
Transient Analysis of a Circular Foil Gage in a Convective and Radiative Environment1 

Jiann C. Yang2 

Fire Research Division 
Engineering Laboratory 

National Institute of Standards and Technology 
Gaithersburg, MD 20899, U.S.A. 

ABSTRACT 

An analysis of a circular thin-foil gage is presented that includes transient effects, convective 
heat transfer, and an arbitrary time-varying boundary condition at the foil edge to account for 
fluctuations in cooling water temperature.  The governing energy equation is solved using 
Laplace transform to obtain the temporal and spatial temperature distributions of the foil.  Under 
constant temperature at the foil edge and constant thermal radiative heat flux, closed-form 
response curves for the gage under various modes of heat transfer are provided.  Steady-state 
results are also presented as limiting cases. 
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Introduction 

In 1953, Gardon [1] developed a circular thin-foil gage to measure thermal radiation and 
provided a simple steady state heat conduction analysis to describe the operation of the gage.  
Since then circular thin-foil gages, sometimes referred to as Gardon gages named in honor of 
Gardon, have been used extensively in fire research and testing [2], solar radiation measurements 
[3], and other aerospace applications [4].  A cross section of the gage is depicted in Figure 1.  
The gage sensing element is made from constantan metal foil in the form of a circular disk and is 
attached to a water-cooled constant-temperature copper ring.  When the incident heat flux strikes 
the foil, the energy absorbed by the foil diffuses radially toward the outer circumference of the 
foil and into the copper ring acting as a heat sink, causing a temperature difference between the 
foil center and the edge.  The temperature difference, which is measured using a differential 
thermocouple, can be related to the incident heat flux. 

Analytical studies have been reported in the literature to examine various aspects of the thin-foil 
gage operation and performance.  Gardon [1] originally modeled the gage by treating it as a one-
dimensional steady-state heat conduction through the foil in the radial direction to obtain the 
temperature distribution in the foil with an applied uniform thermal radiative heat flux on the 
foil.  Malone [4] used a one dimensional steady-state formulation to analyze convective heat 
transfer to or from a radiantly heated foil and heat loss down the center wire.  Ash [5] studied the 
transient response characteristics of thin-foil heat flux sensors under thermal radiative or 
convective environment.  Kirchoff [6] provided a two-dimensional transient heat conduction 
analysis on the foil to study the effect of foil thickness on the gage response without considering 
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heat convection.  A one-dimensional transient heat conduction model was developed by Keltner 
and Wildin [7] to examine transient response of the gages.  Borell and Diller [8], Kuo and 
Kulkarni [9], and Fu et al. [10] expanded the steady-state analysis of Gardon [1] by including 
convective heat transfer at the foil surface and provided calibration corrections for convective 
heat transfer.  Recently, Fu et al. [11] applied the Duhamel theorem to study Gardon gage 
exposed to fast heat flux transients. 

Here the analysis is expanded to include transient effects, convective heat transfer, and the time-
varying heat-sink temperature to reflect fluctuations in cooling water temperature.  However, we 
still limit our analysis to one dimension in the radial direction of the foil exposed to a constant 
radiative heat flux. 

Formulation and Analysis 

Assuming no heat conduction loss along the copper wire at the center of the foil, no convective 
heat transfer on the backside of the gage, and constant thermophysical properties of the foil, the 
energy equation for the foil is 
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with the following initial and boundary conditions 

I.C.: at 0=t , 0TT =   for Rr ≤≤0  

B.C. 1: at ,0=r  0/ =∂∂ rT  or T is finite 

B.C. 2: at Rr =  )(tfT =  

The boundary condition (B.C. 2) at Rr =  reflects an arbitrary time-varying heat-sink 
temperature. 

Introducing the following dimensionless variables: 

Rr /=ξ    2/ Rtα=τ   0/TT=θ  

With fkhRNu /= , 0
2 / kHTRqQ i=∗ , kk f /=κ , HR /=δ , and NuNu κδ=∗ , Eq. (1) can be 

non-dimensionalized to 
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I.C.: at 0=τ , 0θ=θ   for 10 ≤ξ≤  

B.C. 1: at ,0=ξ  0/ =ξ∂θ∂  
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B.C. 2: at 1=ξ  0/)()( Tff τ=τθ=θ  

Equation (2), together with the non-dimensionalized initial and boundary conditions, can be 
solved using Laplace transform.  In the following, the Laplace transform and its inverse 
transform operators are represented by L  and 1−L  respectively, and we use ),(ˆ sξθ  to denote the 
transformed variable of ),( τξθ  with respect to τ . 

Taking Laplace transform of Eq. (2) with respect to τ , 
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For clarity, we simply use θ̂  instead of ),(ˆ sξθ  in what follows. 
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B.C. 1: at ,0=ξ  0
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The general solution to Eq. (3) is 
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where 1c  and 2c  are constants and 0J  and 0Y  are the Bessel functions of the first and second 
kinds of zero order respectively.  From B.C. 1, for ),(ˆ sξθ  to be finite at 0=ξ , 02 ≡c  since 

)0(0Y approaches minus infinity. 

From B.C. 2, 
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Equation (4) then becomes 
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Taking the inverse Laplace transform of Eq. (5), 
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The first two inverse Laplace transform terms on the right-hand side of Eq. (6) can be easily 
obtained. 
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The fourth term on the right-hand side of Eq. (6) can be evaluated as follows.  From 
Stephenson [12], 
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where ,......,,, 4321 λλλλ  are the positive roots of the equation 0)(0 =λnJ .  An application of the 
shift theorem [13] results in  
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The last term on the right-hand side of Eq. (6) can now be obtained using the convolution 
theorem [13] and Eq. (10). 
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The third term on the right-hand side of Eq. (6) can be obtained as follows.  First, we re-write 
this term as 
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Then an application of the shift and convolution theorems [13] results in 
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Substituting Eqs. (7), (8), (10), (11), and (12) into Eq. (6) and after a few algebraic 
manipulations, the following dimensionless temperature distribution ),( τξθ  of the foil is 
obtained. 
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Since the temperature difference between the center of the gage ( 0=ξ ) and the edge (heat sink) 
of the gage ( 1=ξ ) is directly related to the thin-foil gage operation and measurements, the 
general expressions for ),0( τ=ξθ  and ),1( τ=ξθ  with 1)0(0 =J  and 0)(0 =λnJ  for all nλ  are 
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The general expression for ),( τξθ  can be further simplified if there is no convective heat transfer 
( 0=∗Nu ), no radiative heat transfer ( 0=∗Q ), or pure conduction ( 0=∗Q  and 0=∗Nu ).  Since 
proper operation of thin-foil gages requires constant cooling water temperature to be maintained 
in the heat sink, a constant boundary condition at the edge of the gage (heat sink), 

=θ=θ 0f  constant, was employed in all previous analytical studies reported in the literature [1-
8].  For reference and comparison, the closed-form expressions for ),( τξθ  and 

),1(),0( τ=ξθ−τ=ξθ  under constant boundary condition ( 0θ=θ f ) and various modes of heat 
transfer are discussed and presented below. 

Case 1.  No convective heat transfer with θf = θo = constant 

If 0=∗Nu  and 0)( θ=τθ f  = constant, then Eq. (13) becomes 
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It can be shown [14] that 
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Equation (16) can be expressed as 
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Equation (18) is the same equation derived and used by Ash [5] and Keltner and Wildin [7] to 
study the transient response of thin-foil gages. 
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Figure 2 shows the response curve of { }),1(),0( τ=ξθ−τ=ξθ  as a function of τ  at various ∗Q  
and 0=∗Nu .  In obtaining the results in Figure 2, only the sum of the first five terms in the 
series is needed to achieve convergence. 

As ∞→τ  (steady state), Eq. (18) becomes 
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The above equation was first derived by Gardon [1].  From Eq. (19), 
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Equation (21) was used by Gardon [1] to obtain thermal radiative heat flux from temperature 
difference measurements between the foil center and edge and to analyze the performance of the 
gage. 

Case 2.  No radiative heat transfer with θf = θo = constant 

If 0=∗Q  and 0)( θ=τθ f  = constant, it can be shown that Eq. (13) reduces to 
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and 
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It is interesting to compare our results to Ash’s work [5].  The corresponding equation derived by 
Ash [5] and expressed in terms of the dimensionless variables used in the current work is 
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Figure 3 shows the response curves of { }),1(),0( τ=ξθ−τ=ξθ  as a function of τ  at various 
∗Nu  with 0=∗Q  and 2=θ∞  calculated using Eq. (23) from our work and Eq. (24) from Ash 

(1969).  Since the results obtained from Eq. (23) is identical to those from Eq. (24), as 
demonstrated in Figure 3, we obtain the following identity. 
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As ∞→τ  (steady state), Eq. (23) becomes 
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It is worth pointing out that the corresponding equation derived by Kuo and Kulkarin [9] and 
expressed in terms of the dimensionless variables used in the current work is 
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 (27) 

Based on Eq. (25), Eq. (26) is identical to Eq. (27), which can also be deduced from Eq. (24) 
when ∞→τ . 

Case 3.  Pure heat conduction with θf = θ0 = constant 

In this case, 0=∗Q , 0=∗Nu , and 0θ=θ f , then Eq. (13) trivially becomes 

0),( θ=τξθ  (28) 

Case 4.  Radiative and convective heat transfer with θf = θo = constant 

In this case, 0≠∗Q , 0≠∗Nu , and 0)( θ=τθ f  = constant.  Eq. (13) becomes 
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and 
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Figure 4 shows the response curve of { }),1(),0( τ=ξθ−τ=ξθ  as a function of τ  at various ∗Nu  
and 2=∗Q  and 2=θ∞ .  Within the range of ∗Nu  used in this study, the effect of convective 
heat transfer on the gage measurement is not significant. 

As ∞→τ  (steady state), Eq. (30) becomes 
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The corresponding equation derived by Kuo and Kulkarni [9] and expressed in terms of the 
dimensionless variables used in the current work is 
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Again, using the identity shown in Eq. (25), it can be easily shown that the steady-state 
temperature difference at the foil center and edge calculated using Eq. (31) and that of Kuo and 
Kulkarni [9], Eq. (32), are identical. 

Figure 5 shows the steady-state dimensionless temperature difference at the foil center and edge 
calculated using Eq. (31) as a function of ∗Q  at various ∗Nu  and 2=θ∞ . 



Remarks on Calibration 

Gardon gages are normally calibrated under steady-state conditions using prescribed incident 
radiative fluxes from a radiative heat source.  If the gage is used in a purely convective or a 
mixed convective and radiative environment, correction to the calibration is needed.  The 
correction can be obtained by equating the calibrated response of the purely radiative case to the 
measured response of the purely convective or the mixed cases. 

Equating Eq. (21) to Eq. (26) and simplifying, 
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Equating Eq. (21) to Eq. (31) and simplifying, 
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Similar to the results from Kuo and Kulkarni [9], the correction factors for the purely convective 
case, Eq. (33), and mixed convective and radiative case, Eq. (34), have the same form.  Equation 
(34) is also analogous to the results given in Kuo and Kulkarni [9] and Fu et al. [10]. 

Conclusions 

An expanded analysis of a thin-foil gage, which includes the transient effects, convective heat 
transfer, and an arbitrary time-varying boundary condition at the edge of the foil, has been 
performed.  The general closed-form solution is obtained using Laplace transform.  Specialized 
solutions under constant temperature at the edge of the foil and constant thermal radiative heat 
flux are provided under various modes of heat transfer.  Steady-state solutions are also obtained 
as limiting cases.  The transient and steady-steady solutions reduced to and matched the results 
reported in the literature under the less generalized conditions. 

  

jcy
Highlight



Nomenclature 

pc  heat capacity of foil 

)(tf  heat sink temperature as a function of t  

h  convective heat transfer coefficient 

H  foil thickness 

i  imaginary number, 1−  

0I  modified Bessel function of the first kind of zero order 

0J  Bessel function of the first kind of zero order 

1J  Bessel function of the first kind of first order 

k  thermal conductivity of foil 

fk  thermal conductivity of fluid 

L  Laplace transform operator 
1−L  inverse Laplace transform operator 

Nu  Nusselt number ( fkhRNu /= ) 

∗Nu  Nuδκ=  

iq  radiative heat flux 

∗Q  )/( 0
2 kHTRqi=  

r  radial direction 

R  radius of foil 

s  variable in Laplace transform domain 

t  time 

T  absolute temperature 

0T  initial foil temperature 

∞T  temperature of fluid flowing over the foil 

0Y  Bessel function of the second kind of zero order 

α  thermal diffusivity of foil, )/( pck ρ=  

δ  HR /=  

κ  kk f /=  



nλ  zeros of Bessel function of the first kind of zero order 

θ  0/TT=  

fθ  0/)( Tf τ=  

0θ  1/ 00 == TT  

θ̂  { }θ= L , Laplace transform of θ  

fθ̂  { }fL θ= , Laplace transform of fθ  

ρ  density of foil 

τ  2/ Rtα=  

∗τ  integration dummy variable 

ξ  Rr /=  
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Figure 1.  Cross section of a thin-foil gage. 
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Figure 2.  Response curve showing dimensionless temperature difference between the center and 
edge of gage with no convective heat transfer (Nu* = 0) at various Q*. 

  



 

 

Figure 3.  Comparison of response curves showing dimensionless temperature difference 
between the center and edge of gage with no thermal radiative heat transfer (Q* = 0) at 
various Nu* and θ∞ = 2 from current work (lines) with that from Ash (1969) (symbols). 

 

  



 

 

Figure 4.  Response curve showing dimensionless temperature difference between the center and 
edge of gage with Q* = 2 and θ∞ = 2 at various Nu*. 

  



 

 

Figure 5.  Steady state dimensionless temperature difference between the center and edge of 
gage as a function of Q* at various Nu* with θ∞ = 2. 


