
Predictive Model Markup Language (PMML) Representation of Bayesian
Networks: An Application in Manufacturing

Saideep Nannapaneni1, Anantha Narayanan2, Ronay Ak3, David Lechevalier4, Thurston Sexton3,
Sankaran Mahadevan5, and Yung-Tsun Tina Lee3

1Department of Industrial, Systems, and Manufacturing Engineering, Wichita State University,
Wichita, KS, 67260, USA

2Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742,
USA

3Systems Integration Division, Engineering Laboratory, National Institute of Standards and
Technology (NIST), Gaithersburg, MD, 20899, USA

4Le2i, Université de Bourgogne, BP 47870, 21078 Dijon, France
5Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN,

37235, USA

Abstract

Bayesian networks (BNs) represent a promising approach for the aggregation of multiple
uncertainty sources in manufacturing networks and other engineering systems for the purposes of
uncertainty quantification, risk analysis, and quality control. A standardized representation for BN
models will aid in their communication and exchange across the web. This paper presents an
extension to the Predictive Model Markup Language (PMML) standard, for the representation of
a BN, which may consist of discrete variables, continuous variables, or their combination. The
PMML standard is based on Extensible Markup Language (XML) and used for the representation
of analytical models. The BN PMML representation is available in PMML v4.3 released by the
Data Mining Group. We demonstrate the conversion of analytical models into the BN PMML
representation, and the PMML representation of such models into analytical models, through a
Python parser. The BNs obtained after parsing PMML representation can then be used to perform
Bayesian inference. Finally, we illustrate the developed BN PMML schema for a welding process.

Keywords: PMML; Bayesian networks; Uncertainty; XML; Analytics; Standard; Manufacturing

1. Introduction

Recent technological developments in sensors and data collection have resulted in the availability
of large amounts of data from the operation of engineering systems such as manufacturing,
aerospace, and civil infrastructure systems [1]. However, in the era of digital transformation, data
collection alone is not enough to make smart decisions. To create a smart manufacturing
environment where all available information—from within the plant floor and from along the

 2

supply chain—is captured in real-time, data analytics techniques are used to derive actionable
insights to improve the efficiency of the process and product quality. Such data-driven decision-
making can provide manufacturing sector with several advantages [2]. One of the key aspects
within data mining is the construction of appropriate analytical (predictive) models from data to
enable the required analyses such as surface roughness prediction [3], process monitoring [4],
health management, prognostics and diagnostics [5–7], optimization [8], and uncertainty
quantification [9,10]. Several types of analytical models to represent the data have been developed
and used, such as support vector machines (SVMs), neural networks (NNs), Gaussian process
regression (GPR), decision trees, and Bayesian networks (BNs). In addition to building such
analytical models, it is also necessary to be able to exchange these models across different data
mining environments. This model exchange capability enables collaborative development of
analytical models and rapid model deployment without allocating the additional resources for
rebuilding the models. For universal communication of models, standards and protocols [11] are
necessary that result in standardized representations of the analytical models.

There are two prominent standards that are being used for the communication of analytical models
between two data mining environments: (1) Predictive Model Markup Language (PMML) [12],
and (2) Portable Format for Analytics (PFA) [13]. PMML represents the de facto standard for the
representation and communication of predictive analytic models [12,14]. PFA represents an
emerging JSON-based standard for the representation of statistical models and their associated
model and data transformations. Similar to PFA, PMML documents are also intermediate text files,
in the Extensible Markup Language (XML) file format [14], produced by data analysis tools and
later consumed by a scoring engine in the production environment. Both these standards are being
developed and maintained by the Data Mining Group (DMG), an independent consortium that
develops data mining standards [15]. A primary difference between the two formats is that PFA
enables analytics along with model representation and PMML is primarily used for model
representation. Between these two standards, PMML has been widely used and supported by
several statistical programming tools such as R, Python and SAS, therefore, this paper primarily
focusses on PMML. PMML defines a set of rules for the representation of analytical models (called
the PMML schema) such that they can easily be exchanged. The entire model development and
deployment can be carried out in the following steps: (1) An analytical model such as a BN is
created using available data; (2) The analytical model is converted to a PMML representation
(using a parser) and communicated to an appropriate practitioner; and (3) The practitioner imports
the PMML representation into an analytical model and uses it for his/her needs accordingly. It
should be noted that PMML representation is only a textual representation of a model and has no
predictive capabilities. The PMML representation needs to be first converted to an analytical
model in a programming language, such as R or Python, for prediction.

As mentioned above, several types of manufacturing process analytics are carried out, one of which
is uncertainty quantification, which refers to the quantification of several uncertainty sources, and
the aggregation and effect on the quantities of interest (QoIs). The QoIs in the manufacturing
domain typically refer to the Key Performance Indicators (KPIs) such as energy consumption per
part, cycle time, total process time for manufacturing/machining a part, throughput, cost per part,

 3

and overall equipment effectiveness (OEE). In complex multistage and multi-level manufacturing
processes, the evaluation of KPIs and the uncertainty associated with them becomes increasingly
difficult as the uncertainty aggregates from multiple individual processes that affect the overall
KPIs. The different uncertainty sources in manufacturing analytics can be related to the inputs (i.e.,
variability in the input material properties such as density), process variability, models (i.e.,
uncertainty in the modeling of individual manufacturing processes), and sensors (associated with
measurement errors). In our earlier work [9,16], we have used a BN as a mathematical framework
for the aggregation of uncertainty from multiple sources to quantify the uncertainty in the KPIs.
BNs facilitate two types of analyses: (1) Forward uncertainty propagation, where the uncertainty
in the outputs (such as KPIs) can be estimated, given the uncertainty about various inputs, model
parameters, and model errors, and (2) Bayesian inference, where unmeasured inputs or model
parameters can be estimated given observations of the outputs.

BNs have been used for various applications in manufacturing such as predicting surface
roughness [17], tool wear [18,19], maintenance [20], fault diagnosis [21], job-shop scheduling
[22], supply chain diagnostics [23], and life cycle analysis [24]. Their ability to incorporate various
uncertainty sources and facilitate uncertainty quantification analysis makes them particularly
useful for the manufacturing domain. To ease the adoption of BNs in manufacturing through a
variety of commercial tools, we believe that it is beneficial to have a standardized representation
of such models. To this end, this paper develops a standardized representation of a Bayesian
network using PMML, which as mentioned above is the de facto standard for the representation
and communication of predictive analytical models.

The previous version of PMML, v4.2.1 [25], did not have a PMML schema for BN representation.
However, a schema for a Naïve Bayes model was available. A Naïve Bayes model is a probabilistic
classification model and can be considered as a special case of a two-level BN, where the input
features are in the first level and the classification class is in the second level [26]. Since Naïve
Bayes is a classification model, it cannot be used for the probabilistic prediction of KPIs, which
needs to be performed using a regression model constructed using available data. On the other
hand, a BN can accommodate dependence between several parameters/features, can facilitate
multi-level modeling for the purposes of classification or regression, as opposed to a Naïve Bayes
model, which is a two-level classification model that assumes independence between features
when conditioned on the classification class. Therefore, we have developed a generalized schema
for a BN, and it is available in the latest version of PMML, v4.3 [27]. In this paper, we explain the
BN PMML schema and demonstrate its usage using a real-world case study of a welding process.
It is worth mentioning that PMML v4.3 also has a schema for Gaussian process regression (GPR)
[28], which provides probabilistic prediction. There are a few differences between a BN and a
GPR. As mentioned earlier, a BN can be used for both forward uncertainty propagation and
Bayesian inference whereas a GPR is typically used for prediction at new input values. A BN is
used to aggregate uncertainty from multiple processes in a manufacturing network and estimate
the overall uncertainty in the output QoIs resulting from several individual manufacturing
processes [29]. A primary disadvantage of a BN compared to GPR is that the prediction or
inference can be computationally expensive as it is mostly sampling-based, although there are

 4

special cases of a BN where analytical estimation is possible; these cases are later mentioned in
Section 2.2.

The overall contributions made through this paper are: (1) Standardized representation of a BN
using PMML; (2) Development of a Python-based parser for conversion of PMML representations
into analytical models and vice-versa; and (3) Demonstration of proposed methods using a welding
process case study.

The rest of the paper is organized as follows. Section 2 provides a brief background of BNs, their
construction, and inference techniques. Section 3 discusses the BN PMML representation, and
Section 4 presents a BN PMML parser for conversion of a PMML descriptive model to an
analytical model, which can be used for forward uncertainty propagation and Bayesian inference.
Section 5 illustrates the proposed methodology using the case study of a welding process followed
by concluding remarks and future work in Section 6.

2. Theory of Bayesian Networks

A BN represents the joint probability distribution of a set of random variables through a directed
acyclic graphical model, consisting of nodes and directed arcs where nodes represent random
variables and arcs represent the dependence between the nodes. Using the directional information
from the graphical model, the joint probability of the random variables is represented as a product
of conditional and marginal probability distributions. The joint probability of 𝑛𝑛 random variables,
𝑿𝑿 = {𝑋𝑋1,𝑋𝑋2 …𝑋𝑋𝑛𝑛} can be represented as

𝑓𝑓(𝑿𝑿) = �𝑓𝑓(𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 (1)

where 𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖 represents the set of parent nodes of 𝑋𝑋𝑖𝑖, i.e., nodes from which the arcs direct to 𝑋𝑋𝑖𝑖
and 𝑓𝑓(𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖) represents the conditional probability distribution of 𝑋𝑋𝑖𝑖 conditioned on its parent
nodes. If 𝑋𝑋𝑖𝑖 has no parent nodes (also referred to as root nodes), then 𝑓𝑓(𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃𝑋𝑋𝑖𝑖) represents the
marginal distribution of 𝑋𝑋𝑖𝑖. It should be noted that the joint probability will be equal to the product
of marginal probabilities when all the nodes are independent to each other. For illustration,
consider a 5-node BN shown in Figure 1. Using the dependence information from Figure 1, the
joint probability distribution of 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4, and 𝑋𝑋5 can be described as

 𝑓𝑓(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5) = 𝑓𝑓(𝑋𝑋1)𝑓𝑓(𝑋𝑋2)𝑓𝑓(𝑋𝑋3|𝑋𝑋1,𝑋𝑋2)𝑓𝑓(𝑋𝑋4|𝑋𝑋3,𝑋𝑋1)𝑃𝑃(𝑋𝑋5|𝑋𝑋2) (2)

Techniques for the construction of BNs are discussed in Section 2.1. BNs are primarily used to
update our knowledge on a subset of random variables when another disjoint subset of random
variables is observed. Depending upon the network complexity, several analytical and approximate
techniques were developed in the literature to perform Bayesian inference; these techniques are
discussed in Section 2.2.

 5

Figure 1: An illustrative Bayesian network.

2.1. Bayesian network construction

Construction of a Bayesian network involves estimation of dependence relationships between
variables, both qualitatively and quantitatively through marginal and conditional probability
distributions. The techniques for the construction of BNs can be categorized into three types: (1)
Using available mathematical models [16]; (2) Data-driven approaches [30]; and (3) Hybrid
approaches [29,31]. The available mathematical models can be derived from the physics of the
system, or empirical models constructed from a combination of expert knowledge and experiments
regarding the system. When mathematical models are unavailable but data regarding system
operation is available, the BN can be constructed using BN learning algorithms, which are
discussed later in this section. In some cases, it may be possible that the available mathematical
models explain some aspects of the system, and data is available regarding the unknown aspects
of the system. In such scenarios, a hybrid approach for learning is implemented where a BN is
built in two steps. In the first step, a partial BN is constructed using available mathematical models
or expert domain knowledge. In the second step, the partial BN constructed in the first step is used
as a starting point (as opposed to a completely unconnected graph in the case of data-driven
approach) to learn the remaining dependencies between the variables. We discuss below the
learning algorithms for BN construction from data. Constructing a BN involves learning the
dependence between variables, both qualitatively and quantitatively. Qualitative learning is
typically referred to as structure learning whereas quantitative learning involves the estimation of
parameters of the conditional and marginal probability distributions associated with several nodes
in the Bayesian network. The techniques for learning a BN structure is discussed below.

Given an amount of data on a set of random variables, we first identify the BN structure (network
topology) that best explains the dependence between the variables. The structure learning
algorithms can be classified into three categories: (1) Constraint-based; (2) Score-based; and (3)
Hybrid, i.e., a combination of constraint-based and score-based methods [30]. Constraint-based
methods perform conditional independence tests between the random variables, and then identify
the BN structure that satisfies the independence tests. Commonly used independence tests for
discrete variables include Mutual Information Test (MIT), G-test and Chi-squared test, and those
for continuous variables include MIT and conditional correlations [30,32]. The expressions of MIT
for discrete and continuous variables are given in Eqs. 3 and 4, respectively. Note that MIT can be

 6

used between discrete-discrete and continuous-continuous variable pairs but not for discrete-
continuous variable pairs.

𝐼𝐼𝑋𝑋,𝑌𝑌 = ��𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑦𝑦)

�
𝑋𝑋𝑌𝑌

 (3)

𝐼𝐼𝑋𝑋,𝑌𝑌 = � � 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑦𝑦)

�
𝑋𝑋𝑌𝑌

 (4)

where 𝑓𝑓(𝑥𝑥,𝑦𝑦) represents the joint probability distribution of 𝑋𝑋 and 𝑌𝑌, and 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑦𝑦) represent
the marginal distributions of 𝑋𝑋 and 𝑌𝑌, respectively. The conditional and marginal distributions of
the considered variables in Eqs. 3 and 4 are derived from the available data in the learning process.
Some constraint-based algorithms include the PC algorithm [33], Grow-Shrink [34], and
Incremental Association Markov Blanket (IAMB) [35] along with its variants such as Fast
Incremental Association and Interleaved Incremental Association [35,36] .

Score-based methods assign a score for every possible BN; this score is calculated based on the
goodness-of-fit of the BN in fitting the available data. Using the scoring measure, a set of heuristic
optimization techniques are used to learn the BN structure that optimizes the defined score.
Commonly used scoring measures include Likelihood, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Bayesian Dirichlet Equivalence (BDe), and Minimum
Description Length (MDL) [30]. Some commonly used measures (BIC and BDe) are provided in
Eqs. 5 and 6. The BDe score refers to the posterior probability of a BN given data.

 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘 × ln(𝑛𝑛) − 2 × ln (𝐿𝐿) (5)
 𝑓𝑓(𝐺𝐺|𝐷𝐷) ∝ 𝑓𝑓(𝐷𝐷|𝐺𝐺) 𝑓𝑓(𝐺𝐺) = 𝑓𝑓(𝐺𝐺)�𝑓𝑓(𝐷𝐷|𝐺𝐺,Θ) 𝑓𝑓(𝛩𝛩|𝐺𝐺)𝑑𝑑Θ (6)

In Eq. 5, 𝐿𝐿,𝑘𝑘, and 𝑛𝑛 represent the likelihood of observing the available data given a BN, the number
of free parameters that are estimated, and the number of available data samples, respectively. In
Eq. 6, 𝐺𝐺 and 𝐷𝐷 refer to a BN structure and available data, respectively. Some commonly used
optimization techniques for obtaining an optimal BN include greedy search algorithms such as
Hill-Climbing and Tabu search [30]. A key difference between the constraint-based algorithms
and score-based algorithms is that the former may result in a partially directed graph whereas the
latter always results in a directed graph. The inability of the constraint-based methods to obtain a
directed graph is because the directions cannot be deduced from the available data. The
directionality of the graph is particularly useful to decompose the joint probability distribution into
a set of conditional and marginal probability distributions; this decomposition is useful to carry
out Bayesian inference.

Hybrid algorithms employ a combination of constraint-based and score-based techniques to obtain
an optimal BN structure. The optimal BN through hybrid algorithms is obtained in two stages. In
the first stage, constraint-based methods are used to obtain a partially directed graph. In the second

 7

stage, the score-based methods are used to obtain the orientation of undirected edges in the partially
directed graph that best explains the available data. Some examples of hybrid learning algorithms
include Max-Min Hill Climbing and 2-phase Restricted Maximization [37]. The next step after
obtaining an optimal BN structure is the estimation of the parameters in the conditional
dependence relationships between the random variables. Typically, the principle of Maximum
Likelihood is used for parameter learning.

Incorrect Bayesian network learning can lead to incorrect model predictions, which can result in
incorrect decision-making when the model is used for further analytics such as probabilistic design
optimization and system health diagnosis and prognosis. When the Bayesian network is learnt from
validated mathematical models, its structure (dependence relationships) may be known precisely.
Conversely, Bayesian network learning from data often depends on the amount of available data,
and the complexity of model (e.g., maximum number of parent nodes for a child node) [38]. In
addition, different learning methods (constraint-based, score-based or hybrid) and different
learning metrics within each method (e.g., different scoring metrics in score-based methods) may
result in different Bayesian networks. Therefore, the constructed Bayesian network models need
to be validated using additional data (collected independently of training data) before using them
for further analytics and decision-making. The readers are referred to [39] for a review of
validation techniques.

2.2. Uncertainty propagation and Bayesian inference

The BN constructed using the techniques in Section 2.1 can now be used for inferring the posterior
distributions of unobserved variables (denoted as 𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖) using any data (𝑫𝑫) on the observable
variables (𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐) via Bayes’ theorem as

𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖|𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫) =

𝑓𝑓(𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫|𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖)𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖)
∫𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫) 𝑑𝑑𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖

 (7)

In Eq. 7, the terms 𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖|𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫), 𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖), and 𝑓𝑓(𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫|𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖) represent the
posterior distributions of unobserved variables, their prior distributions, and the likelihood function
of observed variables. The denominator term, ∫ 𝑓𝑓(𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑫𝑫) 𝑑𝑑𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖, refers to the
probability of observable variables to be equal to the data; this is a deterministic value that can be
computed by marginalizing over the unobservable variables. Updating in a generic BN can be
computationally intractable due to high-dimensional integration, i.e., exact inference is
prohibitively expensive. However, exact algorithms are available for updating in special classes of
BNs such as discrete BNs, conditional linear Gaussian networks, and networks where conditional
dependence relationships are modeled using mixtures of truncated exponentials or truncated
polynomials [40]. When exact updating techniques are not available, sampling-based techniques
are used to obtain the posterior distributions. In the case of forward uncertainty propagation when
the observed variables are the inputs, the distributions of downstream variables can be obtained

 8

using Monte Carlo sampling over the conditional dependence relationships. For Bayesian
inference, techniques such as Markov Chain Monte Carlo (MCMC) methods [41], variational
methods [42], bootstrap filters [43], approximate Bayesian computation (ABC) [44], and
unscented transforms [45] can be used to obtain the posterior distributions of the upstream nodes
given observations of the downstream nodes. The above BN learning procedure and Bayesian
inference are summarized in the flowchart shown in Figure 2.

Figure 2. Flowchart summarizing the Bayesian network learning and inference procedures.

3. Bayesian Network – PMML Schema

PMML is an XML-based standard that defines schemas for representing different machine
learning models. The schemas are defined using the XML Schema Definition Language (XSD)
standard [46]. In this section, we describe the schema that we developed to represent BNs. While
we use some XSD terminology in describing this schema, the conceptual model may be applied in
any notation or environment. The figures in this section were generated by a software tool for
viewing and editing XSDs. The XSD schema itself is tool agnostic, and may be used with any
XML processing tool. An XML document contains a sequence of ‘elements’ and their ‘attributes’,

 9

and elements may contain other elements in a hierarchical tree-like structure. The schema defines
the types of these elements and attributes, and their structure. In addition, the schema for BN uses
other terms already defined in the PMML standard, and we refer the reader to the PMML standard
for more details on these terms [12].

 A BN typically consists of two types of nodes: root nodes and non-root nodes. Root nodes are
variables that can be described without dependence on any other nodes. Similarly, non-root nodes
are variables that are not independent but are described based on their parent nodes. The root nodes
and non-root nodes can be either discrete or continuous in nature. The following information is
needed for a complete description of any BN.

• Marginal probability tables for discrete root nodes, i.e., a set of all possible values that can be
taken by a discrete variable and their probabilities.

• Marginal probability distributions of continuous root nodes, which include a distribution type
(e.g., Gaussian, Uniform, etc.) and its corresponding distribution parameters.

• Conditional probability distribution tables of discrete non-root (child) nodes defined on a set
of parent nodes, i.e., for a given realization of a discrete parent node or a given range of
continuous parent node, a conditional probability table (possible values and their probabilities)
is defined.

• Conditional probability distributions of continuous non-root nodes defined over a set of parent
nodes; this conditional distribution consists of a distribution type and its parameters dependent
on the parent nodes.

We describe here the PMML schema to represent the above information. Figure 3 provides a high-
level view of the BN PMML schema. We first define an element type called
BayesianNetworkmodel, which will be the root element of our BN model. Figure 3 shows the main
constituents of a BayesianNetworkModel in PMML. The attributes of this element are shown in
the box at the top, along with the attribute type. Its child elements are shown in the rounded
rectangles on the bottom branch of the figure. The generic BN PMML representation provides a
set of rules based on which instance BN models can be defined. modelName represents the name
of the instance BN model such as “Welding Process BN”. functionName represents if the model
is of classification or regression type, and its type MINING-FUNCTION is a special type defined
elsewhere in the PMML standard. algorithmName refers to the name of the algorithm (e.g.,
MCMC) that is used for prediction process. isScorable identifies if the model can be used to
perform predictions. Most of the elements shown in Figure 3 are generic and apply to all predictive
models in PMML, except the element BayesianNetworkNodes, which was specifically defined for
describing BNs. The description regarding the standard elements can be found in [15] and [47],
and in this paper, we focus on the BayesianNetworkNodes element. Figure 4 describes the
BayesianNetworkNodes schema. The nodes in a BN can be either discrete or continuous, which is
specified in Figure 4.

 10

Figure 3. Schema of a BayesianNetworkModel element.

Figure 4. Schema of a BayesianNetworkNodes element.

 11

Figure 5. Schema of a DiscreteNode element.

3.1. DiscreteNode element

The schema for the DiscreteNode is provided in Figures 5 and 6. A DiscreteNode element has two
attributes: name and count. name refers to the variable name. count is an optional attribute that
refers to the total number of cases (frequency) in the data used to compute the probability values,
and is useful for updating the probability values when new data is available. DiscreteNode is a
complex element, i.e., it is dependent on other elements such as DerivedField,
DiscreteConditionalProbability, and ValueProbability. A discrete variable can be either a root
node or a non-root node. If a discrete node is root node, then the possible values and their
probabilities are defined using the ValueProbability element, as shown in Figure 7.
ValueProbability is a basic element, i.e., this does not depend on any other elements, as opposed
to DiscreteNode. The possible values are provided using the value attribute, and the probabilities
are provided using the probability attribute. The probability attribute is of type PROB-NUMBER,
which is a special type defined in the PMML standard, and represents real numbers between 0.0
and 1.0. As opposed to a discrete root node, a discrete non-root node is defined using the
DiscreteConditionalProbability element. As discussed above, a conditional probability table of a
discrete non-root node is described based on the values of the parent nodes. In the
DiscreteConditionalProbability element, the parent node values are provided using the
ParentValue element and the probabilities conditional on these parent node values are provided
using the ValueProbability element. The ParentValue, as shown in Figure 8, is also a basic element
where the parent nodes and their values are given using the parent and value attributes. The parent
attribute is of type FIELD-NAME, which specifies that the value of parent must be another element
in the model (i.e. the parent node must exist in the BN model). In some cases, when a discrete non-
root node is dependent on a continuous node, the continuous node is discretized and the conditional
probability table of the discrete node is defined in each discretized range of the continuous variable.

 12

This discretization transformation is described using the DerivedField element, a standard PMML
element that is specified once but used in multiple model elements within the PMML document
for reducing the size of PMML documents that contain multiple model elements (refer to PMML
v4.3 [27] for more details). Thus, schema elements are defined to describe discrete root and non-
root nodes.

Figure 6. Schema of a DiscreteConditionalProbability element.

Figure 7. Schema of a ValueProbability element.

Figure 8. Schema of a ParentValue element.

 13

Consider a discrete non-root node 𝐾𝐾2 with two possible values, 𝐾𝐾2 = 0, 1 dependent on two nodes
(parent nodes): a discrete root node, 𝐾𝐾1, which has two possible values, 𝐾𝐾1 = 0, 1; and a continuous
root node, 𝐽𝐽1, which is defined as a uniform distribution between -1 and 1. A sample conditional
probability table for 𝐾𝐾2 can be defined as shown in Table 1. The discretization of the continuous
node (see Table 1), can be represented using DerivedField element. In Table 1, 𝑃𝑃𝑃𝑃 (.) represents
the probability function, which outputs the probability of an event. In the following subsection, we
consider continuous nodes.

TABLE 1. Conditional probability table of a discrete variable with discrete and continuous
parent variables.

 𝐾𝐾1 = 0
−1 ≤ 𝐽𝐽1 < 0

𝐾𝐾1 = 0
0 ≤ 𝐽𝐽1 ≤ 1

𝐾𝐾1 = 1
−1 ≤ 𝐽𝐽1 < 0

𝐾𝐾1 = 1
0 ≤ 𝐽𝐽1 ≤ 1

𝑃𝑃𝑃𝑃(𝐾𝐾2 = 0|𝐾𝐾1, 𝐽𝐽1) 0.2 0.4 0.5 0.8
𝑃𝑃𝑃𝑃(𝐾𝐾2 = 1|𝐾𝐾1, 𝐽𝐽1) 0.8 0.6 0.5 0.2

Figure 9. Schema of a ContinuousNode element.

3.2. ContinuousNode element

Similar to a discrete node, a continuous node is defined using the ContinuousNode element, as
illustrated in Figure 9. The ContinuousNode element has the same two attributes as the
DiscreteNode element, i.e., name and count. The name of the continuous node and the number of
entries used to define the probability distribution of the continuous node are described using the
name and count attributes. The probability distributions of continuous root and non-root nodes are
described using ContinuousDistribution and ContinuousConditionalProbability elements, shown
in Figures 10 and 11 respectively. In this paper, we provide four possible options for a continuous
distribution: Normal (Gaussian), Lognormal, Uniform, and Triangular. Each distribution type has

 14

its associated distribution parameters. For example, the parameters of a Normal distribution are
the mean and standard deviation whereas a Triangular distribution has three parameters: lower and
upper bounds, and the mode value. For illustration, the schema elements of a Normal distribution
are provided in Figures 12-14. Similarly, schema elements for the other three distribution types
are defined but are not shown in this paper. Please refer to [27] for more details. The
ContinuousConditionalProbability element is used to describe a continuous non-root node, which
can have both discrete and continuous parent nodes. The ContinuousConditionalProbability
element is defined over two other elements: ParentValue and ContinuousDistribution. The discrete
parent nodes and their values are defined using the ParentValue element whereas the
ContinuousDistribution element is used to define the conditional probability distributions
dependent on the continuous parent nodes.

Figure 10. Schema of a ContinuousDistribution element.

Figure 11. Schema of a ContinuousConditionalProbability element.

Figure 12. Schema of a NormalDistributionForBN element.

 15

Figure 13. Schema of a Mean element.

Figure 14. Schema of a Variance element.

Consider a continuous non-root node 𝐽𝐽2 whose parent nodes consist of a discrete node 𝐾𝐾1 with two
possible values 𝐾𝐾1 = 0, 1; and a continuous node 𝐽𝐽1. A sample conditional distribution of 𝐽𝐽2 can
be defined as follows: 𝑓𝑓(𝐽𝐽2|𝐽𝐽1,𝐾𝐾1 = 0)~𝑁𝑁(3 × 𝐽𝐽1, 1) and 𝑓𝑓(𝐽𝐽2|𝐽𝐽1,𝐾𝐾1 = 1)~𝑁𝑁(5 × 𝐽𝐽1, 1). Here,
𝑓𝑓(.) represents a probability distribution and 𝑁𝑁(.) represents a Gaussian/Normal distribution. For
every value of the discrete parent node (𝐾𝐾1 = 0, 1), a continuous variable is defined through a
probability distribution whose parameters are dependent on the continuous parent nodes (𝐽𝐽1).

3.3. Representation of functional relationships between variables

As discussed in Section 2.1, one of the procedures for the construction of a BN is by using available
physics-based models. Physics-based models often represent functional relationships between the
inputs and the output, i.e., for given values of the inputs, the output is a deterministic quantity.
Since physics-based models are affected by several uncertainty sources (such as model parameters,
model form assumptions, numerical approximations), the output can be stochastic if model
uncertainty is considered [48]. Such stochastic models can be represented using the techniques
presented in Sections 3.1 and 3.2. In this section, we discuss the representation of such functional
nodes. In the BN terminology, the inputs can be considered as parent nodes of an output (non-root
node). Let 𝑋𝑋 represents a non-root node, and 𝛱𝛱𝑋𝑋 represents its parent nodes with 𝑋𝑋 = 𝑔𝑔(𝛱𝛱𝑋𝑋),
where 𝑔𝑔(.) represents a functional relationship between the inputs (𝛱𝛱𝑋𝑋) and output (𝑋𝑋).

We discuss two approaches here regarding the representation of functional nodes. The first
approach approximates the functional node as a continuous variable with a Gaussian conditional
probability distribution (CPD), given as 𝑁𝑁(𝑔𝑔(𝛱𝛱𝑋𝑋), 𝜖𝜖), i.e., the mean of the Gaussian CPD is the
functional relationship between the inputs (𝛱𝛱𝑋𝑋) and output (𝑋𝑋), and the standard deviation is equal

 16

to 𝜖𝜖, a small number close to zero (e.g., the machine precision, which is in the order of 10−15). A
Gaussian CPD is used here; however, any continuous distribution such as lognormal or triangular
can also be used by choosing their parameters appropriately. The second approach to represent a
functional node is to model it as a discrete node with two states whose conditional probability table
(𝑋𝑋|𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗) is defined as follows.

TABLE 2. Conditional probability table of a functional variable.

 𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗
Pr (𝑋𝑋 = 𝑔𝑔(𝛱𝛱𝑋𝑋∗)|𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗) 1
Pr (𝑋𝑋 ≠ 𝑔𝑔(𝛱𝛱𝑋𝑋∗)|𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗) 0

Here, 𝛱𝛱𝑋𝑋∗ is realization of 𝛱𝛱𝑋𝑋 on which the conditional probability table of 𝑋𝑋 is defined. The two
states of 𝑋𝑋 are 𝑋𝑋 = 𝑔𝑔(𝛱𝛱𝑋𝑋∗) and 𝑋𝑋 ≠ 𝑔𝑔(𝛱𝛱𝑋𝑋∗). As 𝑋𝑋 has a functional relationship, the probability of
𝑋𝑋 being equal to 𝑔𝑔(𝛱𝛱𝑋𝑋∗) is always equal to 1, and 0 otherwise. A primary drawback with the second
approach is that the states of the output variable (𝑋𝑋) change with the values of its parent nodes
(𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗). For example, if 𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋∗ , then 𝑔𝑔(𝛱𝛱𝑋𝑋∗) is one of the states; however, if 𝛱𝛱𝑋𝑋 = 𝛱𝛱𝑋𝑋+, then
𝑔𝑔(𝛱𝛱𝑋𝑋∗) may not be one of the states but 𝑔𝑔(𝛱𝛱𝑋𝑋+) is. Such changing states cannot be captured using
the schema for discrete variables discussed in Section 3.2, where the states are known and their
corresponding probabilities are learnt from physics-based models, expert knowledge, or data. So,
we adopt the first approach in this paper to represent a functional node.

4. BN PMML Parser

The subsequent step after the development of the BN PMML schema is the development of a
parser that can translate an analytical BN model into its corresponding PMML representation
following the above schema. Here, analytical BN model is defined as a BN model on which
predictions can be performed as opposed to a “descriptive” BN model such as its PMML
representation, on which predictions cannot be performed directly. A “descriptive” BN model only
illustrates the variables present in a BN and the dependence relationships between them. One
popular Python library for probabilistic programming is PyMC3, which is primarily concerned
with building and sampling the posterior distributions of Bayesian models [49]. It is possible to
define a BN using PyMC3, and subsequently perform sampling or include observations that will
change the posterior distributions. This makes the model generated using PyMC3 an example of
an analytical model. PMML functions as a language-agnostic “descriptive model”, to which one
would need a parser that can translate to and from analytic libraries like PyMC3. To illustrate an
implementation of such a parser, a tool was developed in the Python programming language*.This
example tool utilizes pyMCNet, an extension to PyMC3 that allows for the definition of BNs using
graphs via the NetworkX package [50], which enables fast prototyping and visualization of BN

* https://github.com/usnistgov/pmml_pymcBN

 17

Figure 15. Flowchart illustrating the functionality of Python to PMML parser

 18

Figure 16. Flowchart illustrating the functionality of PMML to Python parser

 19

models. Currently, only a few continuous node types are supported in this tool, though in theory
any distribution allowed by PyMC3 could be added. Because the PMML schema allows BN nodes
to be defined using expressions, some parsing is done using the symbolic-math library SymPy
[51], to allow node expression definitions using other node values. Figures 15 and 16 provide an
overview of the parser. Figure 15 illustrates the flow of transformation from Python to PMML
format while Figure 16 illustrates the flow of transformation from PMML to Python. In particular,
the parser can be used to convert a PyMC3 model in Python into its corresponding PMML
representation and vice versa. The Python-to-PMML direction maps the names of XML node
definitions to known PyMC3 random variables, using Sympy to parse functional node
relationships, which then populates a pyMCNet graph. The PMML-to-Python direction maps
nodes from PMML to PyMC3 distributions and their parameters, from which the parameter
functional relationships (FieldRef in PMML [27]) are used to add edges in the pyMCNet graph.

5. Case study: Welding process

In this section, we demonstrate the BN PMML representation for the energy prediction of a
welding process and its parsing into an analytical model. Welding represents a fabrication process
of joining two metal parts to form a single part and is one of the fundamental processes in
manufacturing. There are different types of welding processes, i.e., different ways to join two metal
parts such as electric arc welding and torch welding [52]. Electric arc welding using an electric arc
while torch welding uses an oxyacetylene torch to melt and join the metal parts. Energy efficiency
represents a key metric for sustainability evaluation of a manufacturing process [53]. An approach
for energy efficiency evaluation is the comparison of theoretical energy consumption and the real-
world energy consumption of the welded products. The theoretical energy computation is greatly
affected by several uncertainty sources such as the parameters of the welding process; therefore,
their identification and quantification are necessary for a comprehensive sustainability evaluation.
In the case study below, we describe the arc welding process and equations for computing the
theoretically minimum energy consumption, identify the uncertain parameters, and connect them
to the overall energy using a BN. We construct the associated BN and represent it using the BN
PMML standard or schema. In the presence of any process data, the process parameters are updated
using Bayes theorem; these updated parameters are used to update the minimum energy value,
which can later be used for sustainability evaluation in the presence of experimental energy values.

5.1. Process description

Consider the cross-section of the weld between two metal pieces as shown in Figure 17 [16]. If 𝐿𝐿
represents the length of the weld, 𝑙𝑙,ℎ,𝑔𝑔, 𝑡𝑡 and 𝑒𝑒 represent the weld parameters, as shown in Figure
16, then the overall volume of the weld, V, can be calculated as shown in Eq. 8.

 𝑉𝑉 = 𝐿𝐿 × (0.75 × 𝑙𝑙 × ℎ + 𝑔𝑔 × 𝑡𝑡 + 0.5 × (𝑙𝑙 − 𝑔𝑔) × (𝑡𝑡 − 𝑒𝑒)) (8)

 20

Assuming that the metal and the filler are of the same material, the minimum theoretical energy
required for the welding process is given as

where 𝜌𝜌, 𝐶𝐶𝑝𝑝, 𝑇𝑇𝑓𝑓, 𝑇𝑇𝑖𝑖, and 𝐻𝐻 represent the density of the welding material, heat capacity, and final
and initial temperatures of the weld and the latent heat, respectively. Using the above equations, a
BN showing the dependence relationships for the energy prediction of a welding process is shown
in Figure 18.

Figure 17. Cross-section of the weld showing the welding parameters [16].

Figure 18. BN for energy prediction of welding process using physics-based models [16].

For illustration purposes, this example considered a physics-based deterministic model for the
description of energy consumption in the welding process. In some cases, a physics-based model
may not accurately quantify the energy consumption, due to several uncertainty sources such as
model form assumptions, unknown model parameters, and numerical approximations. We refer
the reader to the work of Nannapaneni and Mahadevan [48] for more details regarding the
representation and quantification of model uncertainty sources. Section 2 discussed three ways
to construct a BN – physics models, data-driven, or their combination. This example illustrates the
BN construction using available physics-based models. The parameters (𝐿𝐿, 𝑡𝑡, 𝑒𝑒,𝐻𝐻,𝐶𝐶𝑝𝑝,𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑓𝑓)
are assumed to be known while the parameters (𝑙𝑙,𝑔𝑔 and ℎ) are assumed to be uncertain and
quantified using Gaussian distributions whose parameters are unknown. However, prior

 𝐸𝐸 = 𝜌𝜌 × 𝑉𝑉 × (𝐶𝐶𝑝𝑝 × �𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑖𝑖� + 𝐻𝐻) (9)

 21

knowledge regarding the distribution parameters are assumed available. In addition, the density of
the weld material is not known precisely but prior knowledge is assumed available. The values of
all the known and unknown parameters are given in Table 3. The BN of the welding process, after
removing all the known variables in Figure 18 and adding nodes for the distribution parameters of
𝑙𝑙,𝑔𝑔, and ℎ, is given in Figure 19.

In Figure 19, green circular, yellow circular and blue squared represent uniform, normal, and
deterministic nodes respectively. Nodes are either observed (grayed-out) or unobserved. The edge
variable indicated the type of node relationship, either a deterministic/functional relationship (“𝑥𝑥”),
or a stochastic (in this case, location parameter “µ” or scale parameter “𝜎𝜎”). Details of the BN
construction and inference regarding the welding process were discussed in [16]. To model sensor
uncertainty, the Energy node is split into a deterministic node 𝐸𝐸𝑑𝑑 (described as 𝐸𝐸 above in Figure
19), and a stochastic node 𝐸𝐸𝐿𝐿 with uncertainty that models the likelihood of our sensor data. It
should be noted that the volume (𝑉𝑉) and Energy (𝐸𝐸) are functional nodes, i.e., given the values of
the parent nodes, the values of 𝑉𝑉 and 𝐸𝐸 are known deterministically due to the presence of
functional relationships as shown in Eqs. 8 and 9. Following the procedure for the representation
of functional nodes in Section 3.3, 𝑉𝑉 and 𝐸𝐸 are represented as discrete nodes, each with two states
dependent on the values of their parent nodes.

TABLE 3. Welding process parameters.

Parameter Value
𝐿𝐿(𝑚𝑚𝑚𝑚) 500
𝑡𝑡(𝑚𝑚𝑚𝑚) 15
𝑒𝑒(𝑚𝑚𝑚𝑚) 11
𝐻𝐻(𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘) 270

𝐶𝐶𝑝𝑝(𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘.𝐾𝐾) 0.5
𝑇𝑇𝑖𝑖(𝐾𝐾) 300
𝑇𝑇𝑓𝑓(𝐾𝐾) 1600
𝑙𝑙 𝑁𝑁(𝜇𝜇𝑙𝑙,𝜎𝜎𝑙𝑙)
𝜇𝜇𝑙𝑙 𝑈𝑈(8.3,8.6)
𝜎𝜎𝑙𝑙 𝑈𝑈(0.2,0.7)
𝑔𝑔 𝑁𝑁(𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔)
𝜇𝜇𝑔𝑔 𝑈𝑈(1.6,2.2)
𝜎𝜎𝑔𝑔 𝑈𝑈(0.05,0.2)
ℎ 𝑁𝑁(𝜇𝜇ℎ,𝜎𝜎ℎ)
𝜇𝜇ℎ 𝑈𝑈(2.5,2.8)
𝜎𝜎ℎ 𝑈𝑈(0.3,0.6)

𝜌𝜌(𝑘𝑘𝑘𝑘/𝑚𝑚3) 𝑁𝑁(8250,10)

 22

Figure 19. BN for energy prediction of a welding process [16].

5.2. PMML Representation Parsing and Prediction

The PMML representation of the BN for welding process using the BN PMML schema described
in Section 3 is given in Figure 20, where scheme elements such as MiningSchema, and DataFields
are not shown, and indicated with a (…), for brevity. Note the static node mu_l, the deterministic
node “E_d”, and the stochastic node “E_L” having a functional relationship with “E_d”. The
PMML representation of the BN for the welding process described using the BN PMML schema
can now be shared with whomever necessary for their computational requirements without
rebuilding the BN. After transferring the BN PMML file of the welding process, the Python parser
described in Section 4 is used to convert the PMML file into an analytical model in Python using
the PyMC3 package [49]. For ease in notation, we term the environment where the BN PMML
representation of the welding process is created as the training environment and the environment
where this PMML file is used for prediction as testing environment following the notation in [28].

Let 100 data points be available in the testing environment on the parameters 𝑙𝑙,ℎ,𝑔𝑔, and 𝐸𝐸𝐿𝐿
collected through sensors. The sensor uncertainty in the measurement of 𝑙𝑙,ℎ and 𝑔𝑔 is assumed to
be quantified using a Gaussian distribution with zero mean and standard deviation of 0.1 mm.
Similarly, the sensor uncertainty in the energy measurement is quantified using a Gaussian
distribution with zero mean and a standard deviation of 1 𝑘𝑘𝑘𝑘. A Gaussian distribution with zero
mean is used to model the sensor uncertainty as both the positive and negative values occur with
equal probability due to the symmetric nature of a Gaussian distribution. This allows 𝐸𝐸𝐿𝐿 itself to
be modeled as a Gaussian, namely, 𝐸𝐸𝐿𝐿~ 𝑁𝑁(𝐸𝐸𝑑𝑑, 1).

 23

<PMML version="4.3" xmlns="http://www.dmg.org/PMML-4_3">

 <Header copyright="DMG.org" description="Bayesian Network Model"/>
 <DataDictionary numberOfFields="13">
 <DataField dataType="double" name="mu_l" optype="continuous"/>
 ...
 <DataField dataType="double" name="E_L" optype="continuous"/>
 </DataDictionary>
 <BayesianNetworkModel modelName="Bayesian Network Model" functionName="regression">
 <MiningSchema>
 <MiningField name="l" usageType="active"/>
 ...
 <MiningField name="E_d" usageType="target"/>
 </MiningSchema>
 <BayesianNetworkNodes>
 <ContinuousNode name="mu_l">
 <ContinuousDistribution>
 <UniformDistributionForBN>
 <Lower>
 <Constant dataType="double">0.0083</Constant>
 </Lower>
 <Upper>
 <Constant dataType="double">0.0086</Constant>
 </Upper>
 </UniformDistributionForBN>
 </ContinuousDistribution>
 </ContinuousNode>
 ...
 <ContinuousNode name="E_d">
 <ContinuousDistribution>
 <NormalDistributionForBN>
 <Variance>
 <Constant dataType="double">0.0</Constant>
 </Variance>
 <Mean>
 <Apply function="*">
 <Constant dataType="double">920.000000000000</Constant>
 <FieldRef field="V"/>
 <FieldRef field="rho"/>
 </Apply>
 </Mean>
 </NormalDistributionForBN>
 </ContinuousDistribution>
 </ContinuousNode>
 <ContinuousNode name="E_L">
 <ContinuousDistribution>
 <NormalDistributionForBN>
 <Mean>
 <FieldRef field="E_d"/>
 </Mean>
 <Variance>
 <Constant dataType="double">1.00000000000000</Constant>
 </Variance>
 </NormalDistributionForBN>
 </ContinuousDistribution>
 </ContinuousNode>
 </BayesianNetworkNodes>
 </BayesianNetworkModel>
</PMML>

Figure 20. PMML instance of the described welding BN.

 24

Figure 21. Comparison of the prior and posterior distributions for the inference parameters (a)
mean of parameter ‘l’, (b) standard deviation of ‘l’, (c) mean of parameter ‘h’, (d) standard
deviation of parameter ‘h’, (e) mean of parameter ‘e’, (f) standard deviation of parameter ‘e’,
and (g) density.

The objective is to estimate the distribution parameters 𝜇𝜇,𝜎𝜎 (mean and standard deviation) for
dimension variables 𝑙𝑙. ℎ and 𝑔𝑔, along with our belief of the weld filler material density (𝜌𝜌); this is
performed using the Bayes’ theorem as

 𝑓𝑓�𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙, 𝜇𝜇ℎ,𝜎𝜎𝑙𝑙, 𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔,𝜌𝜌�𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜, ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜,𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜�
∝ 𝑓𝑓(𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜,𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜|𝜇𝜇𝑙𝑙,𝜎𝜎𝑙𝑙 , 𝜇𝜇ℎ,𝜎𝜎𝑙𝑙, 𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔,𝜌𝜌)𝑓𝑓(𝜇𝜇𝑙𝑙,𝜎𝜎𝑙𝑙, 𝜇𝜇ℎ,𝜎𝜎𝑙𝑙, 𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔,𝜌𝜌) (9)

 25

The No-U-Turn Sampling algorithm (NUTS), which uses adaptive Hamiltonian Monte Carlo for
efficient sampling [54], is used for inference; the prior and posterior distributions along with the
true value used to generate synthetic data, are shown in Figure 21. A total of 80,000 samples were
generated using the NUTS algorithm and the last 40,000 are used for constructing the posterior
distributions. The first 40,000 samples are ignored (burn-in) to account for the convergence of
Markov chain of samples [41]. It can be observed that the variance of posterior distributions of the
dimensional parameters (𝑙𝑙,𝑔𝑔,ℎ) have reduced due to the observation data. The variance reduction
in the density (𝜌𝜌) is not significant; this can be attributed to the insensitivity of the observed
parameters to the energy consumption as illustrated in our previous work using variance-based
global sensitivity analysis [16].

6. Conclusion and Future Work

This paper presents the Predictive Model Markup Language (PMML) representation of a generic
Bayesian network (BN), which may contain discrete (categorical) variables, continuous variables,
or their combination. BNs are probabilistic acyclic graphical models, which have been studied for
a variety of applications such as uncertainty quantification, design optimization under uncertainty,
risk analysis, and quality control. BNs represent a joint probability distribution over a set of
random variables through a combination of marginal and conditional distributions. The BN PMML
schema accommodates both discrete variables and continuous variables described by Normal
(Gaussian), Lognormal, Uniform, and Triangular distributions. The availability of such a PMML
schema helps the exchange of BN models across the PMML compliant software platforms; this
enables industry practitioners to use the models directly without rebuilding their own, and hence
saving valuable time and computational resources. PMML schema-based models are descriptive
in nature; i.e., they cannot directly be used for prediction or inference. Therefore, a parser was
developed that allows converting a descriptive BN PMML model into an analytical model in
Python using the PyMC3 and NetworkX packages. The analytical model is then used to perform
predictions using Markov Chain Monte Carlo methods. In addition, the developed parser also
enables the conversion of an analytical model in Python into its corresponding PMML
representation. Thus, the parser enables conversion in both directions: from descriptive PMML
platform into an analytical model in Python and vice versa. In this paper, we demonstrate the
developed methods for PMML representation and parsing for a BN related to a welding process.

Future work should accommodate other parametric distribution types, such as Beta, Multinomial,
Dirichlet, and Exponential, and non-parametric distributions, such as kernel density estimations to
represent both discrete and continuous variables. In this work, a functional node is approximated
using a Gaussian conditional probability distribution with the mean equal to the functional
relationship and a small standard deviation, which is in the order of the machine precision. This
approach creates errors in the computation; therefore, future work should consider effective
representation of functional (deterministic) nodes in the BN PMML schema. In addition, PMML
schema for variants of BNs such as dynamic BNs and hierarchical BNs need to be considered.
Future work will also be aimed at adding support for generic BNs in the Portable Format for
Analytics (PFA) standard. Since PFA offers standard ways to procedurally specify data

 26

manipulation algorithms, it offers the possibility of describing advanced inference algorithms
within the standard model in a tool independent way, which is currently not possible with PMML.

Acknowledgements

The research reported in this paper is supported by funds from the National Institute of Standards
and Technology (NIST) under cooperative agreements with Vanderbilt University (Grant No.
70NANB16H297) and University of Maryland (Grant No. 70NANB14H250), and by the NIST
Foreign Guest Researcher Program. The support is gratefully acknowledged.

Disclaimer

Certain commercial systems are identified in this paper. Such identification does not imply
recommendation or endorsement by NIST; nor does it imply that the products identified are
necessarily the best available for the purpose. Further, any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of NIST or any other supporting U.S. government or corporate organizations.

References

[1] Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., and Papadopoulos, T., 2016,
“The Impact of Big Data on World-Class Sustainable Manufacturing,” Int. J. Adv. Manuf.
Technol., 84(1–4), pp. 631–645.

[2] Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., and Noh, S.
Do, 2016, “Smart Manufacturing: Past Research, Present Findings, and Future
Directions,” Int. J. Precis. Eng. Manuf. - Green Technol., 3(1), pp. 111–128.

[3] Asiltürk, İ., and Çunkaş, M., 2011, “Modeling and Prediction of Surface Roughness in
Turning Operations Using Artificial Neural Network and Multiple Regression Method,”
Expert Syst. Appl., 38(5), pp. 5826–5832.

[4] Ak, R., Helu, M. M., and Rachuri, S., 2015, “Ensemble Neural Network Model for
Predicting the Energy Consumption of a Milling Machine,” 20th Design for
Manufacturing and the Life Cycle Conference, Boston, MA.

[5] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., and Siegel, D., 2014, “Prognostics and
Health Management Design for Rotary Machinery Systems - Reviews, Methodology and
Applications,” Mech. Syst. Signal Process., 42(1–2), pp. 314–334.

[6] Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., and Wang, J., 2017, “Machine Health
Monitoring Using Local Feature-Based Gated Recurrent Unit Networks,” IEEE Trans.
Ind. Electron., 65(2), pp. 1539–1548.

[7] Jardine, A. K. S., Lin, D., and Banjevic, D., 2006, “A Review on Machinery Diagnostics

 27

and Prognostics Implementing Condition-Based Maintenance,” Mech. Syst. Signal
Process., 20(7), pp. 1483–1510.

[8] Jayal, A. D., Badurdeen, F., Dillon, O. W., and Jawahir, I. S., 2010, “Sustainable
Manufacturing: Modeling and Optimization Challenges at the Product, Process and
System Levels,” CIRP J. Manuf. Sci. Technol., 2(3), pp. 144–152.

[9] Nannapaneni, S., and Mahadevan, S., 2016, “Manufacturing Process Evaluation Under
Uncertainty: A Hierarchical Bayesian Network Approach,” Proceedings of the ASME
2016 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, p. V01BT02A026-V01BT02A026.

[10] Bhinge, R., Biswas, N., Dornfeld, D., Park, J., Law, K. H., Helu, M., and Rachuri, S.,
2014, “An Intelligent Machine Monitoring System for Energy Prediction Using a
Gaussian Process Regression,” 2014 IEEE International Conference on Big Data (Big
Data), pp. 978–986.

[11] Guazzelli, A., Stathatos, K., and Zeller, M., 2009, “Efficient Deployment of Predictive
Analytics through Open Standards and Cloud Computing,” ACM SIGKDD Explor.
Newsl., 11(1), p. 32.

[12] Guazzelli, A., Zeller, M., Lin, W., and Williams, G., 2009, “PMML: An Open Standard
for Sharing Models,” R J., 1(1), pp. 60–65.

[13] Pivarski, J., Bennett, C., and Grossman, R. L., 2016, “Deploying Analytics with the
Portable Format for Analytics (PFA),” Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining - KDD ’16, pp. 579–
588.

[14] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F., 1997,
“Extensible Markup Language (XML),” World Wide Web J., 2(4), pp. 27–66.

[15] “The Data Mining Group (DMG)” [Online]. Available: http://dmg.org. [Accessed: 10-Jul-
2018].

[16] Nannapaneni, S., Mahadevan, S., and Rachuri, S., 2016, “Performance Evaluation of a
Manufacturing Process under Uncertainty Using Bayesian Networks,” J. Clean. Prod.,
113, pp. 947–959.

[17] Correa, M., Bielza, C., Ramirez, M. D. J., and Alique, J. R., 2008, “A Bayesian Network
Model for Surface Roughness Prediction in the Machining Process,” Int. J. Syst. Sci.,
39(12), pp. 1181–1192.

[18] Tobon-Mejia, D. A., Medjaher, K., and Zerhouni, N., 2012, “CNC Machine Tool’s Wear
Diagnostic and Prognostic by Using Dynamic Bayesian Networks,” Mech. Syst. Signal
Process., 28, pp. 167–182.

[19] Nannapaneni, S., Mahadevan, S., and Dubey, A., 2018, “Real-Time Control of a Cyber-
Physical Manufacturing Process under Uncertainty,” ASME 2018 International
Manufacturing Science and Engineering Conference, College Station, Texas, USA.

[20] Kurz, D., Kaspar, J., and Pilz, J., 2011, “Dynamic Maintenance in Semiconductor
Manufacturing Using Bayesian Networks,” Automation Science and Engineering (CASE),

 28

2011 IEEE Conference on, pp. 238–243.

[21] Chan, A., and McNaught, K. R., 2008, “Using Bayesian Networks to Improve Fault
Diagnosis during Manufacturing Tests of Mobile Telephone Infrastructure,” Journal of
the Operational Research Society, pp. 423–430.

[22] Masruroh, N. A., and Poh, K. L., 2007, “A Bayesian Network Approach to Job-Shop
Rescheduling,” IEEM 2007: 2007 IEEE International Conference on Industrial
Engineering and Engineering Management, pp. 1098–1102.

[23] Kao, H.-Y., Huang, C.-H., and Li, H.-L., 2005, “Supply Chain Diagnostics with Dynamic
Bayesian Networks,” Comput. Ind. Eng., 49(2), pp. 339–347.

[24] Zhu, J. Y., and Deshmukh, A., 2003, “Application of Bayesian Decision Networks to Life
Cycle Engineering in Green Design and Manufacturing,” Eng. Appl. Artif. Intell., 16(2
SPEC.), pp. 91–103.

[25] “Predictive Model Markup Language (PMML) v4.2.1” [Online]. Available:
http://dmg.org/pmml/v4-2-1/GeneralStructure.html. [Accessed: 10-Jul-2018].

[26] Friedman, N., Geiger, D., and Goldszmidt, M., 1997, “Bayesian Network Classifiers,”
Mach. Learn., 29(2–3), pp. 131–163.

[27] “PMML 4.3 - General Structure” [Online]. Available: http://dmg.org/pmml/v4-
3/GeneralStructure.html. [Accessed: 10-Jul-2018].

[28] Park, J., Lechevalier, D., Ak, R., Ferguson, M., Law, K., Lee, Y., and Rachuri, S., 2017,
“Gaussian Process Regression (GPR) Representation in Predictive Model Markup
Language (PMML),” Smart Sustain. Manuf. Syst., 1(1), pp. 121–141.

[29] Nannapaneni, S., Mahadevan, S., Dubey, A., Lechevalier, D., Narayanan, A., and Rachuri,
S., 2017, “Automated Uncertainty Quantification through Information Fusion in
Manufacturing Processes,” Smart Sustain. Manuf. Syst., 1(1), pp. 153–177.

[30] Scutari, M., 2010, “Learning Bayesian Networks with the Bnlearn R Package,” J. Stat.
Softw., 35(3), pp. 1–22.

[31] Bartram, G., and Mahadevan, S., 2014, “Integration of Heterogeneous Information in
SHM Models,” Struct. Control Heal. Monit., 21(3), pp. 403–422.

[32] Neapolitan, R. E., 2004, Learning Bayesian Networks, Pearson Prentice Hall.

[33] Spirtes, P., Glymour, C., and Scheines, R., 1993, Causation, Prediction, and Search,
Springer-Verlag, New York.

[34] Margaritis, D., 2003, “Learning Bayesian Network Model Structure from Data,” Carnegie
Mellon University.

[35] Tsamardinos, I., Aliferis, C. F., and Statnikov, A., 2003, “Algorithms for Large Scale
Markov Blanket Discovery,” The 16th International Florida Artificial Intelligence
Research Society Conference, American Associ ation for Artificial Intelligence, St.
Augustine, Florida, pp. 376–380.

[36] Yaramakala, S., and Margaritis, D., 2005, “Speculative Markov Blanket Discovery for

 29

Optimal Feature Selection,” Proceedings - IEEE International Conference on Data
Mining, ICDM, pp. 809–812.

[37] Tsamardinos, I., Brown, L. E., and Aliferis, C. F., 2006, “The Max-Min Hill-Climbing
Bayesian Network Structure Learning Algorithm,” Mach. Learn., 65(1), pp. 31–78.

[38] Campos, C. P. de, Tong, Y., and Ji, Q., 2008, “Constrained Maximum Likelihood
Learning of Bayesian Networks for Facial Action Recognition,” Computer Vision – ECCV
2008, Springer, Berlin, Heidelberg, pp. 168–181.

[39] Ling, Y., and Mahadevan, S., 2013, “Quantitative Model Validation Techniques: New
Insights,” Reliab. Eng. Syst. Saf., 111, pp. 217–231.

[40] Simonsson, I., and Mostad, P., 2016, “Exact Inference on Conditional Linear Γ-Gaussian
Bayesian Networks,” Proceedings of the Eighth International Conference on Probabilistic
Graphical Models, pp. 474–486.

[41] Hastings, W. K., 1970, “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications,” Biometrika, 57(1), pp. 97–109.

[42] Fox, C. W., and Roberts, S. J., 2012, “A Tutorial on Variational Bayesian Inference,”
Artif. Intell. Rev., 38(2), pp. 85–95.

[43] Smith, A. F. M., and Gelfand, A. E., 1992, “Bayesian Statistics without Tears: A
Sampling-Resampling Perspective,” Am. Stat., 46(2), pp. 84–88.

[44] Csillery, K., Blum, M., Gaggiotti, O., and Francois, O., 2010, “Approximate Bayesian
Computation (ABC) in Practice,” Trends Ecol. Evol., 25(7), pp. 410–418.

[45] Li, C., and Sankaran, M., 2018, “Efficient Approximate Inference in Bayesian Networks
with Continuous Variables,” Reliab. Eng. Syst. Saf., 169, pp. 269–280.

[46] “W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures” [Online].
Available: https://www.w3.org/TR/xmlschema11-1/. [Accessed: 10-Jul-2018].

[47] Pechter, R., 2009, “What’s PMML and What’s New in PMML 4.0?,” ACM SIGKDD
Explor. Newsl., 11(1), p. 19.

[48] Nannapaneni, S., and Mahadevan, S., 2016, “Reliability Analysis under Epistemic
Uncertainty,” Reliab. Eng. Syst. Saf., 155, pp. 9–20.

[49] Salvatier, J., Wiecki, T. V., and Fonnesbeck, C., 2016, “Probabilistic Programming in
Python Using PyMC3,” PeerJ Comput. Sci., 2, p. e55.

[50] Hagberg, A. A., Schult, D. A., and Swart, P. J., 2008, “Exploring Network Structure,
Dynamics, and Function Using NetworkX,” Proceedings of the 7th Python in Science
Conference, pp. 11–16.

[51] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,
Am., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel,
A. R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A., 2017,
“SymPy: Symbolic Computing in Python,” PeerJ Comput. Sci., 3, p. e103.

 30

[52] Weman, K., 2012, Welding Processes Handbook, Woodhead Publishing.

[53] Mani, M., Madan, J., Lee, J. H., Lyons, K. W., and Gupta, S. K., 2014, “Sustainability
Characterisation for Manufacturing Processes,” Int. J. Prod. Res., 52(20), pp. 5895–5912.

[54] Hoffman, M. D., and Gelman, A., “The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo,” J. Mach. Learn. Res., 15, pp. 1593–1623.

