schema itself is tool agnostic, and may be used with any 
XML processing tool. An XML document contains a sequence of ‘elements’ and their ‘attributes’, 
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and elements may contain other elements in a hierarchical tree-like structure. The schema defines 
the types of these elements and attributes, and their structure. In addition, the schema for BN uses 
other terms already defined in the PMML standard, and we refer the reader to the PMML standard 
for more details on these terms [12]. 

 A BN typically consists of two types of nodes: root nodes and non-root nodes. Root nodes are 
variables that can be described without dependence on any other nodes. Similarly, non-root nodes 
are variables that are not independent but are described based on their parent nodes. The root nodes 
and non-root nodes can be either discrete or continuous in nature. The following information is 
needed for a complete description of any BN.  

• Marginal probability tables for discrete root nodes, i.e., a set of all possible values that can be 
taken by a discrete variable and their probabilities. 

• Marginal probability distributions of continuous root nodes, which include a distribution type 
(e.g., Gaussian, Uniform, etc.) and its corresponding distribution parameters. 

• Conditional probability distribution tables of discrete non-root (child) nodes defined on a set 
of parent nodes, i.e., for a given realization of a discrete parent node or a given range of 
continuous parent node, a conditional probability table (possible values and their probabilities) 
is defined.  

• Conditional probability distributions of continuous non-root nodes defined over a set of parent 
nodes; this conditional distribution consists of a distribution type and its parameters dependent 
on the parent nodes. 

 

We describe here the PMML schema to represent the above information. Figure 3 provides a high-
level view of the BN PMML schema. We first define an element type called 
BayesianNetworkmodel, which will be the root element of our BN model. Figure 3 shows the main 
constituents of a BayesianNetworkModel in PMML. The attributes of this element are shown in 
the box at the top, along with the attribute type. Its child elements are shown in the rounded 
rectangles on the bottom branch of the figure. The generic BN PMML representation provides a 
set of rules based on which instance BN models can be defined. modelName represents the name 
of the instance BN model such as “Welding Process BN”. functionName represents if the model 
is of classification or regression type, and its type MINING-FUNCTION is a special type defined 
elsewhere in the PMML standard. algorithmName refers to the name of the algorithm (e.g., 
MCMC) that is used for prediction process. isScorable identifies if the model can be used to 
perform predictions. Most of the elements shown in Figure 3 are generic and apply to all predictive 
models in PMML, except the element BayesianNetworkNodes, which was specifically defined for 
describing BNs. The description regarding the standard elements can be found in [15] and [47], 
and in this paper, we focus on the BayesianNetworkNodes element. Figure 4 describes the 
BayesianNetworkNodes schema. The nodes in a BN can be either discrete or continuous, which is 
specified in Figure 4. 
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Figure 3. Schema of a BayesianNetworkModel element. 

 

 

Figure 4. Schema of a BayesianNetworkNodes element. 
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Figure 5. Schema of a DiscreteNode element. 

 

3.1. DiscreteNode element 

The schema for the DiscreteNode is provided in Figures 5 and 6. A DiscreteNode element has two 
attributes: name and count. name refers to the variable name. count is an optional attribute that 
refers to the total number of cases (frequency) in the data used to compute the probability values, 
and is useful for updating the probability values when new data is available.  DiscreteNode is a 
complex element, i.e., it is dependent on other elements such as DerivedField, 
DiscreteConditionalProbability, and ValueProbability. A discrete variable can be either a root 
node or a non-root node. If a discrete node is root node, then the possible values and their 
probabilities are defined using the ValueProbability element, as shown in Figure 7. 
ValueProbability is a basic element, i.e., this does not depend on any other elements, as opposed 
to DiscreteNode.  The possible values are provided using the value attribute, and the probabilities 
are provided using the probability attribute. The probability attribute is of type PROB-NUMBER, 
which is a special type defined in the PMML standard, and represents real numbers between 0.0 
and 1.0. As opposed to a discrete root node, a discrete non-root node is defined using the 
DiscreteConditionalProbability element. As discussed above, a conditional probability table of a 
discrete non-root node is described based on the values of the parent nodes. In the 
DiscreteConditionalProbability element, the parent node values are provided using the 
ParentValue element and the probabilities conditional on these parent node values are provided 
using the ValueProbability element. The ParentValue, as shown in Figure 8, is also a basic element 
where the parent nodes and their values are given using the parent and value attributes. The parent 
attribute is of type FIELD-NAME, which specifies that the value of parent must be another element 
in the model (i.e. the parent node must exist in the BN model). In some cases, when a discrete non-
root node is dependent on a continuous node, the continuous node is discretized and the conditional 
probability table of the discrete node is defined in each discretized range of the continuous variable. 
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This discretization transformation is described using the DerivedField element, a standard PMML 
element that is specified once but used in multiple model elements within the PMML document 
for reducing the size of PMML documents that contain multiple model elements (refer to PMML 
v4.3 [27] for more details). Thus, schema elements are defined to describe discrete root and non-
root nodes.  

 

Figure 6. Schema of a DiscreteConditionalProbability element. 

 

Figure 7. Schema of a ValueProbability element. 

 

Figure 8. Schema of a ParentValue element. 
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Consider a discrete non-root node 𝐾𝐾2 with two possible values, 𝐾𝐾2 = 0, 1 dependent on two nodes 
(parent nodes): a discrete root node, 𝐾𝐾1, which has two possible values, 𝐾𝐾1 = 0, 1; and a continuous 
root node, 𝐽𝐽1, which is defined as a uniform distribution between -1 and 1. A sample conditional 
probability table for 𝐾𝐾2 can be defined as shown in Table 1. The discretization of the continuous 
node (see Table 1), can be represented using DerivedField element. In Table 1, 𝑃𝑃𝑃𝑃 (. ) represents 
the probability function, which outputs the probability of an event. In the following subsection, we 
consider continuous nodes. 

 

TABLE 1. Conditional probability table of a discrete variable with discrete and continuous 
parent variables. 

 𝐾𝐾1 = 0 
−1 ≤ 𝐽𝐽1 < 0 

𝐾𝐾1 = 0 
0 ≤ 𝐽𝐽1 ≤ 1 

𝐾𝐾1 = 1 
−1 ≤ 𝐽𝐽1 < 0 

𝐾𝐾1 = 1 
0 ≤ 𝐽𝐽1 ≤ 1 

𝑃𝑃𝑃𝑃(𝐾𝐾2 = 0|𝐾𝐾1, 𝐽𝐽1) 0.2 0.4 0.5 0.8 
𝑃𝑃𝑃𝑃(𝐾𝐾2 = 1|𝐾𝐾1, 𝐽𝐽1)  0.8 0.6 0.5 0.2 

  

 

Figure 9. Schema of a ContinuousNode element. 

 

3.2. ContinuousNode element 

Similar to a discrete node, a continuous node is defined using the ContinuousNode element, as 
illustrated in Figure 9. The ContinuousNode element has the same two attributes as the 
DiscreteNode element, i.e., name and count. The name of the continuous node and the number of 
entries used to define the probability distribution of the continuous node are described using the 
name and count attributes. The probability distributions of continuous root and non-root nodes are 
described using ContinuousDistribution and ContinuousConditionalProbability elements, shown 
in Figures 10 and 11 respectively. In this paper, we provide four possible options for a continuous 
distribution: Normal (Gaussian), Lognormal, Uniform, and Triangular. Each distribution type has 
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its associated distribution parameters. For example, the parameters of a Normal distribution are 
the mean and standard deviation whereas a Triangular distribution has three parameters: lower and 
upper bounds, and the mode value. For illustration, the schema elements of a Normal distribution 
are provided in Figures 12-14. Similarly, schema elements for the other three distribution types 
are defined but are not shown in this paper. Please refer to [27] for more details. The 
ContinuousConditionalProbability element is used to describe a continuous non-root node, which 
can have both discrete and continuous parent nodes. The ContinuousConditionalProbability 
element is defined over two other elements: ParentValue and ContinuousDistribution. The discrete 
parent nodes and their values are defined using the ParentValue element whereas the 
ContinuousDistribution element is used to define the conditional probability distributions 
dependent on the continuous parent nodes. 

 

 

Figure 10. Schema of a ContinuousDistribution element. 

 

Figure 11. Schema of a ContinuousConditionalProbability element. 

 

 

Figure 12. Schema of a NormalDistributionForBN element. 
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Figure 13. Schema of a Mean element. 

 

Figure 14. Schema of a Variance element. 

Consider a continuous non-root node 𝐽𝐽2 whose parent nodes consist of a discrete node 𝐾𝐾1 with two 
possible values 𝐾𝐾1 = 0, 1; and a continuous node 𝐽𝐽1.  A sample conditional distribution of 𝐽𝐽2 can 
be defined as follows: 𝑓𝑓(𝐽𝐽2|𝐽𝐽1,𝐾𝐾1 = 0)~𝑁𝑁(3 × 𝐽𝐽1, 1) and 𝑓𝑓(𝐽𝐽2|𝐽𝐽1,𝐾𝐾1 = 1)~𝑁𝑁(5 × 𝐽𝐽1, 1). Here, 
𝑓𝑓(. ) represents a probability distribution and 𝑁𝑁(. ) represents a Gaussian/Normal distribution. For 
every value of the discrete parent node (𝐾𝐾1 = 0, 1), a continuous variable is defined through a 
probability distribution whose parameters are dependent on the continuous parent nodes (𝐽𝐽1).  

 

3.3. Representation of functional relationships between variables 

As discussed in Section 2.1, one of the procedures for the construction of a BN is by using available 
physics-based models. Physics-based models often represent functional relationships between the 
inputs and the output, i.e., for given values of the inputs, the output is a deterministic quantity. 
Since physics-based models are affected by several uncertainty sources (such as model parameters, 
model form assumptions, numerical approximations), the output can be stochastic if model 
uncertainty is considered [48]. Such stochastic models can be represented using the techniques 
presented in Sections 3.1 and 3.2. In this section, we discuss the representation of such functional 
nodes. In the BN terminology, the inputs can be considered as parent nodes of an output (non-root 
node). Let 𝑋𝑋 represents a non-root node, and 𝛱𝛱𝑋𝑋 represents its parent nodes with 𝑋𝑋 = 𝑔𝑔(𝛱𝛱𝑋𝑋), 
where 𝑔𝑔(. ) represents a functional relationship between the inputs (𝛱𝛱𝑋𝑋) and output (𝑋𝑋).  

We discuss two approaches here regarding the representation of functional nodes. The first 
approach approximates the functional node as a continuous variable with a Gaussian conditional 
probability distribution (CPD), given as 𝑁𝑁(𝑔𝑔(𝛱𝛱𝑋𝑋), 𝜖𝜖), i.e., the mean of the Gaussian CPD is the 
functional relationship between the inputs (𝛱𝛱𝑋𝑋) and output (𝑋𝑋), and the standard deviation is equal 
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to 𝜖𝜖, a small number close to zero (e.g., the machine precision, which is in the order of 10−15). A 
Gaussian CPD is used here; however, any continuous distribution such as lognormal or triangular 
can also be used by choosing their parameters appropriately.  The second approach to represent a 
functional node is to model it as a discrete node with two states whose conditional probability table 
(𝑋𝑋|𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗) is defined as follows.  

TABLE 2. Conditional probability table of a functional variable. 

 𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗  
Pr (𝑋𝑋 = 𝑔𝑔(𝛱𝛱𝑋𝑋∗)|𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗) 1 
Pr (𝑋𝑋 ≠ 𝑔𝑔(𝛱𝛱𝑋𝑋∗)|𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗) 0 

 

Here, 𝛱𝛱𝑋𝑋∗  is realization of 𝛱𝛱𝑋𝑋 on which the conditional probability table of 𝑋𝑋 is defined. The two 
states of 𝑋𝑋 are 𝑋𝑋 = 𝑔𝑔(𝛱𝛱𝑋𝑋∗) and 𝑋𝑋 ≠ 𝑔𝑔(𝛱𝛱𝑋𝑋∗). As 𝑋𝑋 has a functional relationship, the probability of 
𝑋𝑋 being equal to 𝑔𝑔(𝛱𝛱𝑋𝑋∗) is always equal to 1, and 0 otherwise. A primary drawback with the second 
approach is that the states of the output variable (𝑋𝑋) change with the values of its parent nodes 
(𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗). For example, if 𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗ , then 𝑔𝑔(𝛱𝛱𝑋𝑋∗) is one of the states; however, if 𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋+, then 
𝑔𝑔(𝛱𝛱𝑋𝑋∗) may not be one of the states but 𝑔𝑔(𝛱𝛱𝑋𝑋+) is. Such changing states cannot be captured using 
the schema for discrete variables discussed in Section 3.2, where the states are known and their 
corresponding probabilities are learnt from physics-based models, expert knowledge, or data. So, 
we adopt the first approach in this paper to represent a functional node.  

 

4. BN PMML Parser 

The subsequent step after the development of the BN PMML schema is the development of a 
parser that can translate an analytical BN model into its corresponding PMML representation 
following the above schema. Here, analytical BN model is defined as a BN model on which 
predictions can be performed as opposed to a “descriptive” BN model such as its PMML 
representation, on which predictions cannot be performed directly. A “descriptive” BN model only 
illustrates the variables present in a BN and the dependence relationships between them. One 
popular Python library for probabilistic programming is PyMC3, which is primarily concerned 
with building and sampling the posterior distributions of Bayesian models [49]. It is possible to 
define a BN using PyMC3, and subsequently perform sampling or include observations that will 
change the posterior distributions. This makes the model generated using PyMC3 an example of 
an analytical model. PMML functions as a language-agnostic “descriptive model”, to which one 
would need a parser that can translate to and from analytic libraries like PyMC3. To illustrate an 
implementation of such a parser, a tool was developed in the Python programming language*.This 
example tool utilizes pyMCNet, an extension to PyMC3 that allows for the definition of BNs using 
graphs via the NetworkX package [50], which enables fast prototyping and visualization of BN  

                                                 
* https://github.com/usnistgov/pmml_pymcBN 
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Figure 15. Flowchart illustrating the functionality of Python to PMML parser 
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Figure 16. Flowchart illustrating the functionality of PMML to Python parser 
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models. Currently, only a few continuous node types are supported in this tool, though in theory 
any distribution allowed by PyMC3 could be added. Because the PMML schema allows BN nodes 
to be defined using expressions, some parsing is done using the symbolic-math library SymPy 
[51], to allow node expression definitions using other node values. Figures 15 and 16 provide an 
overview of the parser. Figure 15 illustrates the flow of transformation from Python to PMML 
format while Figure 16 illustrates the flow of transformation from PMML to Python. In particular,  
the parser can be used to convert a PyMC3 model in Python into its corresponding PMML 
representation and vice versa. The Python-to-PMML direction maps the names of XML node 
definitions to known PyMC3 random variables, using Sympy to parse functional node 
relationships, which then populates a pyMCNet graph. The PMML-to-Python direction maps 
nodes from PMML to PyMC3 distributions and their parameters, from which the parameter 
functional relationships (FieldRef in PMML [27]) are used to add edges in the pyMCNet graph. 

 

5. Case study: Welding process 

In this section, we demonstrate the BN PMML representation for the energy prediction of a 
welding process and its parsing into an analytical model. Welding represents a fabrication process 
of joining two metal parts to form a single part and is one of the fundamental processes in 
manufacturing. There are different types of welding processes, i.e., different ways to join two metal 
parts such as electric arc welding and torch welding [52]. Electric arc welding using an electric arc 
while torch welding uses an oxyacetylene torch to melt and join the metal parts. Energy efficiency 
represents a key metric for sustainability evaluation of a manufacturing process [53]. An approach 
for energy efficiency evaluation is the comparison of theoretical energy consumption and the real-
world energy consumption of the welded products. The theoretical energy computation is greatly 
affected by several uncertainty sources such as the parameters of the welding process; therefore, 
their identification and quantification are necessary for a comprehensive sustainability evaluation. 
In the case study below, we describe the arc welding process and equations for computing the 
theoretically minimum energy consumption, identify the uncertain parameters, and connect them 
to the overall energy using a BN. We construct the associated BN and represent it using the BN 
PMML standard or schema. In the presence of any process data, the process parameters are updated 
using Bayes theorem; these updated parameters are used to update the minimum energy value, 
which can later be used for sustainability evaluation in the presence of experimental energy values.  

 

5.1. Process description 

Consider the cross-section of the weld between two metal pieces as shown in Figure 17 [16]. If 𝐿𝐿 
represents the length of the weld, 𝑙𝑙,ℎ,𝑔𝑔, 𝑡𝑡 and 𝑒𝑒 represent the weld parameters, as shown in Figure 
16, then the overall volume of the weld, V, can be calculated as shown in Eq. 8. 

 𝑉𝑉 = 𝐿𝐿 × (0.75 × 𝑙𝑙 × ℎ + 𝑔𝑔 × 𝑡𝑡 + 0.5 × (𝑙𝑙 − 𝑔𝑔) × (𝑡𝑡 − 𝑒𝑒)) (8) 
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Assuming that the metal and the filler are of the same material, the minimum theoretical energy 
required for the welding process is given as 

where 𝜌𝜌, 𝐶𝐶𝑝𝑝, 𝑇𝑇𝑓𝑓, 𝑇𝑇𝑖𝑖, and 𝐻𝐻 represent the density of the welding material, heat capacity, and final 
and initial temperatures of the weld and the latent heat, respectively. Using the above equations, a 
BN showing the dependence relationships for the energy prediction of a welding process is shown 
in Figure 18.  

 

Figure 17. Cross-section of the weld showing the welding parameters [16]. 

 

 

Figure 18. BN for energy prediction of welding process using physics-based models [16]. 
 

For illustration purposes, this example considered a physics-based deterministic model for the 
description of energy consumption in the welding process. In some cases, a physics-based model 
may not accurately quantify the energy consumption, due to several uncertainty sources such as 
model form assumptions, unknown model parameters, and numerical approximations. We refer 
the reader to the work of Nannapaneni and Mahadevan [48] for more details regarding the 
representation and quantification of model uncertainty sources.   Section 2 discussed three ways 
to construct a BN – physics models, data-driven, or their combination. This example illustrates the 
BN construction using available physics-based models. The parameters (𝐿𝐿, 𝑡𝑡, 𝑒𝑒,𝐻𝐻,𝐶𝐶𝑝𝑝,𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑓𝑓) 
are assumed to be known while the parameters (𝑙𝑙,𝑔𝑔 and ℎ) are assumed to be uncertain and 
quantified using Gaussian distributions whose parameters are unknown. However, prior 

 𝐸𝐸 = 𝜌𝜌 × 𝑉𝑉 × (𝐶𝐶𝑝𝑝 × �𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑖𝑖� + 𝐻𝐻) (9) 
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knowledge regarding the distribution parameters are assumed available. In addition, the density of 
the weld material is not known precisely but prior knowledge is assumed available. The values of 
all the known and unknown parameters are given in Table 3. The BN of the welding process, after 
removing all the known variables in Figure 18 and adding nodes for the distribution parameters of 
𝑙𝑙,𝑔𝑔, and ℎ, is given in Figure 19.  

In Figure 19, green circular, yellow circular and blue squared represent uniform, normal, and 
deterministic nodes respectively. Nodes are either observed (grayed-out) or unobserved. The edge 
variable indicated the type of node relationship, either a deterministic/functional relationship (“𝑥𝑥”), 
or a stochastic (in this case, location parameter “µ” or scale parameter “𝜎𝜎”). Details of the BN 
construction and inference regarding the welding process were discussed in [16]. To model sensor 
uncertainty, the Energy node is split into a deterministic node  𝐸𝐸𝑑𝑑 (described as 𝐸𝐸 above in Figure 
19), and a stochastic node 𝐸𝐸𝐿𝐿 with uncertainty that models the likelihood of our sensor data. It 
should be noted that the volume (𝑉𝑉) and Energy (𝐸𝐸) are functional nodes, i.e., given the values of 
the parent nodes, the values of 𝑉𝑉 and 𝐸𝐸 are known deterministically due to the presence of 
functional relationships as shown in Eqs. 8 and 9. Following the procedure for the representation 
of functional nodes in Section 3.3, 𝑉𝑉 and 𝐸𝐸 are represented as discrete nodes, each with two states 
dependent on the values of their parent nodes. 

 

TABLE 3. Welding process parameters. 

Parameter Value 
𝐿𝐿(𝑚𝑚𝑚𝑚) 500 
𝑡𝑡(𝑚𝑚𝑚𝑚) 15 
𝑒𝑒(𝑚𝑚𝑚𝑚) 11 
𝐻𝐻(𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘) 270 

𝐶𝐶𝑝𝑝(𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘.𝐾𝐾) 0.5 
𝑇𝑇𝑖𝑖(𝐾𝐾) 300 
𝑇𝑇𝑓𝑓(𝐾𝐾) 1600 
𝑙𝑙 𝑁𝑁(𝜇𝜇𝑙𝑙,𝜎𝜎𝑙𝑙) 
𝜇𝜇𝑙𝑙 𝑈𝑈(8.3,8.6) 
𝜎𝜎𝑙𝑙 𝑈𝑈(0.2,0.7) 
𝑔𝑔 𝑁𝑁(𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔) 
𝜇𝜇𝑔𝑔 𝑈𝑈(1.6,2.2) 
𝜎𝜎𝑔𝑔 𝑈𝑈(0.05,0.2) 
ℎ 𝑁𝑁(𝜇𝜇ℎ,𝜎𝜎ℎ) 
𝜇𝜇ℎ 𝑈𝑈(2.5,2.8) 
𝜎𝜎ℎ 𝑈𝑈(0.3,0.6) 

𝜌𝜌(𝑘𝑘𝑘𝑘/𝑚𝑚3) 𝑁𝑁(8250,10) 
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Figure 19. BN for energy prediction of a welding process [16]. 

 

 

5.2. PMML Representation Parsing and Prediction  

The PMML representation of the BN for welding process using the BN PMML schema described 
in Section 3 is given in Figure 20, where scheme elements such as MiningSchema, and DataFields 
are not shown, and indicated with a (…), for brevity. Note the static node mu_l, the deterministic 
node “E_d”, and the stochastic node “E_L” having a functional relationship with “E_d”. The 
PMML representation of the BN for the welding process described using the BN PMML schema 
can now be shared with whomever necessary for their computational requirements without 
rebuilding the BN. After transferring the BN PMML file of the welding process, the Python parser 
described in Section 4 is used to convert the PMML file into an analytical model in Python using 
the PyMC3 package [49]. For ease in notation, we term the environment where the BN PMML 
representation of the welding process is created as the training environment and the environment 
where this PMML file is used for prediction as testing environment following the notation in [28].   

Let 100 data points be available in the testing environment on the parameters 𝑙𝑙,ℎ,𝑔𝑔, and 𝐸𝐸𝐿𝐿 
collected through sensors. The sensor uncertainty in the measurement of 𝑙𝑙,ℎ and 𝑔𝑔 is assumed to 
be quantified using a Gaussian distribution with zero mean and standard deviation of 0.1 mm. 
Similarly, the sensor uncertainty in the energy measurement is quantified using a Gaussian 
distribution with zero mean and a standard deviation of 1 𝑘𝑘𝑘𝑘. A Gaussian distribution with zero 
mean is used to model the sensor uncertainty as both the positive and negative values occur with 
equal probability due to the symmetric nature of a Gaussian distribution. This allows 𝐸𝐸𝐿𝐿 itself to 
be modeled as a Gaussian, namely, 𝐸𝐸𝐿𝐿~ 𝑁𝑁(𝐸𝐸𝑑𝑑, 1). 
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<PMML version="4.3" xmlns="http://www.dmg.org/PMML-4_3"> 

  <Header copyright="DMG.org" description="Bayesian Network Model"/> 
  <DataDictionary numberOfFields="13"> 
    <DataField dataType="double" name="mu_l" optype="continuous"/> 
 ... 
    <DataField dataType="double" name="E_L" optype="continuous"/> 
  </DataDictionary> 
  <BayesianNetworkModel modelName="Bayesian Network Model" functionName="regression"> 
    <MiningSchema> 
      <MiningField name="l" usageType="active"/> 
       ... 
      <MiningField name="E_d" usageType="target"/> 
    </MiningSchema> 
    <BayesianNetworkNodes> 
      <ContinuousNode name="mu_l"> 
        <ContinuousDistribution> 
          <UniformDistributionForBN> 
            <Lower> 
              <Constant dataType="double">0.0083</Constant> 
            </Lower> 
            <Upper> 
              <Constant dataType="double">0.0086</Constant> 
            </Upper> 
          </UniformDistributionForBN> 
        </ContinuousDistribution> 
      </ContinuousNode> 
      ... 
      <ContinuousNode name="E_d"> 
        <ContinuousDistribution> 
          <NormalDistributionForBN> 
            <Variance> 
              <Constant dataType="double">0.0</Constant> 
            </Variance> 
            <Mean> 
              <Apply function="*"> 
                <Constant dataType="double">920.000000000000</Constant> 
                <FieldRef field="V"/> 
                <FieldRef field="rho"/> 
              </Apply> 
            </Mean> 
          </NormalDistributionForBN> 
        </ContinuousDistribution> 
      </ContinuousNode> 
      <ContinuousNode name="E_L"> 
        <ContinuousDistribution> 
          <NormalDistributionForBN> 
            <Mean> 
              <FieldRef field="E_d"/> 
            </Mean> 
            <Variance> 
              <Constant dataType="double">1.00000000000000</Constant> 
            </Variance> 
          </NormalDistributionForBN> 
        </ContinuousDistribution> 
      </ContinuousNode> 
    </BayesianNetworkNodes> 
  </BayesianNetworkModel> 
</PMML> 
 

Figure 20. PMML instance of the described welding BN.  
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Figure 21. Comparison of the prior and posterior distributions for the inference parameters (a) 
mean of parameter ‘l’, (b) standard deviation of ‘l’, (c) mean of parameter ‘h’, (d) standard 
deviation of parameter ‘h’, (e) mean of parameter ‘e’, (f) standard deviation of parameter ‘e’, 
and (g) density.  

 

The objective is to estimate the distribution parameters 𝜇𝜇,𝜎𝜎 (mean and standard deviation) for 
dimension variables 𝑙𝑙. ℎ and 𝑔𝑔, along with our belief of the weld filler material density (𝜌𝜌); this is 
performed using the Bayes’ theorem as  

 𝑓𝑓�𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙, 𝜇𝜇ℎ,𝜎𝜎𝑙𝑙, 𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔,𝜌𝜌�𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜, ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜,𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜�
∝ 𝑓𝑓(𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜,𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜|𝜇𝜇𝑙𝑙,𝜎𝜎𝑙𝑙 , 𝜇𝜇ℎ,𝜎𝜎𝑙𝑙, 𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔,𝜌𝜌)𝑓𝑓(𝜇𝜇𝑙𝑙,𝜎𝜎𝑙𝑙, 𝜇𝜇ℎ,𝜎𝜎𝑙𝑙, 𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔,𝜌𝜌) (9) 
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The No-U-Turn Sampling algorithm (NUTS), which uses adaptive Hamiltonian Monte Carlo for 
efficient sampling [54], is used for inference; the prior and posterior distributions along with the 
true value used to generate synthetic data, are shown in Figure 21. A total of 80,000 samples were 
generated using the NUTS algorithm and the last 40,000 are used for constructing the posterior 
distributions. The first 40,000 samples are ignored (burn-in) to account for the convergence of 
Markov chain of samples [41]. It can be observed that the variance of posterior distributions of the 
dimensional parameters (𝑙𝑙,𝑔𝑔,ℎ) have reduced due to the observation data. The variance reduction 
in the density (𝜌𝜌) is not significant; this can be attributed to the insensitivity of the observed 
parameters to the energy consumption as illustrated in our previous work using variance-based 
global sensitivity analysis [16].  

 

6. Conclusion and Future Work 

This paper presents the Predictive Model Markup Language (PMML) representation of a generic 
Bayesian network (BN), which may contain discrete (categorical) variables, continuous variables, 
or their combination. BNs are probabilistic acyclic graphical models, which have been studied for 
a variety of applications such as uncertainty quantification, design optimization under uncertainty, 
risk analysis, and quality control. BNs represent a joint probability distribution over a set of 
random variables through a combination of marginal and conditional distributions. The BN PMML 
schema accommodates both discrete variables and continuous variables described by Normal 
(Gaussian), Lognormal, Uniform, and Triangular distributions. The availability of such a PMML 
schema helps the exchange of BN models across the PMML compliant software platforms; this 
enables industry practitioners to use the models directly without rebuilding their own, and hence 
saving valuable time and computational resources. PMML schema-based models are descriptive 
in nature; i.e., they cannot directly be used for prediction or inference. Therefore, a parser was 
developed that allows converting a descriptive BN PMML model into an analytical model in 
Python using the PyMC3 and NetworkX packages. The analytical model is then used to perform 
predictions using Markov Chain Monte Carlo methods. In addition, the developed parser also 
enables the conversion of an analytical model in Python into its corresponding PMML 
representation. Thus, the parser enables conversion in both directions: from descriptive PMML 
platform into an analytical model in Python and vice versa. In this paper, we demonstrate the 
developed methods for PMML representation and parsing for a BN related to a welding process. 

Future work should accommodate other parametric distribution types, such as Beta, Multinomial, 
Dirichlet, and Exponential, and non-parametric distributions, such as kernel density estimations to 
represent both discrete and continuous variables. In this work, a functional node is approximated 
using a Gaussian conditional probability distribution with the mean equal to the functional 
relationship and a small standard deviation, which is in the order of the machine precision. This 
approach creates errors in the computation; therefore, future work should consider effective 
representation of functional (deterministic) nodes in the BN PMML schema. In addition, PMML 
schema for variants of BNs such as dynamic BNs and hierarchical BNs need to be considered. 
Future work will also be aimed at adding support for generic BNs in the Portable Format for 
Analytics (PFA) standard. Since PFA offers standard ways to procedurally specify data 
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manipulation algorithms, it offers the possibility of describing advanced inference algorithms 
within the standard model in a tool independent way, which is currently not possible with PMML. 
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