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When performing precision measurements, the quantity being measured is often perturbed by the
measurement process itself. Such measurements include precision frequency measurements for atomic
clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced
perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and
rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second
control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a
different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately
compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We
show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts
and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump
modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored
based on different secondary variables including added relative phase shifts between Ramsey pulses,
external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal
antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated
only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable
parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular
spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry,
and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks
using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.
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I. INTRODUCTION

Atomic clocks are based on high-precision spectroscopy
of isolated quantum systems and are currently the most
precise scientific instruments. Fractional frequency insta-
bilities and accuracies at the level of 10−18 have already
been achieved, with the goal of 10−19 on the horizon [1].
Frequency measurements at such a level could enable
previously inaccessible tests of quantum electrodynamics
and cosmological models, searches for drifts of funda-
mental constants, and alternative types of chronometric
geodesy [2].
For some of the promising clock systems, a key

limitation is the frequency shift of the clock transition
due to the excitation pulses themselves (probe-field-
induced shift). In particular, for ultranarrow transitions
(e.g., electric octupole [3] and two-photon transitions

[4,5]), the off-resonant ac-Stark shift can be so large in
some cases that high-accuracy clock performance is not
possible. In the case of magnetically induced spectro-
scopy [6,7], these shifts (quadratic Zeeman and ac-Stark
shifts) could ultimately limit the achievable performance.
A similar limitation exists for clocks based on direct
frequency-comb spectroscopy [8,9] due to off-resonant
ac-Stark shifts induced by large numbers of off-resonant
laser modes. In addition to optical standards, probe-
field-induced shifts can create significant instability for
atomic clocks in the microwave range based on coherent
population trapping (CPT) [10–15]. In this context, we
can also consider compact cold-atom clocks [16,17]
and hot-cell devices like the pulsed optical pumping
(POP) clock [18,19].
These challenges can be addressed through the use of

Ramsey spectroscopy [20], including its various general-
izations and modifications. In contrast to continuous-wave
spectroscopy, Ramsey spectroscopy has a large number of*viyudin@mail.ru
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additional degrees of freedom connected with a wide
assortment of parameters that can be precisely controlled:
the durations of Ramsey pulses τ1 and τ2, the time of free
evolution (dark time) T, the phase composition of Ramsey
pulses (e.g., the use of composite pulses [21]), a variety of
Ramsey sequences (e.g., the use of three and more Ramsey
pulses), different variants to build an error signal, etc.
Some modified Ramsey schemes for the suppression of

the probe-field-induced shifts in atomic clocks were theo-
retically described in Ref. [22], which proposed the use of
pulses with different durations (τ1 ≠ τ2) and the use of
composite pulses in place of the standard Ramsey sequence
with two equal π=2 pulses. This “hyper-Ramsey” scheme
has been successfully realized in an ion clock based on an
octupole transition in Ybþ (see Refs. [23,24]), where a
suppression of the light shift by 4 orders of magnitude and
an immunity against its fluctuations were demonstrated.
Further developments of the hyper-Ramsey approach
have used alternative phase variants to build error signals
[25–27]. These developments have allowed for significant
improvement in the efficiency of suppression of the probe-
field-induced shifts in atomic clocks. However, as was shown
in Ref. [28], all previous hyper-Ramsey methods [22–
25,27,29] are sensitive to decoherence and spontaneous
relaxation, which can appreciably impede the achievement
of relative instability and inaccuracy at the level of 10−18 (or
lower) in modern and future atomic clocks, for which the
probe-field-induced shift is not negligible. To eliminate this
disadvantage, a more complicated construction of the error
signal was recently proposed in Ref. [30] which requires four
measurements for each frequency point (instead of two
measurements for previousmethods),with theuse of different
generalized hyper-Ramsey sequences presented in Ref. [27].
Nevertheless, the method in Ref. [30] is not free from other
disadvantages related to technical issues such as time-depen-
dent pulse area fluctuations and/or phase-jump modulation
errors during the measurement of the error signal.
The above approaches [22–25,27,29,30] can be referred

to as one-loop methods because they use only one feedback
loop and one error signal. However, frequency stabilization
can also be realized with two feedback loops connected to
Ramsey sequences with different dark periods, T1 and T2

(see Refs. [28,31,32]). For example, in Ref. [28], a
synthetic frequency protocol was proposed which, in
combination with the original hyper-Ramsey sequence
[22], allows for a substantial reduction in the sensitivity
to decoherence and nonidealities of the interrogation
procedure. An alternative and effective approach called
autobalanced Ramsey spectroscopy was proposed and
experimentally demonstrated in Ref. [32], where, in addi-
tion to the stabilization of the clock frequency ω, a second
loop feeding back on a variable phase during the second
pulse was employed. Both of these two-loop methods
[28,32] strongly suppress probe-induced shifts of the
measurement of the clock frequency.

In this paper, we present and rigorously substantiate a
method of generalized autobalanced Ramsey spectroscopy
(GABRS), of which the intuitive approach realized in
Ref. [32] is a particular case. Our method uses a two-loop
approach to feed back and to stabilize the clock frequencyω
as well as a second (concomitant) parameter ξ, which is an
adjustable property of the first and/or second Ramsey pulses
τ1 and τ2. To determine the error signals, it is necessary to use
Ramsey sequences with two different dark times, T1 and T2.
The operation of GABRS consists of the correlated stabi-
lization of both variable parameters, ω and ξ. In addition to
the suppression of probe-field-induced shifts, the GABRS
technique is protected against various processes of deco-
herence and also technical issues including time-dependent
pulse area fluctuations (even more powerful than the
common weak pulse area variation from previous schemes)
and phase-jump modulation errors needed to generate the
error signal. This insensitivity to decoherence and technical
noise is in contrast to previous hyper-Ramsey schemes
[22,25,27], which can suffer from relaxation, time-dependent
pulse fluctuations, and phase-jump modulation errors. We
consider several variants of GABRS with the use of different
concomitant parameters ξ. It is found that the most optimal
and universal variant is based on the frequency-step tech-
nique, where the concomitant parameter ξ is equal to the
varied additional frequency step Δstep during both Ramsey
pulses, τ1 and τ2. In this case, universal antisymmetrical error
signals are realized.

II. GENERAL THEORY OF GABRS

In this section, we demonstrate the universality and
unprecedented robustness of GABRS. We consider a two-
level atom with unperturbed frequency ω0 of the clock
transition jgi ↔ jei (see Fig. 1), which interacts with a
Ramsey sequence of two absolutely arbitrary pulses (with
durations τ1 and τ2) of the resonant probe field with
frequency ω:

EðtÞ ¼ RefEðtÞe−iφðtÞe−iωtg; ð1Þ

( )t

T
t

t tt const
g( )t

FIG. 1. (Left panel) Schematic illustration of a sequence of two
arbitrary Ramsey pulses [with the real amplitude EðtÞ and
durations τ1;2] which are separated by the dark time T. (Right
panel) Scheme of the clock transition jgi ↔ jei (with unper-
turbed frequency ω0) interacting with the probe field at the
frequency ω.
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which are separated by a free evolution interval (dark time)
T, during which the atom-field interaction is absent
(see Fig. 1). We emphasize that the Ramsey pulses with
arbitrary durations τ1 and τ2 can have an arbitrary shape
and amplitude [i.e., during τ1 and τ2, an amplitude EðtÞ can
be an arbitrary real function], and an arbitrary phase
function φðtÞ (e.g., the Ramsey pulses can be composite
pulses). We assume only one restriction: aside from a phase
modulation applied to generate the error signal (discussed
below), the phase function φðtÞ should be constant during
the dark time T (as is usually the case for Ramsey
spectroscopy of clock transitions).
Our main goal consists of the development of a universal

method, which allows us to stabilize the probe field
frequency ω at the unperturbed frequency of the clock
transition, ω ¼ ω0, in the presence of decoherence and
arbitrary relaxation (including spontaneous relaxation). For
this purpose, we use the formalism of density matrix ρ̂,
which has the following form,

ρ̂ðtÞ ¼
X

j;k¼g;e

jjiρjkðtÞhkj; ð2Þ

in the basis of states jgi and jei. In the resonance
approximation, the density matrix components ρjkðtÞ sat-
isfy the following differential equations:

½∂t þ Γ − iδ̃ðtÞ�ρeg ¼ iΩðtÞ½ρgg − ρee�=2; ρge ¼ ρ�eg;

½∂t þ γe�ρee − γg→eρgg ¼ i½ΩðtÞρge − ρegΩ�ðtÞ�=2;
½∂t þ γg�ρgg − γe→gρee ¼ −i½ΩðtÞρge − ρegΩ�ðtÞ�=2: ð3Þ
Here, the time dependencies ΩðtÞ and δ̃ðtÞ are deter-

mined by the following: ΩðtÞ ¼ hdiEðtÞe−iφðtÞ and δ̃ðtÞ ¼
δ − ΔshðtÞ during the action of Ramsey pulses τ1 and τ2, but
ΩðtÞ ¼ 0 and δ̃ðtÞ ¼ δ during the dark time T, hdi is a
matrix element of the atomic dipole moment, δ ¼ ω − ω0 is
the detuning of the probe field from the unperturbed atomic
frequency ω0, and ΔshðtÞ is an actual probe-field-induced
shift (see Fig. 1) of the clock transition during the Ramsey
pulses (e.g., it can be an ac-Stark shift). Also, Eq. (3)
contains five relaxation constants, fγe; γe→g; γg; γg→e;Γg γe
is the decay rate (e.g., a spontaneous one) of the exited state
jei; γe→g is the rate of the transmission (e.g., a spontaneous
one) to the ground state jgi; γg is a decay rate of the ground
state jgi (e.g., due to blackbody radiation and/or collisions);
γg→e is the rate of the transmission from the ground state jgi
to the exited state jei. Note that γe→g ¼ γe and γe→g ¼ γg in
the case of a closed two-level system, while γe→g < γe
and/or γe→g < γg in the case of an open system. The constant
Γ¼ðγeþγgÞ=2þ Γ̃ describes the total rate of decoherence:
spontaneous aswell as all other processes,which are included
in the parameter Γ̃ (e.g., an influence of the nonzero spectral
width and the phase noise of the probe field).
Equation (3) can be rewritten in the vector form:

∂tρ⃗ðtÞ ¼ L̂ðtÞρ⃗ðtÞ; ð4Þ

where L̂ðtÞ is a 4 × 4 matrix, which is determined by the
coefficients of Eq. (3), and ρ⃗ðtÞ is a vector formed by the
matrix components ρjkðtÞ:

ρ⃗ðtÞ ¼

0
BBBBB@

ρeeðtÞ
ρegðtÞ
ρgeðtÞ
ρggðtÞ

1
CCCCCA
: ð5Þ

In this case, a spectroscopic Ramsey signal can be
presented in the following general form, which describes
Ramsey fringes (as a function of δ):

ARamsðδÞ ¼ ðρ⃗obs; Ŵτ2ĜTŴτ1 ρ⃗inÞ; ð6Þ

where the scalar product is determined in the ordinary way:
ðx⃗; y⃗Þ¼P

mx
�
mym. Operators Ŵτ1 and Ŵτ2 describe an

evolution of an atom during the first (τ1) and second (τ2)
Ramsey pulses, respectively, and the operator ĜT describes
free evolution during the dark time T. Vectors ρ⃗in and ρ⃗obs
are the initial and observed states, respectively. For example,
if an atom before the Ramsey sequence is in the ground state
jgi and, after the Ramsey sequence, we detect the atom in the
exited state jei, then vectors ρ⃗in and ρ⃗obs are determined, in
accordance with definition (5), as the following:

ρ⃗in ¼

0
BBB@

0

0

0

1

1
CCCA; ρ⃗obs ¼

0
BBB@

1

0

0

0

1
CCCA: ð7Þ

However, for stabilization of the frequency ω, we need to
form an error signal (differential signal). In our approach, we
use phase jumps αþ and α− of the probe field before the
second pulse τ2 (see Fig. 1), as was proposed in Ref. [33].
These jumps are described by the operators Φ̂þ and Φ̂−,
respectively. As a result, the error signal can be presented as
a difference:

SðerrÞT ¼ ðρ⃗obs; Ŵτ2Φ̂þĜTŴτ1 ρ⃗inÞ − ðρ⃗obs; Ŵτ2Φ̂−ĜTŴτ1 ρ⃗inÞ
¼ ðρ⃗obs; Ŵτ2D̂ΦĜTŴτ1 ρ⃗inÞ; ð8Þ

with D̂Φ ¼ Φ̂þ − Φ̂−. To maximize the error signal, α� ¼
�π=2 is typically used. However, in real experiments, we
can have jαþj ≠ jα−j due to various technical reasons
(e.g., electronics), which leads to a shift of the stabilized
frequency ω in the case of standard Ramsey spectroscopy.
Therefore, here we consider the general case of arbitrary αþ
and α− values to demonstrate the robustness of generalized
autobalanced Ramsey spectroscopy, where the condition
jαþj ≠ jα−j does not lead to a frequency shift in atomic
clocks.
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Let us consider now the structure of the following
operators: ĜT , Φ̂þ, Φ̂−, and D̂Φ. The operator of the free
evolution ĜT has the following general matrix form:

ĜT ¼

0
BBB@

G11ðTÞ 0 0 G14ðTÞ
0 e−ðΓ−iδÞT 0 0

0 0 e−ðΓþiδÞT 0

G41ðTÞ 0 0 G44ðTÞ

1
CCCA; ð9Þ

which corresponds to Eq. (3) if ΩðtÞ ¼ 0 and δ̃ðtÞ ¼ δ. The
matrix elements G11ðTÞ, G14ðTÞ, G41ðTÞ, and G44ðTÞ
depend on four relaxation constants: fγe; γe→g; γg; γe→gg.
In particular, for purely spontaneous relaxation of the
exited state jei, when γg ¼ γg→e ¼ 0, we obtain

ĜT ¼

0
BBB@

e−γeT 0 0 0

0 e−ðΓ−iδÞT 0 0

0 0 e−ðΓþiδÞT 0
γe→g

γe
ð1 − e−γeTÞ 0 0 1

1
CCCA:

ð10Þ

Operators for the phase jumps Φ̂þ and Φ̂− have the
forms

Φ̂� ¼

0
BBB@

1 0 0 0

0 eiα� 0 0

0 0 e−iα� 0

0 0 0 1

1
CCCA; ð11Þ

which lead to the following expression for D̂Φ:

D̂Φ ¼ Φ̂þ − Φ̂−

¼

0
BBB@

0 0 0 0

0 ðeiαþ − eiα−Þ 0 0

0 0 ðe−iαþ − e−iα−Þ 0

0 0 0 0

1
CCCA: ð12Þ

As a result, taking into account Eq. (9), we obtain a formula
for the matrix product ðD̂ΦĜTÞ:

D̂ΦĜT ¼

0
BBB@

0 0 0 0

0 e−ðΓ−iδÞTðeiαþ − eiα−Þ 0 0

0 0 e−ðΓþiδÞTðe−iαþ − e−iα−Þ 0

0 0 0 0

1
CCCA ¼ e−ΓTϒ̂δT; ð13Þ

where the matrix ϒ̂δT is defined as

ϒ̂δT ¼

0
BBB@

0 0 0 0

0 eiδTðeiαþ − eiα−Þ 0 0

0 0 e−iδTðe−iαþ − e−iα−Þ 0

0 0 0 0

1
CCCA:

ð14Þ

Note that

ϒ̂δT¼0 ¼ D̂Φ: ð15Þ

Thus, the error signal (8) can be rewritten in the following
form:

SðerrÞT ¼ e−ΓTðρ⃗obs; Ŵτ2ϒ̂δTŴτ1 ρ⃗inÞ: ð16Þ

Note that this result is the same if we apply phase jumps α�
at any arbitrary point during the dark interval T. It is
interesting to note that the expression of the error signal in
the presence of relaxation is formally different from the

error signal in the absence of relaxation only due to the
scalar multiplier e−ΓT, which affects the amplitude, first of
all, but not the overall shape of the error signal. This is one
of the main specific properties of the phase-jump technique
for Ramsey spectroscopy that makes it robust against
relaxation. Indeed, for other well-known methods of
frequency stabilization, which use a frequency-jump tech-
nique between alternating total periods of Ramsey inter-
rogation ðτ1 þ T þ τ2Þ, relationship (8) does not exist. In
addition, in the ideal case of αþ ¼ −α− ¼ α, the error
signal (16) can be expressed as

SðerrÞT ¼ 2 sinðαÞe−ΓTðρ⃗obs; Ŵτ2Θ̂δTŴτ1 ρ⃗inÞ; ð17Þ

where the matrix Θ̂δT ,

Θ̂δT ¼

0
BBB@

0 0 0 0

0 ieiδT 0 0

0 0 −ie−iδT 0

0 0 0 0

1
CCCA; ð18Þ

depends only on δT.
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The main idea of GABRS is the following. First, apart
from δ (i.e., frequency ω) for the frequency stabilization
procedure, we use an additional (concomitant) variable
parameter ξ, which is related to the first and/or second
Ramsey pulses τ1 and τ2. For example, the parameter ξ can
be equal to the phase ϕc of the second pulse, as was
proposed in Ref. [32]. However, as shown below, there are
many other variants of the concomitant parameter ξ. Thus,
the error signal in Eq. (8) should be considered as a

function of two variable parameters SðerrÞT ðδ; ξÞ. Second, we
use the Ramsey interrogation of the clock transition for two
different, fixed intervals of free evolution, T1 and T2, i.e.,

we use two error signals, SðerrÞT1
ðδ; ξÞ and SðerrÞT2

ðδ; ξÞ.
For GABRS, the procedure for the frequency stabilization

is organized as a series of the following cycles. For inter-
rogation with dark time T1, the parameter ξ is fixed, and we
stabilize the variable detuning δ (i.e., frequency ω) at the

zero point of the error signal: SðerrÞT1
ðδ; ξfixedÞ ¼ 0. After this

procedure, we switch to interrogation with dark time T2,
wherewe fix the previously obtained detuning δ and stabilize
the variable parameter ξ at the zero point of the second error

signal: SðerrÞT2
ðδfixed; ξÞ ¼ 0. If we continue these cycles, then

the final result (formally for t → ∞) consists of the
stabilization of both parameters, δ ¼ δ̄clock and ξ ¼ ξ̄, which
corresponds to the solution of a system of two equations:

SðerrÞT1
ðδ; ξÞ ¼ 0; SðerrÞT2

ðδ; ξÞ ¼ 0; ð19Þ

in relation to the two unknowns δ and ξ. The value δ̄clock
describes the frequency shift in an atomic clock.
Taking into account relationship (16), the system

Eq. (19) can be written in the following form:

ðρ⃗obs; Ŵτ2ϒ̂δT1
Ŵτ1 ρ⃗inÞ ¼ 0; ðρ⃗obs; Ŵτ2ϒ̂δT2

Ŵτ1 ρ⃗inÞ ¼ 0:

ð20Þ

Let us show that Eq. (20) always contains the solution
δ ¼ 0. Indeed, if we apply δ ¼ 0 for operators ϒ̂δT1

and

ϒ̂δT2
, then, due to Eq. (15), we obtain that the system of two

equations (20) is reduced to the following single equation:

ðρ⃗obs; Ŵτ2D̂ΦŴτ1 ρ⃗inÞjδ¼0 ¼ 0; ð21Þ

in relation to only one unknown ξ, which always has a
solution under an appropriate choice of the parameter ξ.
Thus, we analytically show here that the GABRSmethod

always leads to zero field-induced shift of the stabilized
frequency ω in an atomic clock, δ̄clock ¼ 0. This funda-
mental result does not depend on relaxation constants
fγe; γe→g; γg; γg→e;Γg, the values of phase jumps αþ and
α− used for error signals, or the parameters [such as
amplitude, shape, duration, phase structure φðtÞ, shift
ΔshðtÞ, etc.] of the two Ramsey pulses, τ1 and τ2. Such

a robustness is unprecedented for Ramsey spectroscopy.
Indeed, all known methods of hyper-Ramsey spectroscopy
[22,23,25,27,29,30], which can significantly suppress field-
induced shifts, are sensitive (except for Ref. [30]) to
relaxation processes and decoherence (see Ref. [28]), and
all of these methods require the use of rectangularly
shaped Ramsey pulses. Moreover, all previously used
Ramsey methods (including the usual Ramsey spectro-
scopy with two equal π=2 pulses) require the condition
α− ¼ −αþ for phase jumps because any nonideality
(α−≠−αþ) leads to an additional shift which is approxi-
mately equal to thevalue of−ðαþþα−Þ=ð2TÞ. Summarizing,
practically all nonidealities of the interrogation procedure
(including field-induced shifts of atomic levels, acousto-
optic–modulator–induced phase variations, and so on) and
all relaxation processes (including decoherence) influence
only the stabilized concomitant parameter ξ̄, while the
stabilized frequency ω remains unshifted, with δ̄clock ¼ 0.
Note that this result is rigorously valid in the absence of
atomic “phase memory” because, in our theory, we assume
that the initial state ρ⃗in [see Eq. (7)] does not depend on field
parameters and is the same for all interrogation cycles (with
T1 and T2).
It is interesting to note that the solution of Eqs. (20) and

(21) does not formally depend on the values T1 and T2 at
all. However, from an experimental viewpoint, it is better to
use the condition T2 ≪ T1. Indeed, because, during the
interrogation procedure with dark time T1, we stabilize the

frequency ω using the error signal SðerrÞT1
ðδ; ξfixedÞ ¼ 0, we

always have jδj < 1=T1, even during the first cycles of the
clock stabilization. On the other hand, nonzero detuning
δ ≠ 0 influences the second interrogation procedure with
dark time T2 (to stabilize the concomitant parameter ξ), in
conformity with the value δT2, which is contained in the

error signal SðerrÞT2
ðδ; ξÞ. Therefore, if T2 ≪ T1, then we

obtain an estimation, jδT2j < ðT2=T1Þ ≪ 1; i.e., the results
of the stabilization of the concomitant parameter ξ [using

SðerrÞT2
ðδfixed; ξÞ ¼ 0] weakly depends on the results of the

frequency stabilization during an interrogation procedure
with dark time T1. An additional advantage of the condition
T2 ≪ T1 is connected with the short-term stability of an
atomic clock. Indeed, because the second feedback loop
(stabilization of ξ) increases the total period of each cycle,
then it is better to use the shortest possible T2 value.
Formally we can even use T2 ¼ 0 (with the phase jumps α�
in the virtual point between pulses τ1 and τ2). However,
owing to technical transient regimes (i.e., in acousto-optic
modulators) under the switching off and on of the Ramsey
pulses in real experiments, we believe that it is necessary to
keep some nonzero dark time, T2 ≠ 0, which significantly
exceeds any various transient times. For example, in the
case of magnetically induced spectroscopy [6,7], the
transient processes, associated with the switching off and
on of the magnetic field, can be relatively slow.
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Though the solution δ̄clock ¼ 0 does not depend on
the amplitude and shape of the Ramsey pulses; never-

theless, to maximize the error signals SðerrÞT1
ðδ; ξfixedÞ and

SðerrÞT2
ðδfixed; ξÞ, we need to use quite specific types of the

Ramsey pulses. Some appropriate variants are pre-
sented below.

III. OPTIMAL REGIME OF FREQUENCY
STABILIZATION IN THE PRESENCE

OF RELAXATION

Let us determine an optimal regime of GABRS for
frequency stabilization, which uses the error signal

SðerrÞT1
ðδ; ξ ¼ ξ̄Þ, where T1 ≫ T2. It is well known that

the instability of the atomic clock is proportional to the
following expression:

Δwidth

Ares
Nnoise

ffiffiffiffi
tc
t

r
; ð22Þ

where Ares and Δwidth are the amplitude and width of the
atomic resonance, respectively, Nnoise is the level of noise,
tc is the time period of one measurement cycle, which
includes Ramsey interrogation sequences with both long
(T1) and short (T2) dark intervals. Thus, to optimize the
stability, we need to minimize the combination:

Δwidth

Ares
Nnoise

ffiffiffiffi
tc

p
: ð23Þ

The amplitude Ares of the error signal SðerrÞT1
ðδ; ξ ¼ ξ̄Þ is

proportional to the multiplier e−ΓT1 [see Eq. (16)], whereas
the width of the central Ramsey fringe Δwidth is proportional
to 1=T1. The noiseNnoise can also depend on T1 (e.g., due to
the Dick effect [34]). However, any reasonable model of
noise shows the dependence NnoiseðT1Þ as a monotonically
increasing function, i.e., ∂NnoiseðT1Þ=∂T1 ≥ 0 for an arbi-
trary T1 value. Therefore, a minimization of the expression
(23) corresponds to the minimization of the following
expression:

eΓT1NnoiseðT1Þ
ffiffiffiffi
tc

p
T1

;

�∂NnoiseðT1Þ
∂T1

≥ 0

�
; ð24Þ

in relation to the dark interval T1.
Let us consider two limiting cases. At first, we assume

that tc does not depend on T1. In this case, the minimization

of Eq. (24) occurs at the point T1 ¼ TðoptÞ
1 , which satisfies

the following equation (in relation to the unknown T1

value):

T1 ¼
1

Γ½1þ ðΓNnoiseÞ−1∂Nnoise=∂T1�
: ð25Þ

This equation leads to the condition TðoptÞ
1 ≤ Γ−1, where the

equality TðoptÞ
1 ¼ Γ−1 holds for NnoiseðT1Þ ¼ const. In the

opposite case, we assume that tc ∝ T1, when a minimiza-

tion of Eq. (24) occurs at the point T1 ¼ TðoptÞ
1 , which

satisfies another equation:

T1 ¼
1

2Γ½1þ ðΓNnoiseÞ−1∂Nnoise=∂T1�
: ð26Þ

This equation leads to the condition TðoptÞ
1 ≤ ð2ΓÞ−1, where

the equality TðoptÞ
1 ¼ ð2ΓÞ−1 holds for NnoiseðT1Þ ¼ const.

Thus, we rigorously derive an universal condition for
optimization of the frequency stabilization:

TðoptÞ
1 ≤ Γ−1; ð27Þ

which is valid for an arbitrary scenario. If the Ramsey
pulses are relatively short, τ1;2 ≪ TðoptÞ

1 , then the influence
of relaxation during Ramsey pulses (i.e., for the evolution
operators Ŵτ1 and Ŵτ2) is not significant. In this case, from
Eq. (16), we see that the relaxation leads primarily to a
decrease of the amplitude of the error signal [see the
multiplier e−ΓT in Eq. (16)]; however, the line shape of the

error signals SðerrÞT1
ðδ; ξfixedÞ and SðerrÞT2

ðδfixed; ξÞ are not
significantly deformed compared to the case with no
relaxation (γe ¼ γe→g ¼ γg ¼ γg→e ¼ Γ ¼ 0).
Note that the results of Sec. III are valid for arbitrary

Ramsey spectroscopy (i.e., not only for GABRS), where
the error signal is formed by the use of the phase-jump
technique during the dark time T.

IV. DIFFERENT VARIANTS OF GABRS

In this section, we consider some variants of Ramsey
sequences with different choices for the concomitant
parameter ξ. Because arbitrary relaxation and practically
all nonidealities of the Ramsey interrogation scheme do not
lead to a shift of the stabilized clock frequency, δ̄clock ¼ 0,
we focus our attention only on the field-induced shift of the
clock transitionΔsh during the Ramsey pulses τ1 and τ2. We
show how the value Δsh influences the stabilized concomi-

tant parameter ξ̄ and the error signals SðerrÞT1
ðδ; ξ ¼ ξ̄Þ and

SðerrÞT2
ðδ ¼ 0; ξÞ, which contain the main information about

the dynamic efficiency of GABRS.
For simplicity, all calculations are done for α� ¼ �π=2

and in the absence of relaxation (γe ¼ γe→g ¼ γg ¼
γg→e ¼ Γ ¼ 0) because, in the case of T1 ≤ TðoptÞ

1 , the
relaxation leads primarily to a decrease of the amplitude of
the error signals, whereas the line shapes of the error signals

SðerrÞT1
ðδ; ξfixedÞ and SðerrÞT2

ðδfixed; ξÞ are not significantly
deformed compared to the case with no relaxation
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(see Sec. III). Also, for calculations, the initial and observed
states ρ⃗in and ρ⃗obs correspond to Eq. (7).

A. Autobalanced Ramsey spectroscopy
with an additional phase correction

Here, we describe a detailed theoretical basis for the
original autobalanced Ramsey spectroscopy method dem-
onstrated in Ref. [32]. In the context of the general theory
developed above, this spectroscopy can be considered as a
partial case of GABRS, where the concomitant parameter ξ
is equal to the varied additional phase ϕc during the second
pulse [Fig. 2(a)]. In this case, we always have δ̄clock ¼ 0,
and the stabilized phase ϕ̄c is determined as the solution of
Eq. (21). In the presence of the probe-field-induced shift of
the clock transition Δsh during the Ramsey pulses, the
phase ϕ̄c is a function ϕ̄cðΔshÞ of the value Δsh. These
dependencies are presented in Fig. 2(b) for different pulse
areas Ω0τ. In the case of ðΔsh=Ω0Þ < 1, we have the
following approximate dependence: ϕ̄cðΔshÞ ≈ 2rΔsh=Ω0,
where the coefficient r determines the pulse area,
Ω0τ ¼ rπ=2. Thus, this dependence can be written as
ϕ̄cðΔshÞ ≈ 4Δshτ=π (if Δshτ < 1).

The error signals SðerrÞT1
ðδ;ϕ ¼ ϕ̄cÞ and SðerrÞT2

ðδ ¼ 0;ϕÞ
for different values Δsh are presented in Fig. 3. As
we see, for the condition jΔsh=Ω0j > 1, the error signal

SðerrÞT1
ðδ;ϕ ¼ ϕ̄cÞ becomes smaller and distinctly nonanti-

symmetrical, which can lead to clock errors. Thus, the
autobalancing technique of varying the phase only during

the second Ramsey pulse works well only for jΔsh=Ω0j<1.
Distortions in the error signals arising from this problem
can be largely reduced by the use of an additional and well-
controllable frequency step Δstep only during the Ramsey
pulses τ1 and τ2 [22,35]. In this case, all dependencies
presented in Figs. 2(b) and 3 are the same if we replace
Δsh → Δeff ¼ ðΔsh − ΔstepÞ. Thus, we can always apply a
frequency stepΔstep (e.g., with an acousto-optic modulator)
during excitation to achieve the condition jΔeff=Ω0j ≪ 1
for an effective shift Δeff , as has been done in experiments
[23–25,32].
In addition, this variant of GABRS can also be used in

atomic clocks based on CPT, where we can use as the
concomitant parameter ξ the varied phase ϕc of the second
(detecting) pulse in CPT-Ramsey spectroscopy.

B. Autobalanced Ramsey spectroscopy
with an additional frequency step

As an alternative to the previous method with additional
varied phase ϕc during the second pulse [32], let us
describe another variant of GABRS, where the concomitant
parameter ξ is equal to the varied additional frequency step
Δstep during both Ramsey pulses τ1 and τ2 [Fig. 4(a)]. This
frequency-step technique was proposed in Refs. [22,35].

(a)

(b)

FIG. 2. (a) Schematic illustration of Ramsey pulses (with the
same duration τ) for the autobalanced Ramsey spectroscopy
technique demonstrated in Ref. [32], where the concomitant
parameter ξ is equal to the additional phase ϕc of the second
pulse. (b) The dependencies of stabilized phase ϕ̄cðΔshÞ for
different pulse areas: Ω0τ ¼ π=2 (the black solid line), Ω0τ ¼
1.2 × π=2 (the green dashed line), and Ω0τ ¼ 0.8 × π=2 (the red
dashed line).

(a)

(b)

FIG. 3. Error signals under Ω0T1 ¼ 2π and Ω0τ ¼ π=2, and for
different field-induced shifts of the clock transition during Ramsey

pulses, Δsh. (a) Error signal SðerrÞT1
ðδ;ϕ¼ϕ̄cÞ: Δsh=Ω0 ¼ 0 (the

black solid line), Δsh=Ω0 ¼ 1 (the red dashed line), Δsh=Ω0 ¼ 2
(the green dashed line), and Δsh=Ω0 ¼ 3 (the blue dashed line).

(b) Error signal SðerrÞT2
ðδ ¼ 0;ϕÞ:Δsh=Ω0 ¼ 0 (the black solid line),

Δsh=Ω0 ¼ 0.5 (the red dashed line), and Δsh=Ω0 ¼ 1.0 (the green
dashed line).
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Excluding the explicit phase jumps α�, the frequency step
Δstep can be formally described by a phase function φðtÞ in
Eq. (1) with the nonzero time derivative dφðtÞ=dt ¼ Δstep

during the pulses (τ1 and τ2) and with the zero time
derivative dφðtÞ=dt ¼ 0 during the dark time T, and phase
continuity is maintained throughout. In this case, we
always have δ̄clock ¼ 0, and the stabilized frequency step
Δ̄step is determined as the solution of Eq. (21), which has
the universal form Δ̄step ¼ Δsh for arbitrary values of Ω0,
τ1, and τ2 [Fig. 4(b)]. This universal dependence can be
slightly deformed only due to some nonidealities of the
interrogation scheme (e.g., if αþ ≠ −α−).
The error signals SðerrÞT1

ðδ;Δstep¼ Δ̄stepÞ and SðerrÞT2
ðδ¼0;

ΔstepÞ have universal antisymmetrical forms for different
values of Δsh (Fig. 5). Note that this antisymmetry does not
depend on the Rabi frequencyΩ0. Thus, we believe that this
variant of GABRS is more optimal and robust than the
approach used in Ref. [32], where an additional phase ϕc

was varied during the second pulse. In fact, in the case of
jΔsh=Ω0j ≫ 1, it is already necessary to use the frequency-
step technique of Refs. [22,35] to compensate for the very
large actual shift Δsh. This frequency-step technique was
also used in experiments in Ref. [32] with the Ybþ ion
because, for the octupole clock transition, the condition
jΔsh=Ω0j ≫ 1 is practically always true. But in this case,
the use of an additional varied phase ϕc in Ref. [32] seems
to be an excessive technical complication because we can
directly use the frequency-step technique (Δstep) in GABRS
without any additional manipulations.

Note that this variant of GABRS is suitable also for CPT
atomic clocks, where we can use as concomitant parameter
ξ the varied frequency stepΔstep during both Ramsey pulses
in CPT-Ramsey spectroscopy.

C. Autobalanced Ramsey spectroscopy
with a varied pulse duration

For generality, let us describe a variant of GABRS,
where the concomitant parameter ξ is equal to the varied

(a)

(b)

FIG. 4. (a) Schematic illustration of a Ramsey interrogation
scheme for GABRS, where the concomitant parameter ξ is equal
to the additional frequency step Δstep during both Ramsey pulses,
τ1 and τ2. (b) The dependence of the stabilized frequency step
Δ̄stepðΔshÞ, which has the universal form Δ̄step ¼ Δsh for arbitrary
values of Ω0, τ1, and τ2.

(a)

(b)

FIG. 5. Error signals under Ω0T1 ¼ 2π, Ω0τ ¼ π=2
(τ1 ¼ τ2 ¼ τ), and for arbitrary field-induced shifts of the
clock transition during Ramsey pulses, Δsh: (a) error signal

SðerrÞT1
ðδ;Δstep ¼ Δ̄stepÞ, and (b) error signal SðerrÞT2

ðδ ¼ 0;ΔstepÞ.

(a)

(b)

FIG. 6. (a) Schematic illustration of a Ramsey interrogation
scheme for GABRS, where the concomitant parameter ξ is equal
to the duration of the second pulse, τ2. (b) The dependence of
stabilized pulse duration τ̄2ðΔshÞ for different pulse areas:Ω0τ1 ¼
π=2 (the black solid line), Ω0τ1 ¼ 0.8 × π=2 (the red dashed
line), and Ω0τ1 ¼ 1.2 × π=2 (the green dashed line).
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duration of the second (as an example) Ramsey pulse τ2,
while the pulse duration of the first Ramsey pulse τ1 is
fixed. For this method, we use the Ramsey sequence, which
was considered in Ref. [22], where τ2 ≈ 3τ1 [Fig. 6(a)]. In
this case, we always have δ̄clock ¼ 0, and the stabilized
pulse duration τ̄2 is determined as the solution of Eq. (21).
In the presence of the field-induced shift of the clock
transitionΔsh during the Ramsey pulses, the duration τ̄2 is a
function τ̄2ðΔshÞ of the value Δsh. These dependencies are
presented in Fig. 6(b) for different pulse areas of the first

Ramsey pulse,Ω0τ1. The error signals S
ðerrÞ
T1

ðδ; τ2 ¼ τ̄2Þ and
SðerrÞT2

ðδ ¼ 0; τ2Þ for different values Δsh are presented
in Fig. 7.
Note that this variant of GABRS is not valid for CPT

atomic clocks.

V. CONCLUSION

In this paper, we develop a method and theoretical basis
of GABRS, which allows for the elimination of probe-field-
induced shifts in atomic clocks. This universal two-loop
method requires the use of a concomitant parameter ξ in
addition to the clock frequency ω, which is related to the

first and/or second Ramsey pulses τ1 and τ2 through the use
of interleaved Ramsey sequences with two different dark
times, T1 and T2. A correlated stabilization of both variable
parameters can be achieved. It is analytically shown that
the GABRS method always leads to a zero field-induced
shift of the stabilized frequency ω in an atomic clock,
δ̄clock ¼ 0, independent of the relaxation processes
(including decoherence) and different imperfections in
the interrogation procedure. Such robustness is a direct
consequence of the phase-jump technique used to build an
error signal in Ramsey spectroscopy. We consider several
variants of GABRS with the use of different concomitant
parameters ξ. It is found that the most optimal and universal
variant is based on the frequency-step technique, where the
concomitant parameter ξ is a varied additional frequency
step Δstep during both Ramsey pulses, τ1 and τ2. In this
case, universal antisymmetrical error signals are generated,
which result in a vanishing frequency shift even at a finite
modulation amplitude.
Apart from the optical standards, the GABRS technique

can by applied in any other atomic clocks using Ramsey
spectroscopy for frequency stabilization (i.e., CPT and
POP atomic clocks). Some variants of GABRS can also
be applied to CPT atomic clocks using CPT-Ramsey
spectroscopy of the two-photon dark resonance.
Moreover, GABRS is valid for open systems, and there-
fore this technique can be exploited with more complex
schemes, such as molecules for high-resolution molecular
spectroscopy [36–38]. It is also possible that more
complicated Ramsey pulse sequences (for example,
hyper-Ramsey sequence [22]) could also take advantage
of the generalized autobalanced techniques described
here.
We believe that the implementation of the GABRS

technique can lead to a significant improvement of the
accuracy and long-term stability for a variety of types of
atomic clocks. For example, the experimental results in
Ref. [32] can be considered as a first confirmation of the
GABRS theory developed in our paper. In addition, the
authors of a very recent paper [39] use a two-loop method
that is rather closely related to the GABRS technique
because, in Ref. [39], the microwave field stabilization is
extended to two variables (microwave frequency and
amplitude) to minimize instability from the cavity-pulling
effect. Also, it will be interesting to investigate the
efficiency of the GABRS technique in the presence of
probe-laser-intensity fluctuations, as it was recently done
theoretically in Ref. [40] for hyper-Ramsey spectroscopy.
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