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Abstract— This paper presents an anomaly detection method
using a hybrid observer – which consists of a discrete state ob-
server and a continuous state observer. We focus our attention
on anomalies caused by intelligent attacks, which may bypass
existing anomaly detection methods because neither the event
sequence nor the observed residuals appear to be anomalous.
Based on the relation between the continuous and discrete
variables, we define three conflict types and give the conditions
under which the detection of the anomalies is guaranteed.
We call this method conflict-driven anomaly detection. The
effectiveness of this method is demonstrated mathematically
and illustrated on a Train-Gate (TG) system.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are systems that are shaped
by a combination of computing devices, communication
networks, and physical processes [1]. The integration of
these systems into our every-day life is inevitable. The per-
formance and functionality of many critical infrastructures
such as power, traffic and health-care networks and smart
cities rely on the advances on CPS. A fault or an attack on
one of these critical systems, may affect a large portion of
society with serious and lethal consequences. As such, the
safety and reliability of CPS becomes more and more crucial
every day. Fault, attack and anomaly detection mechanisms
play a vital role in providing such reliability and safety
to CPS. In this paper, we propose an anomaly detection
approach that provides formal detection guarantees for an
extended class of anomalies in CPS. Similar to [2], we refer
to any occurrence that is different from what is standard,
normal, or expected as anomaly. In this paper, we utilize the
rich dynamical behavior of mixed continuous and discrete
(i.e., hybrid) systems [3] as our modeling framework to
describe CPS. Even though the design and implementation of
anomaly detection methods is significantly more challenging
on hybrid models, we leverage these models, because of their
advantage in better representing the real-world CPS.

Our motivational example is a Train-Gate (TG) system,
consisting of a train and a gate with a road crossing the
track, as shown in Fig.1. It is an abstracted example that
captures one of the important characteristics of a railway
system which is railway level crossing control system. The
TG system is a hybrid system. The train with an internal
controller for the train speed is the continuous system. An
external controller changes the reference train speed based
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on the measured train position such that the train passes the
gate at a lower speed. The gate is a discrete system, which is
raised or lowered by a controller using two presence sensors
located on both sides of the road. If sensor 1 detects the
train, the gate must be lowered down to stop traffic on the
road. If sensor 2 detects the train, the gate must be raised up
to allow traffic on the road. Two monitors are used to detect
anomalies. One monitor detects anomalies in the continuous
train system, which uses the continuous system model and
compares the measured variables with the estimated ones.
The other monitor detects anomalies in the discrete gate
system, which uses the discrete system model and compares
the expected discrete event sequence with observed one. If
an anomaly is detected from either of these monitors, some
actions should be taken to mitigate its impact.

Fig. 1: TG Schematic
However, an attacker can launch an attack to cause an

anomaly bypassing both monitors. For example, an anoma-
lous ramp signal could be added to the measured train posi-
tion without increasing the difference between the measured
and the estimated variables. The drifted measured position
can make the train pass the gate with a high speed, causing
insufficient time to lower the gate. A driver may pass the
gate, causing an accident.

In order to detect this type of anomaly, we propose a
higher level monitor to augment the previous two monitors.
This new monitor uses a hybrid model of the system, and
estimates both the continuous and the discrete variables.
For the anomaly of a ramp signal injection on the train
position, although the continuous system is anomalous, the
discrete system is normal. If sensor 1 detects the train but
the estimated train position indicates that the train is far
away from sensor 1, a “conflict” between the continuous
and the discrete variables occurs. This new monitor expands
the types of anomalies that can be detected by checking the
occurrence of conflicts, called conflict-driven method. Both
mathematical demonstrations and simulation results illustrate
the effectiveness of the conflict-driven method.

II. BACKGROUND AND CONTRIBUTIONS

Various model-based anomaly detection methods have
been developed for both continuous systems and discrete
systems [4], [5]. Even though discrete model-based anomaly
detection methods are computationally efficient [6], they can-
not provide sufficient resolution of continuous degradations
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for hybrid systems [7]. Continuous model-based methods
are impractical for the diagnosis of hybrid systems with a
large number of discrete states because multiple continuous
models need to run in parallel, each model corresponding to
one discrete state [8].

As most CPS are hybrid, consisting of both continuous
dynamics and discrete behavior, hybrid model-based ap-
proaches are promising in anomaly detection. Hybrid model-
based anomaly detection includes set membership-based
methods [9] and observer-based methods [10]. Given a data
trajectory, set membership-based methods check whether
the trajectory can be generated by the model. Even though
these methods provide necessary and sufficient conditions in
some cases for anomaly detection, they are computationally
demanding, as they require costly set calculations or mixed
integer programming. The set membership-based methods
are also utilized in active fault diagnosis, where the goal is
to design a minimal excitation that guarantees the detection
of anomalous behavior [11], [12], [13].

Observer-based methods assume the continuous compo-
nent of the hybrid model is observable under both normal and
anomalous operations. For most observer-based methods, a
residual, which is the difference between the estimated output
and the actual output, is analyzed to determine the occurrence
of an anomaly. State estimation problem is directly related to
observer-based methods. Among various hybrid state estima-
tion methods, a hybrid observer is better for real-time compu-
tation since it can reduce the computational complexity [10].
A hybrid observer consists of two components: a discrete
state observer identifying what is the current discrete state,
and a continuous state observer estimating the continuous
state [10], [14]. With the hybrid observer framework, various
traditional residual-based anomaly detection methods can
be applied for hybrid systems, including different residual
generation methods, such as the dedicated and generalized
observer scheme [15], [16], and some residual evaluation
methods, such as adaptive threshold [17].

A. Contributions

Even though the residual-based methods are efficient,
intuitive and easy to implement, they can easily be tricked by
a smart attacker or by sensor faults that make the continuous
system unobservable, causing anomalies. An example of such
class of anomalies is described in Section I. In this paper, we
propose a conflict-driven anomaly detection approach with
three conflict types defined based on the relation between the
discrete and the continuous variables of the hybrid systems
and in addition to faults that can be detected by traditional
observer-based and residual-based methods, it is capable of
providing guarantees on the detection of attacks and faults
that are undetectable using these methods.

III. PROBLEM FORMULATION & SOLUTION

In this section, we describe the modeling framework that
we consider and the anomaly types that are of interest. Also,
a review of utilized hybrid observer is given.

A. Notation

Let ∥ ⋅ ∥ denote ∞-norm, ⋅̃ denote estimated variables, ⊍
denote disjoint union, and ◻σ denote the ball of center 0 and
of radius σ . In addition, x ∈Rn represents a vector, where its
ith element is indicated by x(i). A ∈Rn×m represents a matrix.
The linear span of a set of vectors is denoted by span(⋅). For
a set X ⊂Rn, we denote its closure, interior, and boundary by
X , Xo and ∂X respectively. Clearly, ∂X =X/Xo. The volume
of the closed set X is denoted by Vol(X).

B. Modeling Framework

1) Hybrid Model: A hybrid system can be modeled as
a hybrid automaton H = (X ,U ,Y,Init, f ield,E,φ ,η), where
each element is defined as

● X =Q×X : a set of discrete and continuous states
● U =Ψ×U : a set of discrete and continuous inputs
● Y =Ω×Y : a set of discrete and continuous outputs
● Init = (q(t0),x(t0)) ∈X : an initial state
● f ield ∶X ×U → X : a time invariant vector field
● E =Ψ⊍Ω: a set of discrete events
● φ ∶Q×Ψ→Q: a set of discrete transitions
● η ∶ X ×U → Y: an output map consisting of a discrete

output map ζ and a continuous output equation h
ζ ∶Q×Ψ→Ω: a discrete output map
h ∶ y(t) =Cqx(t)+v(t): a continuous output equation

The hybrid models considered in this paper capture both
nominal system model with a set of nominal discrete states
Qn and anomaly models with a set of anomalous discrete
states Q f . The set of all discrete states is defined as Q =
Qn ⊍Q f . The nominal hybrid system Hn can be derived
by removing Q f and the events and transitions connecting
Q f . The initial state Init, which is a combination of initial
discrete state q(t0) ∈Qn and initial continuous state x(t0), is
not required to be known.

For each discrete state q ∈ Q, we consider continuous
dynamics that can be represented by a Linear Time Invariant
(LTI) model, subject to process and measurement noise.

f ield ∶x(t +1) =Aqx(t)+Bqu(t)+w(t),
h ∶y(t) =Cqx(t)+v(t),

(1)

where Aq ∈Rn×n,Bq ∈Rn×nu ,Cq ∈Rny×n are system matrices,
x ∈ X ⊂ Rn, u ∈ U ⊂ Rnu and y ∈ Y ⊆ Rny are continuous
states, inputs and outputs, respectively. The process and
measurement noise are represented by w ∼ N (0,W) and
v ∼N (0,V), respectively, where ∥w∥ ≤ w and ∥v∥ ≤ v. Each
entry of the process and measurement noise has its bound,
i.e., ∣w(i)∣ ≤ wi and ∣v(i)∣ ≤ vi. The continuous dynamical
models of the system in anomalous discrete states are not
required to be known. To simplify the notation, we assume:

Assumption 1: The output matrix Cq is an identity matrix
in all discrete states, i.e., ∀q ∈Q,Cq = I.
We can easily extend our work to general C matrix assuming
the continuous system is observable.

Discrete events E can be partitioned into observable events
Eo and unobservable events Euo, i.e., E = Eo ⊍Euo. Only
observable events can be detected by an observer. We denote
the set of observable input events as Ψo and a set of

2



unobservable input events as Ψuo. Obviously, all of the output
events are observable.

The ith discrete event occurs at time ti. The continuous
evolutions occur in time t ∈ [ti−1+1,ti],∀i = 1,2, .... In reality,
discrete events may occur between two adjacent sample
times. We assume

Assumption 2: The occurrence of the discrete events can
be captured at sample times. At most one input event
occurs within one sampling period. An output event occurs
simultaneously with an input event.
Note that the discrete state is changed one time step after
a discrete input event occurs, that is φ(q(ti),ψ) = q′(ti +
1), where q(ti),q′(ti + 1) ∈ Q. To each discrete transition
φ(q,ψ) = q′, we associate a guard:

G(q,q′,ψ) = {x ∶ sGx(iG) ≥ cG}, (2)
where cG is a constant value and sG is either −1 or 1. A
guard is a closed half-space divided by the hyperplane

P(q,q′,ψ) = {x ∶ x(iG) = sGcG}. (3)
A guard G(q,q′,ψ) indicates that the transition ψ will take
place if and only if the ithG state variable of sGx is no smaller
than cG in discrete state q.

To each discrete state q ∈Q, we associate an invariant:
Invq = {x ∶ ∀i = 1, ...,n,β

i
≤ x(i) ≤ β i,} ⊆ X , (4)

where β
i

and β i are constant values. An invariant is a
hyperrectangle with bounded intervals on each continuous
state variable. An invariant Invq indicates that the system can
remain in the discrete state q if and only if the continuous
state x ∈ Invq/⋃ j G(q,q j,ψ j).

Our definitions of guard G(q,q′,ψ) and invariant Invq
indicate that cG is between the lower and upper bounds of the
state variable x(iG) of the invariant Invq, i.e., β

iG
≤ cG ≤ β iG .

We define a neighbor hyperplane of guard G(q,q′,ψ) as
Definition 1: (Neighbor hyperplane of guard G(q,q′,ψ))

is one of the hyperplanes forming the boundary of the
invariant ∂ Invq, which is defined as follows:

L(q,q′,ψ) = {x ∈ X ∶∣x(iG)−x′(iG)∣ =min(cG−β
iG
,β iG −cG)

∧x(iG) ∈ {β
iG
,β iG},x

′ ∈P(q,q′,ψ)}.
(5)

An example of neighbor hyperplane of G(q,q′,ψ) is shown
in Fig.2. To simplify notation, we denote cL as the value of
x(iG), where x ∈L(q,q′,ψ). If P(q,q′,ψ) forms one of the
hyperplanes of ∂ Invq, then L(q,q′,ψ) = P(q,q′,ψ). Other-
wise, L(q,q′,ψ)∩P(q,q′,ψ) =∅. Discontinuities may exist
in continuous variables due to discrete transitions in general
hybrid systems. However, in our hybrid system formalism,
no discontinuities exist in the continuous variables. This is
imposed without any reset maps.

The hybrid observer used in this paper is proposed in [14],
which is designed based on the Finite State Machine (FSM)
associated with the nominal hybrid model. The FSM Mn is
derived by removing all of the continuous dynamics in Hn,
and is represented by tuple (Q,Ψ,Ω,q(t0),E,φ ,ζ). In order
to get a unique estimate of the discrete state with the hybrid
observer after finite observable events, we assume

Assumption 3: The FSM Mn is current-state observable.
Current-state observable is defined in [14].

Definition 2: (Current-State Observable) A FSM is
current-state observable if there exists an integer k such that
for any unknown initial discrete state, the discrete state at
i can be determined from the observed input/output event
pairs sequence up to i, i.e., i ≥ k.
Note that one input/output event pair is considered as one
input event to the hybrid observer. Thus, after the kth

input/output event pair occurs, the hybrid observer can give a
unique estimated discrete state. The necessary and sufficient
condition of current state observability is given in [14].

2) Nominal Discrete States: We partition the invariants of
the nominal discrete states into an intermediate region and
several normal operating regions. The intermediate region
Rin is the union of all the intersections between the invariants
of any two nominal discrete states
Rin = {x ∈ X ∶ ∀q,q′ ∈Qn,q ≠ q′∧x ∈ Invq∩ Invq′}. (6)

For discrete state q ∈ Qn, we define a normal operating
region as the set of continuous states that are in the invariant
but not the intermediate region,

Rno,q = Invq/Rin. (7)
We pose an assumption on the hybrid model to restrict

state-space abstraction method. This assumption helps select
the appropriate hybrid model of the system with which the
conflict-driven method can provide detection guarantees.

Assumption 4: The intermediate region is bounded by
the hyperplane P(q,q′,ψ) corresponding to the guard
G(q,q′,ψ) and the neighbor hyperplane of G(q,q′,ψ) and
∂ Invq in each discrete state.
Rin ⊂ ⋃

q∈Qn

{x ∈ Invq ∶∀q j ∈Qn ∶ ∃P(q,q j,ψ j),

min(cG,cL) ≤ x(iG) ≤max(cG,cL)}.
(8)

The visualization of this assumption on a 2-dimensional
system is shown in Fig.2. Assumption 4 indicates P(q,q′,ψ)
is one of the hyperplanes forming ∂ Invq′ .

Fig. 2: Normal operating and intermediate regions
The basic principle of the conflict-driven method is to

check at each time step, whether or not the sets of continuous
states, which are calculated based on the estimated continu-
ous state, intersect with the invariant of the estimated discrete
state. The sets of continuous states include an initial set with
the estimated continuous state as the center, and a forward
reachable set which is the set of all continuous states that
can be reached along trajectories starting in the initial set.
Reachable set calculation requires following assumptions.

Assumption 5: The continuous system in each nominal
discrete state is open-loop stable or marginally stable, i.e.,
∣λ(Aq)∣ ≤ 1, where λ(Aq) are the eigenvalues of Aq.
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Assumption 6: The continuous input signal is bounded,
and the bound is known, i.e., ∣∣u∣∣ ≤ µ .

A great deal of attention has been given to algorithms and
software developed for analysis of hybrid systems. To date,
the most efficient way to compute the reachable set is to use
zonotopes [18]. A zonotope is a Minkowski sum of a finite
set of line segments, defined as

Definition 3: (Zonotope Z) is a set such that:
Z =(xc,< g1, ...,gp >)
={x ∈Rn ∶ x = xc+Σ

i=p
i=1bigi,−1 ≤ bi ≤ 1}, p ≥ n,

(9)

where xc,gi ∈Rn are the center and generators, respectively.
Both p and n determine the maximum number of vertices
and facets.

C. Hybrid Observer

Given the nominal hybrid model Hn, we can design a
hybrid observer to estimate both the discrete state and the
continuous state of the system using the method in [14].
The hybrid observer O consists of a discrete state observer
D and a continuous state observer C, as shown in Fig.3.
The discrete state observer receives discrete input/output
event pair (ψ,ω) and gives q̃. The estimated discrete state
q̃ contains a set of estimated discrete states before the
occurrence of the kth observable input/output event pair.
After the occurrence of the kth observable input/output event
pair, q̃, which contains a unique estimate, is passed to the
corresponding continuous state observer. Then the continu-
ous state observer gives an estimated continuous state x̃ using
the continuous input u and output y.

The discrete state observer is represented by a FSM which
is a tuple D = (Q̃,ED,−,Qn,ED, φ̃ ,−), where ED = (Ψ,Ω)
is the set of discrete input/output event pairs of Mn. The
discrete state observer is tracking the set of possible discrete
states that the system can be in. Therefore, no discrete output
events or discrete map are defined for discrete state observer.

The construction of D starts from q̃(t0): with unknown
initial discrete state ofMn, q̃(t0)=Qn. Then for each discrete
state q̃ ∈ Q̃, we identify the input/output event pairs (ψ,ω),
that label all the transitions out of any state q′ in q̃. These
events are called active event set of q̃. For each pair (ψ,ω) in
the active event set, we identify q ∈ Qn that can be reached
from q′ ∈ q̃, and these states return as a new q̃ in Q̃. This
transition is added to φ̃ satisfying

φ̃ ∶= {q ∈Qn ∶ ∃q′ ∈ q̃, q ∈ φ(q′,ψ)∧ω = ζ(q′,ψ)}. (10)
Repeat this step until no new q̃ and φ̃ can be added to D.

To reduce the effect of system noise on state estimation,
we use a Kalman filter as the continuous state observer, with
Kalman gain Kq(t). It is well known that the Kalman gain
will converge in a few steps in practice if the system is
observable [19]. We can use the steady state Kalman gain
given in [19], with which the eigenvalues of (Aq−KqAq) are
stable. Note that we have different Kalman gains for different
discrete states. Let us define

Definition 4: (Dwell time ∆t) is the minimum time to
guarantee the convergence of the estimation error.

Dwell time ∆t should satisfy the condition in section 3.2 in
[14], Then we assume:

Assumption 7: The time gap between any two consecutive
transitions is greater than dwell time, i.e., ti−(ti−1+1) > ∆t.
With bounded noise, we design Kalman filter such that the
estimation error xe(t) = x(t) − x̃(t) is bounded when the
Kalman filter reaches its steady state, i.e., ∃tss,∥xe(t)∥≤ θ ,t >
tss. The residual r of the system is defined as the difference
between the measure output and the estimated output,

r(t) =y(t)− x̃(t). (11)
In the nominal discrete states, the residual r(t),t > tss is
bounded by θ + v because of bounded estimation error and
noise. If ∥r(t)∥ > θ + v,t > tss, then the system is in an
anomalous discrete state.

D. Anomalous Discrete States

An anomaly f ∈ Ψuo is defined as an unobservable input
event that transits the system from a nominal discrete state
qn ∈ Qn to an anomalous discrete state q f ∈ Q f . Arguably,
the multiplicative anomalies can be represented by additive
anomaly models (e.g., Section 3.5 in [4]). Thus, we restrict
our attention to additive anomaly models as follows.

y(t) = x(t)+v(t)+ΓΓΓγγγ(t), (12)
where ΓΓΓ ∈ Rn×n is a diagonal matrix with binary variables.
The ith diagonal variable is 1 if and only if the ith output is
added with an anomalous signal γγγ(t) ∈Rn. Then the residual
in anomalous discrete states is changed to

r(t) = xe(t)+v(t)+ΓγΓγΓγ(t). (13)
The conflict-driven method is guaranteed to detect the
anomalies that are not consistent with the continuous dynam-
ics of the system, i.e, the anomalies that make the residual
greater than threshold θ + v. This is because of leveraging
continuous state observer that is described in the previous
subsection. Additionally, the proposed method extends the
types of anomalies that can be detected compared to the
methods mentioned in Section II.

Perfectly attackable systems are defined by Mo, et al. in
[19] as continuous systems for which anomalies caused by
certain attacks can remain undetected, i.e., the residual will
not increase. One of the conditions for a continuous system
to be perfectly attackable is that the state matrix Aq f has
at least one unstable or marginally stable eigenvalue. If the
continuous system only has stable eigenvalues, anomalies
on the system will increase the residual. The smart attacks
that cannot be detected in perfectly attackable systems are
called False Data Injection Attack (FDIA) as defined and
demonstrated in [19]. One of the conditions of FDIA is that
the eigenvector ξξξ corresponding to an unstable or marginally
stable eigenvalue of Aq f is in the span of ΓΓΓ, i.e., ξξξ ∈ span(ΓΓΓ).
If ξξξ /∈ span(ΓΓΓ), the anomaly will increase the residual and
will be detected by the Kalman filter implemented as the
continuous state observer in conflict-driven method.

As mentioned before, detecting FDIA type anomalies is
challenging, as their effect cannot be observed in the value
of residual. In addition to anomalies that can be detected
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by checking the residual, our main contribution is to also
guarantee the detection of this particular type of anomalies,
if they satisfy certain conditions (explained in Section IV).
Let us define Type-Cu anomalies for the hybrid systems as:

Definition 5: (Type-Cu anomaly) is an anomaly that is
caused by False Data Injection Attack. If an anomaly occurs
at time t f , it satisfies the following two conditions.

1) The input-output sequence generated from the anoma-
lous discrete state satisfies the continuous dynamics of the
nominal discrete states for t ≥ t f , that is, the residual does
not grow larger than the threshold θ +v.

2) The occurrence of the anomaly results in:
for t ≥ t f , if q ∈Q f Ô⇒ ∥xe(t)∥ > θ .

Our objective is to extend the detection guarantees to the
class of Type-Cu anomalies. In order to establish the goal,
we also assume that:

Assumption 8: An anomaly occurs after the continuous
state observer enters its steady state, i.e., t f ≥ tss.

IV. CONFLICT-DRIVEN ANOMALY DETECTION METHOD

In the conflict-driven method, we define three conflict
types. This method checks the occurrence of the conflicts to
detect anomalies. The work flow diagram is shown in Fig.3.
Note that this method is used after the hybrid observer is in
the steady state, i.e., t ≥ tss.

Fig. 3: Conflict-driven anomaly detection method

The conflict-driven method has three steps:
1) Calculate an initial set XI(t): An initial set XI(t) is

constructed as a zonotope based on x̃(t) and r(t), as XI(t) =
(x̃(t),< g1, ...,gn >). The ith generator gi

(i) = ∣r(i)(t)∣ + vi.
Other entries of vector gi are zero. Based on Equation (11),
we have ∣xe

(i)(t)∣ ≤ ∣r(i)(t)∣+ vi in nominal discrete states.
Thus, we can ensure x(t) ∈ XI(t) when the system is in
nominal discrete states. The initial set is changing at each
time step because of the changes in the estimated continuous
state and the residual.

2) Calculate the reachable set Rδq̃(t)(XI(t)): The δq̃(t)
time-step forward reachable set Rδq̃(t)(XI(t)) is calculated
starting from XI(t) constructed in Step 1. It satisfies

Rδq̃(t)(XI(t)) ⊆A
δq̃(t)
q̃(t) XI(t)+◻σq̃(t) (14)

where σq̃(t) =
1−∥Aq̃(t)∥

δq̃(t)
1−∥Aq̃(t)∥

(∥Bq̃(t)∥µ +w). For more details
about reachable set calculation using zonotopes, refer to [18].

3) Check conflicts: We define three conflict types in this
paper, as shown in Fig.4:

Conflict A. The volume of the initial set is larger than the
bound, i.e., Vol(XI(t)) >Π

n
i=1(2θ +4vi)

Conflict B. The initial set has no intersection with the
invariant of the estimated discrete state (XI(t)∩ Invq̃(t) =∅)

Conflict C. The δq̃(t) time steps forward reachable set has
no intersection with the invariant of the estimated discrete
state, i.e., Rδq̃(t)(XI(t))∩ Invq̃(t) =∅.

If one of these conflicts occurs, the system is in an
anomalous state.

Fig. 4: Three conflict types

Note that for Step 2, we do not consider the discrete
behavior in reachability analysis. The reachable set could be
completely outside the invariant if δq̃(t) is too large, causing
false alarms. To avoid false alarms and provide detection
guarantees, we determine the time steps δq for each discrete
state with given nominal hybrid model Hn of the system
according to the following steps:

1) In Invq, starting from the intersection of the hyperplane
corresponding to the ith guard G(q,qi,ψi) as defined by (3)
and Invq, we find the minimum time steps δq,i which satisfies

Rδq,i+1(P(q,qi,ψi)∩ Invq)∩L(q,qi,ψi) ≠∅ (15)
Note that δq,i may be different for different guards in the
same discrete state. The reason we use δq,i + 1 is that the
continuous system is a discrete-time model and we want to
ensure the δq,i time-step forward reachable set, starting from
any possible real continuous state when a transition occurs,
has intersection with Invq in nominal discrete states.

2) Let δq =mini(δq,i). If the distance between P(q,qi,ψi)
and L(q,qi,ψi) is small, δq may be 0. Then we only need
to check Conflicts A and B in discrete state q.

Following proposition and theorem demonstrate the ef-
fectiveness of the conflict-driven method. We give some
intuitions first. Proposition 1 gives the upper bound for the
volume of the initial set. Based on Assumption 1, in a
nominal discrete state, the estimation error of the continuous
state, as well as the residual, should converge. Therefore,
an upper bound exists for the volume of the initial set
Vol(XI(t)),t > tss, as demonstrated in Proposition 1. The
increase of Vol(XI(t)) indicates the increase of the residual.
Conflict A can detect anomalies that increase the residual.
Since the main contribution of this paper is focusing on the
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detection of Type-Cu anomaly which does not increase the
residual, finding the lower bound of the anomalous signal
which causes conflict A and the conditions under which a
residual-based method is equivalent to checking Conflict A
are part of our future work.

Proposition 1: Given a nominal hybrid automaton Hn and
a hybrid observer O with bounded estimation error in steady
state, i.e., ∀t > tss,∥xe(t)∥ ≤ θ , the volume of the initial set is
also bounded, i.e., Vol(XI(t)) ≤Π

n
i=1(2θ +4vi).

Proof: In steady state, ∀t > tss,

Vol(XI(t)) =Π
n
i=1(2(∣r(i)(t)∣+vi)) ≤Π

n
i=1(2(∥xe(t)∥+2vi))

≤Π
n
i=1(2∥xe(t)∥+4vi) ≤Π

n
i=1(2θ +4vi)

As discussed before, Type-Cu anomaly affects the con-
tinuous outputs of the system, but can remain undetectable
by residual-based methods and unobserved by discrete state
observer. In order to detect this type of anomaly, we lever-
age the estimated states from both continuous and discrete
observers, and take advantage of observation of a discrete
event. This enables us to employ the contradictions among
estimated continuous and discrete states and the model
parameters such as guards and invariants to detect these
challenging anomalies. These contradictions are formalized
in Conflicts B and C. In what follows, we set the stage to
present the main contribution of this paper, which is Theorem
1. This theorem provides sufficient conditions on the lower
bound of the anomalous signal, under which the conflict-
driven method is guaranteed to detect Type-Cu anomalies.
Towards this goal, we first find the lower bound of the
estimation error that creates one of Conflicts B or C, and
then relate this bound to the lower bound on the anomalous
signal according to (13).

Let us assume that a Type-Cu anomaly occurs at time t f
which causes a large estimation error on the ithG state variable,
i.e., ∣x(iG)e ∣> θ , and a discrete event ψ occurs at time te which
associates a guard with condition on the ithG state variable,
i.e., {x ∈ Invq ∶ sGx(iG) ≥ cG}. Without loss of generality, we
assume that the projection of Ro

no,q onto x(iG)e is bounded
above by cG, i.e., HiGRo

no,q ≤ cG (because sG = 1), where HiG ∈
Rn is the projection row vector with the ithG entry “1” and “0”
elsewhere. The procedure for the case where HiGRo

no,q ≥−cG
(because sG = −1) is identical. When this event occurs, we
can only have two possibilities for the estimated state at time
te, either x̃(te) ∈Ro

no,q, or x̃(te) ∈Ro
in ∩ Invq. Based on our

definitions of guard, invariant, neighbor hyperplane of the
guard, and Assumption 4, along the ithG state variable, the
upper bound of Invq is cL and the lower bound of Invq′ is
cG. For brevity in notation and as in this section we mainly
consider G(q,q′,ψ), we refer to it as G.

First, consider the case where x̃(te) ∈Ro
no,q, that is, when

the real continuous state satisfies the guard, the estimated
state is in the normal operating region of discrete state q.
The goal is to find the lower bound of the estimation error
along the ithG state variable, such that:

● The initial set XI(te+1) has no intersection with Invq′ .
We denote such minimum estimation error corresponding to

G by z∗G. To find z∗G, it suffices to find the minimum z such
that for all x̃(te+1) the upper bound of XI(te+1) is smaller
than the lower bound of Invq′ along the ithG state variable,

HiG x̃(te+1)+θ +2v < cG. (16)
Note that at time te, the continuous state of the system along
the ithG state variable is greater than or equal to cG, and smaller
than the maximum value of the one time step forward reach-
able set from P(q,q′,ψ)∩ Invq along the ithG state variable,
i.e., cG ≤ HiGx(te) < ε , where ε = max(HiGR1(P(q,q′,ψ)∩
Invq)). After the occurrence of event ψ , the state equation
of the anomalous discrete state is changed to (Aq′ ,Bq′) and
the estimated discrete state is changed to q′ at time te +1.
Then the set of all possible continuous states at time te +1
can be represented by:
∀x(te) ∈ Invq,cG ≤HiGx(te) < ε,

x(te+1) ∈ R1(x(te)) ⊆Aq′x(te)+◻σq′ ,
(17)

where σq′ = ∥Bq′∥µ +w.
Now, we can pose the problem of finding z∗G as a robust

optimization problem.
z∗G =min

z
z

s. t. z ≥ 0, z ≥HiGAq′x+σq′ +θ +2v−cG

∀x ∈ Invq′ ,cG ≤HiGx ≤ ε,

(18)

By utilizing methods from robust optimization literature,
e.g., [20], we can convert (18) to a linear programming
problem as follows:

z∗G =min
J,z

z

s. t. [1
1]z−[J⊺ρ1ρ1ρ1

0 ] ≥ [σq′ +θ +2v− cG
0 ]

ΛΛΛ
⊺J ≥ (HiGAq′)⊺, J ≥ 0

(19)

where 0 ∈R2n×1 is a zero vector. x is in a polytopic uncertain
set, i.e., ΛΛΛx ≤ ρ1ρ1ρ1 for problem (18), where ΛΛΛ ∈ R2n×n, ρ1ρ1ρ1 ∈
R2n×1 and J ∈R2n×1 is a variable of the optimization problem.

For the second possibility, i.e., x̃(te) ∈Ro
in ∩ Invq, we are

seeking the lower bound of the estimation error along the ithG
state variable such that it satisfies the following:

● The reachable set for δq time steps from any point
within the initial set XI(te) of the estimated continuous
state has no intersection with Invq.

Considering the worst case that the continuous state is the
furthest to the upper bound of ∂ Invq along the ithG state
variable, i.e., HiGx(te)= cG, our objective can be equivalently
changed to find the minimum distance between cG and
HiG x̃(te). We denote this minimum distance by d∗G. Define
d = ∣HiG x̃(te)− cG∣ as the distance between P(q,q′,ψ) and
the estimated state along the ithG state variable. With this
definition, the initial set at time te can be represented as
XI(te) = {x ∶HiGx ∈ [cG+d−θ −2v,cG+d+θ +2v]}. Starting
from this initial set XI(te), the projection of the reachable set
for δq time steps forward onto the ithG state variable becomes

HiGAδq
q x±σq, ∀x ∈ XI(te), where σq = 1−∥Aq∥

δq

1−∥Aq∥
(∥Bq∥µ +w).

If HiGAδq
q x−σq > cL, ∀x ∈ XI(te), then it is guaranteed that

the δq time-step forward reachable set starting from this
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initial set XI(te) has no intersection with the invariant Invq.
We can pose the problem of finding d∗G as the following
robust optimization problem.

d∗G =min
d

d

s. t. d ≥ 0, HiGAδq
q x−σq ≥ cL

∀x ∈ Invq,x ∈ XI(te).

(20)

With a change of variables and by employing the robust
optimization techniques [20], we can write an equivalent
problem to (20) as a linear program.

d∗G =min
D,J

HiGD

s. t. [HiGAδq
q

HiG
]D−[J⊺ρ2ρ2ρ2

0 ] ≥ [σq+cL
0 ]

ΛΛΛ
⊺J ≥ −(HiGAδq

q )⊺, J ≥ 0, D ≥ 0

(21)

where 0 is a zero vector with proper dimension, and D ∈Rn

is a vector with the ithG entry d and other entries “0”. x is in
a polytopic uncertain set, i.e., ΛΛΛx ≤ρ2ρ2ρ2, where ρ2ρ2ρ2 ∈R2n×1 and
J ∈R2n×1 is the dual variable.

Now that we have introduced z∗G and d∗G, we can present
the main result of the paper.

Theorem 1: Given a nominal hybrid automaton Hn. As-
sume a Type-Cu anomaly f occurs at time t f . If an event
ψ ∈ Ψo occurs at te > t f , which is supposed to transit the
system from discrete state q to q′, and the guard G(q,q′,ψ) is
a condition on the real continuous state which is affected by
the anomaly f , i.e., G(q,q′,ψ) ∶ sGx(iG) ≥ cG and ∣xe

(iG)∣ ≥ θ ,
then the conflict-driven method is guaranteed to detect the
anomaly, if the anomaly satisfies:

∥ΓΓΓγγγ(t)∥ >max(z∗q +θ +2v,d∗q +θ +2v), (22)
where z∗q = maxq′ z∗G and d∗q = maxq′ d∗G can be derived by
solving the robust optimization problems (18) and (20),
respectively for all possible q′.

Proof: The solution z∗G is the lower bound of the
estimation error which ensures XI(te + 1) ∩ Invq′ = ∅, i.e.
Conflict B. The values of z∗G varies from one guard to
another. Therefore, by considering z∗q , we guarantee that at
the discrete state q, regardless of guard, Conflict B occurs,
if ∥ΓΓΓγγγ(t)∥ > z∗q +θ +2v. On the other hand, the solution d∗G
is the lower bound of the estimation error, which ensures
Rδq(XI(te))∩ Invq = ∅, i.e., Conflict C. The values of d∗G
varies for different guards, hence, we similarly take the max-
imum of these values for all possible q′, which is d∗q . Based
on the relation between the estimation error and anomalous
signal in (13), it is guaranteed that if ∥ΓΓΓγγγ(t)∥ > d∗q +θ +2v,
regardless of guard, Conflict C occurs. By combining the two
conditions obtained on the magnitude of anomalous signal
for the two possibilities, we can conclude that the proposed
conflict-driven method provides detection guarantees on the
detection of anomalous signals that satisfy condition (22),
regardless of where the estimated state is located in the Invq
at the time of event. This concludes the proof.

V. SIMULATION RESULT

In this section, we revisit the TG system. We present the
nominal hybrid model of the TG system and compare the

Fig. 5: Hybrid automaton Hn of the TG system.

conflict-driven method with a residual-based method under
a Type-Cu anomaly.

The graphic representation of the nominal hybrid model
Hn of the TG system is shown in Fig.5. The train automaton
has one discrete state “run”. The gate automaton has two
discrete states: “up” and “down” (The time of raising and
lowering the gate is ignored for simplicity). Although the
automata product results in two discrete states, we addition-
ally partition discrete state “run, up” to two discrete states
to ensure hyperrectangle invariants as defined in (4). The
discrete transitions between discrete states are determined by
discrete input events cup and cdown, where cup means “raise
the gate” and cdown means “lower the gate”. When sensor
1 detects the train and emits discrete output event s1, the
gate controller sends out cdown. When sensor 2 detects the
train and emits discrete output event s2, the gate controller
sends out cup. For each transition, we associate a guard.
The invariants of the discrete states and the guards are
given in Fig.5. The continuous state of the TG system is
x = [xp xv]⊺, where xp,xv are the train position and the
train speed, respectively. The continuous output of the TG
system is y(t) = x(t)+v(t). If the train is within 16m of the
gate, the reference speed is 0.2m/s. Otherwise, it is 1m/s.
The desired operation is that the train speed is no faster than
0.4m/s when the train is within 12m of the gate. The TG
system is current state observable. Based on Assumption 8,
we will only focus on the observer’s steady state 1,2.

The intersections of the invariants give the intermediate
region Rin as Rin = {∀x ∈ X ∶ (45 ≤ xp ≤ 46∨75 ≤ xp ≤ 76)∧
0 ≤ xv ≤ 0.4}. Then we can determine the normal operating
regions of the three discrete states, as shown in Fig.6,
Rno,1 = {∀x ∈ X ∶0 ≤ xp < 45∨(45 ≤ xp ≤ 46∧xv > 0.4)},
Rno,2 = {∀x ∈ X ∶46 < xp < 75∧0 ≤ xv ≤ 0.4},
Rno,3 = {∀x ∈ X ∶76 < xp ≤ 80∨(75 ≤ xp ≤ 76∧xv > 0.4)}.

(23)

The neighbor hyperplane of each guard is then:
L(1,2,cdown) ∶ xp = 46, L(2,1,cup) ∶ xp = 76, (24)

With the invariants, guards and neighbor hyperplanes, we
can determine the time step for reachability analysis of each
discrete state, which is δ1 = δ2 = 9,δ3 = 0.

1More parameters: track length: 80m; gate, sensor 1, sensor 2 locations:
60m, 45m, 75m; sampling period: 0.1s; Upper bounds of noise: v = 0.1,
w = 0.01 (Units depend on the state variable with larger noise); estimation
error upper bound in the observer’s steady state in nominal discrete states:
θ = 0.05 (The unit depends on the state variable with larger estimation error
at sample times).

2In reality, the train track intersects with multiple roads at different
locations. The discrete state observer gives a unique estimated discrete state
after passing the first road. We only focus on the track segment when the
observer is in steady state.
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Fig. 6: The normal operating regions and the intermediate
region of the TG system.

In these three discrete states, state matrices (A,B) are the
same. The eigenvalues of A are 1 and 0.95. The eigenvector ξξξ

corresponding to the marginally stable eigenvalue is [1 0]⊺.
The non-zero element of ξξξ corresponds to the measured train
position. A Type-Cu anomaly scenario is a ramp anomalous
signal with slope 0.02m/s added to the measured train
position. The anomaly starts at 0s and runs until the end of
the simulation, which makes the system violate its desired
operation at 180.8s with position 71.55m and speed 0.41m/s.

The comparison of the detection performance of the
conflict-driven method and a residual-based method under
the anomaly mentioned above is shown in Fig.7. The thresh-
old of the residual-based method is θ + v = 0.15 (The unit
depends on θ ). The residual-based method fails to detect
the anomaly because the residual does not increase. The
conflict-driven method detects this anomaly at time 48.2s
when Conflict C occurs. The estimated discrete state is 1, but
the reachable set Rδ1(XI(482))∩Inv1 =∅. At 48.2s, the norm
of the anomalous signal is 0.96m, which is lower than the
lower bound 0.98m calculated by solving robust optimization
problems. That means the conflict-driven method may detect
the anomalies with norm lower than the lower bound which
we can provide detection guarantees.
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3 + >

Fig. 7: Simulation result under the Type-Cu anomaly: (Top)
Residual; (Bottom) The occurrence of Conflict C.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a conflict-driven method, which
uses the discrete and continuous variables and the hybrid
model of the system, to provide detection guarantees for
anomalies that are undetectable with traditional residual-
based methods in addition to anomalies that can be detected
with these methods. We define three different conflict types.
If any one of the conflicts occurs, the anomaly is detected.
Both mathematical demonstration and simulation result il-
lustrate the effectiveness of the conflict-driven method.

More work needs to be done about the conflict-driven
method. One future work is to improve the hybrid observer

design such that we can apply the conflict driven method to
more general hybrid systems with reset maps. One potential
solution is to use the Convergence Ratio method in [16],
which calculates the estimation error of the continuous state
with two continuous state observers. Other future work
includes the analysis of the conflict-driven method in detect-
ing anomalies that affect both the continuous and discrete
variables of the system.
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