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Abstract 

In this work, the effect of the edge compliance on the adhesive, frictionless contacts near the 

edge of a quarter-space is analyzed in terms of stress, deformation, and contact stiffness. The 

study relies on the numerical implementation of the conjugate gradient method (CGM) to 

adhesive contacts near the edge of a quarter-space. It extends the previous CGM developed for 

contact analysis of non-adhesive and adhesive contacts on half-space to the matrix formulation 

of the quarter-space problem. The considered adhesive contact interaction is in terms of the 

Maugis-Dugdale model to provide insight into the transitional behavior from non-adhesive to 

various type of contact adhesive regimes. It is found that the edge compliance affects the contact 

mechanics of adhesive contacts as a function of position, applied force, and adhesive parameter. 

The analysis provides calculations for quantities like depth indentation and contact stiffness that 

can be found directly in indentation-type experiments performed on samples with edge 

geometries. Such understanding and characterization of edge contacts can be used to 

unambiguously account for the mechanical response of nanoscale structures near their edges 

and detect possible mechanical variability introduced by fabrication and processing.         
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1. Introduction 

The ability to properly account for the edge effect on the contact mechanics of a quarter-

space subjected to loads nearby its edge is relevant to various types of applications from 

macroscale (rolling-element bearings, rail wheels, gears, etc.) (Hanson and Keer, 1991; Yu and 

Keer, 1996) to microscale (micro- and nano- electromechanical systems, mechanical testing of 

micro- and nano-scale specimens, etc.) (Jakes et al., 2009; Jakes and Stone, 2010). It can be used 

to correctly solve the stress field around loaded edges and identify possible mechanical 

heterogeneities at the edge of fabricated specimens. Although the problem of an elastic half-

space (HS) subjected to concentrated loads is well known and commonly used to interpret 

measurements, less investigated and almost unused in data analysis is its counterpart quarter-

space (QS) configuration. One impediment to dealing with the QS problem is the lack of an 

analytical solution. On the other hand, numerical calculations like finite element method and 

boundary element method are time consuming and strenuous for analysis of contact mechanics 

measurements on QS specimens. However, with the increase in computational power, various 

numerical calculation methods for QS mechanics will become more affordable and practical for 

interpreting mechanical property measurements on micro- and nano-scale specimens with 

protruding topographical features (e.g. atomic force microscopy measurements on nanoscale 

high-aspect ratio geometries) (Stan et al, 2016; Stan et al., 2017).     

The QS problem was introduced by Hetenyi about 50 years ago (Hetenyi, 1970) as a 

reflection iterative method of two overlapped half-spaces to examine the elastic response of a 

QS under the action of a normal concentrated load. The resulting integral equations were solved 

numerically by using Love’s patch solution (Love, 1929) on discretized surfaces. Keer et al. (Keer 

et al., 1983) reformulated the Hetenyi’s analysis for a concentrated load on a QS in terms of 

Fourier transform to reduce the QS problem to two decouple integral equations in a quarter-

plane and solved them by the Gauss-Legendre integration method. Subsequently, this method 

was simplified by Hanson and Keer (Hanson and Keer, 1990) to directly solve the two integral 

equations for each element of the meshes used to discretize the involved HS surfaces. Solution 
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for an arbitrary prescribed load on an elastic QS was provided by Keer et al. (Keer et al., 1984) 

based on a discretization method introduced by Armani et al. (Armani et al., 1983) for non-

Hertzian contacts on a HS, with example of a rigid frictionless cylinder indenting an elastic QS. 

Recently, the QS problem was explicitly solved by Zhang et al. (Zhang et al., 2013) in a matrix 

formulation with direct solution for the Hetenyi’s infinite iteration. The matrix formulation was 

also extended to rectangular fin geometries that include two free-end surfaces (Zhang et al., 

2016).  

An important physical property unaccounted in the above QS contact mechanics 

examinations is the adhesive interaction between the indenter and the QS probed. The adhesion 

becomes relevant especially at small scale and loads comparable with the adhesive forces. In the 

absence of adhesion, the contact mechanics between two homogeneous, elastically deformable, 

solids is commonly described by the Hertz model (Hertz, 1881; Huber, 1904; Johnson, 1985; Hills 

et al., 1993). The assumptions of the Hertz model are that the two solids have continuous and 

non-conforming surfaces, the induced strains are small, the solids can be considered as elastic 

half-spaces, and the surfaces are frictionless and non-adhesive (Johnson, 1985).  However, the 

contact mechanics complicates when the adhesive contact interaction needs to be considered. 

Over the years, various models were proposed to describe the adhesive contact between two 

elastically deformable solids, most notably being the Derjaguin-Muller-Toporov (DMT) model 

(Derjaguin et al., 1975) that considers that the adhesive forces act only outside the contact area 

and Johnson-Kendall-Roberts (JKR) model (Johnson et al., 1971) that assumes that the adhesive 

forces occur only inside contact area. The DMT limit is valid in the case of stiff materials with low 

surface energy and small radius of curvature and the JKR limit works for compliant materials with 

large surface energy and large radius of curvature. A continuous transition between DMT and JKR 

extremes is achieved by the Maugis-Dugdale (MD) model (Maugis, 1992) that assumes the 

existence of a uniform tensile stress 𝜎0 within an annular region 𝑎 < 𝑟 < 𝑐 outside the contact 

zone where the separation between the indenter and the HS surface is less than ℎ0 = 𝑤/𝜎0. Here 

𝑎 is the contact radius, 𝑐 is the adhesion radius, and 𝑤 is the work of adhesion. The MD model 

solved few theoretical caveats of the DMT and JKR models (e.g. the adhesive force cannot deform 

the surface in the DMT model; stress singularity at the contact edge in the JKR model) by 
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providing a continuous transition in the tensile stress at the edge of the contact. The Maugis 

parameter that assures this transition is defined as 

𝜆 = 2𝜎0 (
𝑅

𝜋𝑤𝐾2)
1/3

,                                                            (6) 

with  𝐾 = 4𝐸/(3(1 − 𝜈2)), 𝐸 and 𝜈 the Young’s modulus and Poisson’s ratio of the indented 

sample (the indenter is considered here infinitely rigid), and 𝑅 the equivalent radius of curvature 

of the two bodies in contact, which for the HS geometry reduces to the radius of the indenter. 

The MD model reaches the DMT limit when 𝜆 approaches zero and recovers the JKR limit for 

infinite 𝜆 (in practice large values of 𝜆 provide good approximation for the JKR limit).  

It is the purpose of this work to examine how the adhesive contacts nearby the edge of a 

QS are affected by the presence of the free-edge of the QS. In the absence of closed analytical 

models for such geometries, the analysis is performed here by using a boundary finite method 

(BEM) with calculations for the stress and deformation fields around the contacts points and the 

load dependence of the contact stiffness, a quantity that is commonly measured in contact 

mechanical tests. Also, of theoretical and practical relevance is the observation of these 

parameters as a function of distance from the free edge of the QS to provide a clear evaluation 

of the edge effect. The adhesion is considered as in the MD model to account for various type of 

adhesive interactions encountered in contact mechanics.  

The current application of the BEM to MD adhesive contacts on QS follows the numerical 

implementation of the conjugate gradient method used by Bazrafshan et al. (Bazrafshan et al., 

2017) and Rey et al. (Rey et al., 2017) to analyze adhesive normal contacts on a HS. The extension 

to the QS case is made through the matrix formulation of Zhang et al. (Zhang et al., 2013) for 

non-adhesive contact mechanics on QS. Baseline comparisons for the BEM analysis developed in 

this work are provided with respect to few non-adhesive and adhesive HS contact examples 

(Johnson, 1985; Maugis, 1992) of known analytical solution. For the QS case, the comparison is 

only with respect to non-adhesive QS contact geometries of prescribed contact stress that were 

solved previously (Hanson and Keer, 1990; Zhang et al., 2013).  As the adhesive QS contacts were 

not investigated yet, the current work provides results for such geometries, with numeric analysis 



 6 
 

for the force dependence of the indentation depth and contact stiffness as a function of contact 

position from the edge of the QS.    

 

2. Boundary element method for Hertz and Maugis-Dugdale contact mechanics on a half-

space  

In the BEM applied to the contact between two solids, the deformation-stress integrals 

are numerically solved over the loaded surface while satisfying the given boundary conditions. 

For the case of a rigid indenter loaded on a HS, the discretization is made only on a target region 

of the HS where stresses and deformation are prominent, usually of the order of few contact 

radii. As shown in Figure 1a, each surface of the calculation region was discretized in a finite 

number of 𝑁2 rectangular cells, with 𝑁 grid points and 2Δ𝑠 grid spacing on each axis. In this mesh 

representation, the load distribution on the XY-plane (H-surface) is approximated by a piecewise 

distribution, with uniform load over each cell. For the HS problem only the H-surface of the space 

is considered whereas for the QS problem both the H-surface and V-surface will be included.  

When the indenter is brought into contact with the HS under a given load 𝐹, neither the 

distribution of the contact pressure distribution over the contact area nor the actual contact area 

are known. They need to be solved at each nod of the grid together with the established contact 

geometry to determine the contact pressure distributed by the applied load over the contact. 

Quite generally, the contact pressure distribution 𝑝  over the indented H-surface is defined with 

respect to the contact geometry, namely the indenter-surface separation 𝑔, as:   

           {
𝑝𝑖𝑗 < 0 at 𝑔𝑖𝑗 = 0

𝑝𝑖𝑗 = 0 at 𝑔𝑖𝑗 > 0
,   with 𝑖, 𝑗 ∈ {1,2, … , 𝑁}                                   (10) 

for the Hertz contact and 

{

𝑝𝑖𝑗 < 𝜎0 at 𝑔𝑖𝑗 = 0          

𝑝𝑖𝑗 = 𝜎0 at 0 < 𝑔𝑖𝑗 < ℎ0

𝑝𝑖𝑗 = 0 at 𝑔𝑖𝑗 > ℎ0          
,   with 𝑖, 𝑗 ∈ {1,2, … , 𝑁}                         (11) 

for a MD contact, such that the applied load sums up to 
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𝐹 = −4∆𝑠∆𝑠 ∑ ∑ 𝑝𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1                                               (12) 

in each case. The convention here is to have negative values for compressive stresses and positive 

for tensile stresses (Maugis, 1992). 

For the considered spherical indenter of radius 𝑅, the separation between the indenter 

and the H-surface over the defined mesh is given by 

𝑔𝑖𝑗 =
1

2𝑅
[(𝑥𝑖 − 𝑥c)2 + 𝑦𝑗

2] − 𝛿 + 𝑢𝑧
𝑖𝑗

,   with 𝑖, 𝑗 ∈ {1,2, … , 𝑁}                     (13) 

where 𝛿 is the relative rigid approach of the two surfaces (also referred to as indentation depth) 

and 𝑢𝑧
𝑖𝑗

 is the surface deformation at position (𝑥𝑖, 𝑦𝑗).   

Once the contact pressure distribution 𝑝 over the H-surface is assigned (Equation 10 or 

11), the components of the generated stress and deformation fields at a given nod (𝑘, 𝑙)  of the 

grid can be calculated by summing up the contributions from all the loaded patches of the H-

surface:                    

𝜎𝑞𝑟
𝑘𝑙 = ∑ ∑ 𝐒𝑞𝑟

𝑘−𝑖,𝑙−𝑗𝑁
𝑗=1 𝑝𝑖𝑗

𝑁
𝑖=1 ,  with 𝑘, 𝑙 ∈ {1,2, … , 𝑁}                       (14) 

and 

         𝑢𝑞
𝑘𝑙 = ∑ ∑ 𝐔𝑞

𝑘−𝑖,𝑙−𝑗𝑁
𝑗=1 𝑝𝑖𝑗

𝑁
𝑖=1 ,  with 𝑘, 𝑙 ∈ {1,2, … , 𝑁}                       (15) 

with the influence matrix coefficients S and U given by the Love’s solution for a uniformly loaded 

rectangular patch (Love, 1929). The subindices 𝑞 and 𝑟 are for the components 𝑥, 𝑦, and 𝑧 of 

stresses and deformations. A review of the Love’s rectangular patch solution for computational 

contact analyses based on FFT algorithms can be found in Jin et al. (Jin et al., 2016). 

It is noted that the above expressions are in the form of convoluted functions that can be 

easily converted in direct products in the Fourier space. So rather than applying the conventional 

direct multiplication method, these convolutions can be processed by the discrete convolution 

and fast Fourier transform (DC-FFT) algorithm introduced by Liu et al. (Liu et al., 2000) Through 

this DC-FFT algorithm a linear discrete convolution is embedded into a circular discrete 
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convolution of double length. To do that, the calculation domain (H-surface) will be doubled on 

each dimension with zero-padding on the contact pressure matrix and wrap-around order 

(mirror) of the influence coefficient matrix over the added area. The benefit of performing the 

discrete circular convolution is that the circulant matrix of the influence coefficients contains only 

one column of independent elements (each row of a circulant matrix is obtained by one-step shift 

of the previous ones) and the response is obtained as the inverse FFT of the direct product of the 

FFTs of the influence coefficient and contact pressure distribution matrices (similarly to a linear 

convolution in the continuous space):          

𝑢̿𝑖𝑗 = IFFT (FFT(U̿)𝑖𝑗 ∙ FFT(𝑝̿)𝑖𝑗) ,   with 𝑖, 𝑗 ∈ {1,2, … , 𝑁, 𝑁 + 1, … ,2𝑁}           (16) 

where 𝐔̿ is the wrap-around order of 𝐔 and 𝑝̿  is the zero-padding of 𝑝. The actual deformation 

matrix 𝑢 is collected from the first  𝑁 × 𝑁  elements of 𝑢̿,  

                    𝑢𝑖𝑗 = 𝑢̿𝑖𝑗 ,   with 𝑖, 𝑗 ∈ {1,2, … , 𝑁}.                                           (17) 

 The non-linear contact problem defined above by Equations 10 to 13 can be seen as an 

optimization problem with inequality constrains (also known as Kuhn-Tucker conditions). Thus, 

the contact pressure distribution can be solved over the defined grid by minimizing the surface 

gap 𝑔 between the indenter and the indented surface through an optimization algorithm like the 

conjugate gradient method (CGM, Shewchuk, 1994). The CGM is used to solve numerically a 

positive definite system of linear equations by iteratively searching to minimize a quadratic 

function whose gradient matches the system of equations. The search for the zero solution of 

the function’s gradient is performed in CGM along conjugate directions (conjugate with respect 

to the coefficient matrix of the system of equations) in contrast to the more intuitive steepest 

descent method where the search is pursued along gradient directions. Because the conjugate 

directions are linearly independent of each other, the CGM does not repeat any previous search 

direction as the steepest descent does, hence the CGM is computational efficient in converging 

towards the final solution in a finite number of steps (less or equal with the number of equations). 

At each iteration step of the CGM there is a direct convergence in contrast to the zig-zag path 

followed by the steepest descent method. Also, not all the conjugate directions are needed to be 
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calculated at the beginning of the algorithm but they are added as the iterations advance towards 

the final solution (each new conjugate vector is calculated based on the previous ones).  

The CGM was applied to contact problems by Polonsky and Keer (Polonsky and Keer, 

1999) to solve numerically non-adhesive (Hertz) contacts on a HS. It has been also adapted to 

adhesive contacts on HS by Bazrafshan et al. (Bazrafshan et al., 2017) and Rey et al. (Rey et al., 

2017) The CGM implementation of Bazrafshan et al. (Bazrafshan et al., 2017) will be used in this 

section to compare numerical results with the analytical solutions of the MD model and in the 

next section to examine the edge compliance contribution to adhesive contacts near the edge of 

a QS. The key aspect of the CGM implementation for adhesive contacts, in comparison to the 

non-adhesive version, is the consideration of the tensile contribution to both contact pressure 

distribution (Equation 11) and force balance during the iterative optimization.  

The BEM involved by the CGM used was performed with a custom programming code in 

Mathematica 10.3 (Wolfram Research, 2015) (see Disclaimer). The convergence of the numerical 

solution was defined such that, for a given load, the calculated contact pressure distribution 

corresponded to a resultant load that differed less than 0.01 nN (absolute error) by the 

considered load. In Figure 2 are shown few comparisons between BEM calculations and 

theoretical results for both non-adhesive (Hertz) and adhesive (MD) contacts on a HS. The 

theoretical surface stress and deformation curves were plotted (refer to the continuous curves 

in Figure 2) as a function of radial distance from the indentation point (arbitrary considered at 

𝑥c = 100.0 nm). With the increase of the Maugis parameter 𝜆, the tensile stress 𝜎0 increases 

and, in the same time, the tensile region nearby the edge of a MD contact reduces. The curves 

were calculated for a rigid indenter of radius 𝑅 = 20.0 nm on a HS of Young’s modulus 𝐸 =

10.0 GPa and Poisson’s ratio 𝜈 = 0.3 at an applied load of 75.0 nN. The work of adhesion for all 

the MD contacts was considered 𝑤 = 0.1 J/m2, which, for the involved contact geometries, 

amounts to tensile stresses outside contacts of 0.1 GPa, 0.4 GPa, 0.8 GPa, 1.1 GPa, and 1.5 GPa 

for 𝜆 = 0.1, 𝜆 = 0.5, 𝜆 = 1.0, 𝜆 = 1.5, and 𝜆 = 2.0, respectively.  

For Hertz and MD with 𝜆 = 0.1,  𝜆 = 0.5, and 𝜆 = 1.0 contacts, the cell size on each 

direction was 0.234 nm (the calculation region, H-surface in Figure 1a, was assumed to be 



 10 
 

30 nm × 30 nm with 𝑁 = 128 grid nodes along each axis). As can be seen in Figure 2, BEM 

reproduces the dependences of both compressive and the tensile regions very well for Hertz and 

MD contacts of 𝜆 = 0.1,  𝜆 = 0.5 contacts but small deviations are observed between the 

theoretical and BEM curves in the tensile region around the edge of the contact for the 𝜆 = 1.0 

curves. Such discrepancies would be enhanced further for larger values of 𝜆 if the same 

discretization will be used. To mitigate this, for 𝜆 = 1.5 and 𝜆 = 2.0 MD contacts, the cell size on 

each direction was decreased to 0.039 nm (meshed surfaces at 20 nm × 20 nm with 𝑁 = 512 

grid nodes along each axis) to provide a finer mesh for the tensile region at the edge of the 

contact where the stress varies rapidly with the increase in 𝜆. Because of this higher 

discretization, the BEM curves significantly improve in the tensile region even for larger 𝜆 values 

(refer to the insets of Figures 2b and 2d); for very large values of 𝜆 (𝜆 > 5.0) the modeling 

becomes impractical (Wu, 2006; Rey et al., 2017). It is also worth pointing out that measurable 

quantities like contact area, indentation depth, pull-off force, and contact stiffness of MD 

contacts show no significant variations for 𝜆 greater than 1.0 at loads greater than the pull-off 

force. As such, even a coarser discretization will provide reasonable results for a measurement 

analysis.  

 

3. Boundary element method for Hertz and Maugis-Dugdale contact mechanics on quarter-

space  

The problem of an elastic QS with one normally loaded surface and one load-free surface 

was first addressed by Hetenyi (Hetenyi, 1970) who used the method of overlapping loaded half-

spaces. Thus, the QS (𝑥 > 0, −∞ < 𝑦 < ∞, 𝑧 > 0)  shown in Figure 1a is replaced in Figure 1b by 

the intersection of two half-spaces: One horizontal HS (−∞ < 𝑥 < ∞, −∞ < 𝑦 < ∞, 𝑧 > 0) 

(shown in pink in Figure 1b) with the free-surface H and one vertical HS (𝑥 > 0, −∞ < 𝑦 <

∞, −∞ < 𝑧 < ∞)  (shown in green in Figure 1b) with the free-surface V. As a result, the load 𝐹 

applied normally at position (𝑥c, 0, 0) on the H-surface of the QS (refer to Figure 1a) is replaced 

in  the equivalent problem by equivalent loads symmetrically distributed with respect to the edge 

of the QS: 𝐹H(𝑥c, 𝑦c, 0)  and  𝐹H(−𝑥c, 𝑦c, 0) on the H-surface and 𝐹V(0, 𝑦c, 𝑧c) and 𝐹V(0, 𝑦c, −𝑧c)  
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on the V-surface (refer to Figure 1b). Due to the involved symmetry, only normal stresses will be 

generated on the faces of the QS, without shear stresses.  

The problem is reduced to find the equivalent pressure distributions, 𝑝H(𝑥, 𝑦) on the H-

surface and 𝑝V(𝑦, 𝑧) on the V-surface, such that the stresses generated by these loads on the H-

surface of the QS will match the contact pressure distribution 𝑝(𝑥, 𝑦)  produced by the applied 

load 𝐹 on the H-surface while keeping the V-surface of the QS load-free. In the original method, 

Hetenyi used an iterative process to find approximate values for 𝐹H and 𝐹V but, recently, Zhang 

et al. (Zhang et al., 2013) developed a matrix formulation to directly determine the limit values 

of 𝐹H and 𝐹V for non-adhesive contacts on QS.  

In the matrix notation adopted by Zhang et al. (Zhang et al., 2013), the stresses generated 

on the V and H faces of the QS by the equivalent loads 𝐹H and 𝐹V and their symmetrical images 

are 

𝝈𝑥𝑥
H→V = 𝐒𝑝H(𝑥,𝑦)→V ∙ 𝒑H(𝑥, 𝑦) + 𝐒𝑝H(−𝑥,𝑦)→V ∙ 𝒑H(−𝑥, 𝑦) = 𝐌 ∙ 𝒑H(𝑥, 𝑦)             (18) 

and 

𝝈𝑧𝑧
V→H = 𝐒𝑝V(𝑦,𝑧)→H ∙ 𝒑V(𝑦, 𝑧) + 𝐒𝑝V(𝑦,−𝑧)→H ∙ 𝒑V(𝑦, −𝑧) = 𝐍 ∙ 𝒑V(𝑦, 𝑧),             (19) 

where 𝐒 are influence coefficient matrices introduced in Equation 14. The contact pressures and 

stresses can be represented by one-dimensional vectors of length 𝑁2 and the influence 

coefficient matrices 𝐌 and 𝐍 as 𝑁2 × 𝑁2  arrays.  When the two HS are overlapped, the force 

balance on the H and V faces of the resulting QS gives 

                −𝒑H + 𝝈𝑧𝑧
V→H = −𝒑H + 𝐍 ∙ 𝒑V = −𝒑                                          (20) 

and 

−𝒑V + 𝝈𝑥𝑥
H→V = −𝒑V + 𝐌 ∙ 𝒑H = 0.                                          (21) 

By combining the above two equations, the equivalent HS-pressure distributions 𝒑H and 𝒑V are 

found as functions of the given contact pressure distribution 𝒑: 
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                 𝒑H = (𝐈 − 𝐍 ∙ 𝐌)−1 ∙ 𝒑                                                     (22) 

and 

         𝒑V = 𝐌 ∙ 𝒑H = 𝐌 ∙ (𝐈 − 𝐍 ∙ 𝐌)−1 ∙ 𝒑.                                      (23) 

Once 𝒑H and 𝒑V, are found, they and their images are used to calculate stresses and deformations 

on any cross-section of the QS. In particular, the deformation produced by 𝒑H and its image on 

the H-surface                

𝒖𝑧
H = 𝐔𝑝H(𝑥,𝑦)→H ∙ 𝒑H(𝑥, 𝑦) + 𝐔𝑝H(−𝑥,𝑦)→H ∙ 𝒑H(−𝑥, 𝑦),                    (24) 

where 𝐔 are the influence coefficient matrices defined in Equation 15, will be used in the CGM 

of the QS problem. Notably, due to symmetry, the contributions from 𝑝V(𝑦, 𝑧) and 𝑝V(𝑦, −𝑧) to 

the deformation of the H-surface of the QS cancel each other. The same is true for the 

deformations produced by 𝑝H(𝑥, 𝑦)  and 𝑝H(−𝑥, 𝑦) on the V-surface of the QS. In summary, the 

QS problem is reduced to two HS problems in terms of 𝑝H and 𝑝V, which are related to the contact 

pressure distribution 𝑝  through influence coefficient matrices.  

The CGM algorithm developed here for an adhesive contact on QS combines the CGM 

used by Zhang et al. (Zhang et al., 2013) for the non-adhesive contact on a finite-length line 

(Zhang et al., 2016) with the CGM used by Bazrafshan et al. (Bazrafshan et al., 2017) for an 

adhesive contact on HS. The main steps of the new algorithm are as following: 1) for a given load 

𝐹, set the initial values of the contact pressure distribution 𝑝 over the H-surface (e.g., constant 

values over a starting area); 2) calculate the equivalent pressure distribution 𝑝H and its image; 3) 

use DC-FFT to calculate the normal deformation 𝑢𝑧
H of the H-surface due to 𝑝H and its image; 4) 

use the CGM iteration for an adhesive MD contact (Bazrafshan et al., 2017) to calculate the 

contact pressure distribution 𝑝 over the H-surface; 5) if the load calculated from the updated 

contact pressure 𝑝 is within the specified tolerance then proceed to step 6, otherwise go back to 

step 2; 6) calculate the final equivalent pressure distribution 𝑝H and its image; 7) use DC-FFT to 

calculate the final normal deformation 𝑢𝑧
H of the H-surface due to 𝑝H and its image.      
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In the next section, results of the MEB using the CGM implemented in the matrix 

formulation of the QS geometry will be discussed for Hertz and MD with 𝜆 = 0.1,  𝜆 = 0.5, and 

𝜆 = 1.0 MD contacts, respectively.  The QS discretization was at 128 × 128 grid nodes on each 

of the 30 nm × 30 nm facet of the QS. The simulated contacts were with a rigid indenter of 

radius 𝑅 = 20.0 nm, on a QS of Young’s modulus 𝐸 = 10.0 GPa and Poisson’s ratio 𝜈 = 0.3, the 

work of adhesion for all the MD contacts was 𝑤 = 0.1 J/m2, and the applied load was varied up 

to a maximum value of 75.0 nN. As a validation point, the results of Zhang et al. (Zhang et al., 

2013) are reproduced in the Appendix for the case of a non-adhesive contact on a QS under a 

prescribed Hertzian contact distribution. 

 

4. Results and discussion 

Based on the BEM results of the new CGM for adhesive contacts on QS, the analysis of 

the surface stress and deformation on QS can be performed in detail for any of the considered 

contact interactions. As an example, in Figure 3a are shown the stress and deformation profiles 

overlapped over the surfaces of the indenter (rigid) and QS (deformable) for an adhesive contact 

described by the Maugis parameter 𝜆 = 0.5 under a load of 75.0 nN at 𝑥c = 5.0 nm from the QS 

edge. The 3D-view of the calculated contact pressure distribution is shown in Figure 3b, with both 

tensile (positive stress) and compressive (negative stress) regions of the contact. It is noted that 

at this location (contact point about one contact radius from the edge), the symmetry of the 

stress distribution is disturbed by the edge proximity, a 0.7 nm shift being measured along the 𝑥  

axis between the location of the maximum compressive stress and the point of contact.     

To assess the effect of the edge on QS contacts, surface stress and deformation cross-

sections along the 𝑥 axis were calculated for contacts at various distances from the QS edge and 

they are shown in Figure 4 at positions 𝑥c = 5.0 nm and 𝑥c = 20.0 nm for the same applied load 

of 75.0 nN. Close to the QS edge, the stress and deformation profiles were observed to deviate 

significantly from their HS counterparts (with the location of the maximum compressive stress 

shifted from the position of contact). Such effect of the edge compliance was previously 
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described by Hanson and Keer (Hanson and Keer, 1990) for non-adhesive contacts near a QS edge 

but only in terms of stress distribution. As can be seen in Figure 4, for both non-adhesive and 

adhesive contacts, the edge compliance effect is even more pronounced for deformations than 

stresses: While at 𝑥c = 15.0 nm (not shown in Figure 4) and 𝑥c = 20.0 nm there is no visible 

difference between the HS and QS stress curves, clear differences are observed in their surface 

deformation dependences. Thus, the edge compliance accounts for 30 % and 8 % increase in the 

indentation depth at 𝑥c = 5.0 nm and 𝑥c = 20.0 nm, respectively, for both non-adhesive and 

adhesive contacts.  This will be reflected also in the contact stiffness of the contact, a quantity 

that is commonly determined in indentation-type measurements for elastic property 

characterizations.  

 The stress changes due to proximity to QS edge are observed not only in the surface stress 

curves but also in the subsurface stress distributions. In Figure 5 are shown the differences 

between the 𝜎𝑧𝑧 and 𝜎𝑥𝑥 stress contours in the ZX plane of the QS for the adhesive MD 𝜆 = 0.1  

contact at 𝑥c = 5.0 nm from the free edge of the QS and those for the same adhesive contact in 

the middle of a HS; the contours were calculated based on the influence functions of the Love’s 

solution over the grid patches of the H and V surfaces.  As can be seen in Figure 5a, the 𝜎𝑧𝑧 

contours for the QS contact are similar to those for the HS contact with the exception of two 

details: 1) The appearance of a tensile zone near to the edge of the QS with reduction in the 

compressive contact region and 2) The stress disturbance imposed by this tensile stress along the 

𝑥 axis, which also appears as a shift between the maximum stress location and the contact point. 

This shift is more prominent at the surface and attenuates in the lower stress contours below the 

surface. The tensile stress zone on the non-edge side of the contact is almost unaffected by the 

edge presence.    

 The contours of the 𝜎𝑥𝑥 stress in the ZX plane of the QS show also few notable differences 

from their HS counterparts (refer to Figure 5b). Thus, as in the case of 𝜎𝑧𝑧 contours, there is a 

shift towards the inner part of the QS due to the presence of a tensile stress at the edge of the 

QS. However, unlike the 𝜎𝑧𝑧 contours, the disturbance on the 𝜎𝑥𝑥 contours is not only in the shift 

location but also in strength and in the non-edge tensile zone: The compressive 𝜎𝑥𝑥 under the 
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indenter decreases faster with depth in the QS contact than in the HS contact and the non-edge 

tensile zone extends more and almost double in magnitude for the QS contact. Similar features 

in the 𝜎𝑥𝑥 contours in the ZX plane of the QS were also observed for a non-adhesive contact near 

the edge of the QS (Hanson and Keer, 1990). In comparison with the non-adhesive contacts, these 

features are further enhanced in an adhesive contact due to the presence of the tensile stress in 

the annular region around the contact.   

It is also worth pointing out that while the edge proximity imposes notable perturbations 

on the stress distributions along the 𝑥 axis these perturbations are negligible along the 𝑦 axis. In 

Figure 6 are shown the contact regions including the annular outer-contact adhesive regions as 

a MD 𝜆 = 0.1 contact under a load of 75.0 nN was moved away from the QS edge. In comparison 

to the contact area of its HS counterpart contact, the QS contact has the same extent along the 

𝑦 axis but shrinks along the 𝑥 axis to adjust a non-contact adhesive region.      

 The edge effect manifests also in the deformation fields around the contact (e.g. surface 

deformation plots as a function of position at a given applied force as in Figure 4), which can be 

measured for example as the indentation depth by indentation-type instruments (instrumented 

nanoindentation and atomic force microscopes). These dependences can be analyzed in terms 

of contact position and applied contact force. In Figure 7 are shown few relevant examples, 

namely how the force dependence of the indentation depth changes for non-adhesive and 

adhesive (here shown only for the adhesive parameter 𝜆 = 0.1) contacts with respect to the 

distance from the QS edge. For a given distance from the edge, the indentation depth was 

calculated as a function of the applied contact force by the BEM described above for an adhesive 

contact on the QS. For baseline comparison, BEM results for HS were overlapped on the 

theoretical dependences calculated by the analytical models. For a given applied force, there is 

an increase in the indentation depth as the contact point approaches the edge due to edge 

compliance (also inferred from the surface deformation curves shown in Figure 4 for an applied 

force of 75.0 nN). Moreover, as can be seen in Figure 7, at a given position this increase becomes 

more pronounce with the increase in the applied force. These behaviors are similar for both non-

adhesive and adhesive contacts. For the adhesive contact (𝜆 = 0.1 in Figure 7), it can be also 
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deduced a reduction in the adhesive force of the contact at the inflexion point of the force 

dependence curve of the indentation depth (refer to the range of negative applied force in Figure 

7). This is consistent with the reduction in the adhesive annular region of the contact shown in 

Figure 6. As pointed out in Bazrafsan et al. (Bazrafshan et al., 2017), no further calculations were 

possible by the CGM beyond the inflexion point of the MD curves due to the existence of two 

different values of the indentation depth for one applied force. 

 Once the force dependence of the indentation depth was determined, the contact 

stiffness was calculated as the force derivative with respect to the indentation depth, 𝑘c =

𝜕𝐹/𝜕𝛿. Analytical expressions for the contact stiffness of adhesive contacts on HS can be found 

elsewhere (Pietrement and Troyon, 2000; Stan et al., 2014). For the contacts analyzed in Figure 

7, the contact stiffness curves versus the applied force are shown in Figure 8a. Once again, the 

baselines of the BEM calculations are compared with the theoretical curves for the HS cases, non-

adhesive (Hertz) and adhesive (MD 𝜆 = 0.1) over the entire range of applied forces. Like the 

indentation depth curves, the contact stiffness curves vary with the contact position from the 

edge of the QS and with the applied force. Thus, for a given applied force, there is a pronounce 

decrease in the contact stiffness as the contact point moves closer to the edge. This is the so-

called edge compliance and Figure 8 details quantitatively its dependence. For a given position, 

there is also a variation in the edge compliance as a function of force, starting from low applied 

forces (above zero for non-adhesive contacts and above the pull-off force for adhesive forces) 

and progressively increasing with the increase in the applied force. The effect of adhesion on the 

contact stiffness declines at applied forces larger than the adhesion force and the curves merge 

towards the non-adhesive dependence (Hertz for the HS case). Furthermore, in Figure 8b are 

shown the relative variations of few QS contact stiffnesses (inverse of the edge compliance) with 

respect to their HS counterparts as a function of position and applied force. At each selected 

contact position from the edge, the curves show consistent dependences as a function of the 

adhesive parameter, going from non-adhesive to adhesive. The most pronounce increase in the 

edge compliance is shown here by the 𝜆 = 0.1 curves. For a given location, as the applied force 

increases, the differences between adhesive and non-adhesive curves diminish and they bundle 

together towards a common dependence for each location. It is worth pointing out that a 
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significant edge effect is observed even far away from the edge, e.g. at 20.0 nm distance from 

the edge (about 4𝑎c) there is 5 % decrease in the contact stiffness at 75.0 nN. This decrease in 

the contact stiffness varies almost exponentially with the distance from the point of contact to 

the QS edge: At 75.0 nN load, the decrease in contact stiffness is 10 % at 15.0 nm, 15 % at 

10.0 nm, and 30 % at 5.0 nm. Such significant increases in the edge compliance, as a function of 

location and applied force, are relevant in interpreting nanoscale mechanical property 

measurements by atomic force microscopy for example on samples with edge geometries and 

large topographical variations.     

 

Conclusions 

 In this work, the effect of edge compliance on the contact mechanics of rigid spherical 

indenters in adhesive contact with an elastic QS was investigated as a function of applied load, 

distance to the edge of the QS, and adhesive coupling. The problem of adhesive contacts on a QS 

was analyzed in the matrix formulation of the CGM with the adhesive part of the contact 

interaction modeled as a Maugis-Dugdale adhesive coupling. Due to the considered adhesive 

interaction, qualitative and quantitative changes were observed in the stress and deformation 

fields in comparison to their HS counterparts. In contrast to the non-adhesive contacts on QS, 

enhancements in the tensile regions around contacts in the proximity to the QS edge were noted. 

The effect of the edge compliance was also detailed in measurable quantities like indentation 

depth and contact stiffness. For these quantities, separated contributions were rationalized in 

terms of edge vicinity and adhesive interaction. The developed methodology is intended for the 

analysis of contact mechanics on a sample with edge geometries to correctly separate the 

material and geometrical contributions to the measured indentation response of the sample. 

 

Disclaimer  

Certain commercial equipment, instruments, or materials are identified in this document. Such 

identification does not imply recommendation or endorsement by the National Institute of 
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Standards and Technology, nor does it imply that the products identified are necessarily the best 

available for the purpose. 

 

 

 

Appendix  

A validation for the BEM algorithm developed in this work is shown here in comparison 

to the results of Zhang et al. (Zhang et al., 2013) and Hanson and Keer (Hanson and Keer, 1990) 

for a non-adhesive contact on the edge of a QS. The QS discretization was at 128 × 128 grid 

nodes on each of the 30 nm × 30 nm facet of the QS. The simulated contacts were with a rigid 

indenter of radius 𝑅 = 20.0 nm, on a QS of Young’s modulus 𝐸 = 10.0 GPa and Poisson’s ratio 

𝜈 = 0.3, and at an applied load of 75.0 nN. For these parameters, the HS Hertz contact radius is 

𝑎 = 4.7 nm and the contact pressure at the middle of the contact is 𝑝0 = 1.6 GPa. As in the 

contact configuration considered by Hanson and Keer (Hanson and Keer, 1990) and Zhang et al. 

(Zhang et al., 2013), the point of contact was chosen at the edge of QS and the contact pressure 

distribution 𝑝0√1 − (𝑟/𝑎)2  remains Hertzian during contact. As can be seen in Figure A1 for the 

𝜎𝑧𝑧 and 𝜎𝑥𝑥 stress contours in the ZX plane of the QS, there is a very good match between the 

current results and those reported by Zhang et al. (Zhang et al., 2013). 
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Figure 1. a) Spherical tip indenting the top face XY of either a HS or a QS at position (𝑥𝑐, 0, 0) from 

the edge.  The loaded XY face is referred as the H-surface and the load-free YZ face of the QS as 

the V-surface. For the HS case, only the H-surface is considered whereas for the QS case both H-

surface and V-surface are included. b) The QS is defined by the intersection of two half-spaces, 

shown in green and pink colors, respectively. The top surfaces H and V of these two half-spaces 

are used in the QS calculation. The applied load on the top surface of the QS shown in a) is 

replaced in b) by equivalent loads, symmetrically distributed around the edge of the QS. i.e. the 

y axis. Note that the H and V surfaces are shown in a) as the actual top and left surfaces of the 

QS whereas in b) they are extended above and to the left of the QS as part of the two equivalent 

half-spaces. In both a) and b), the front ZX cross-section of the actual QS is indicated by a 

diagonal-stripe pattern. 
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Figure 2. Comparison between surface stress (a) and (b) and deformation (c) and (d) profiles 

calculated by HS analytical Hertz and MD models (continuous lines) and BEM (dashed lines) with 

contact position in the middle of HS (see text for details). In all cases the applied load was 𝐹 =

75.0 nN. The insets in (b) and (d) show expended views of the tensile regions of the investigated 

contacts. 
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Figure 3. Surface stress and deformation BEM calculations for a spherical indenter (𝑅 = 20.0 nm) 

indenting a QS at 𝑥c = 5.0 nm from its edge under a load of load of 75.0 nN; the adhesive contact 

interaction is described by the Maugis parameter 𝜆 = 0.5. a) Cross-section view of the surface 

deformation (red curve, left axis) and normal surface stress (blue curve, right axis) as overlapped 

over the tip-sample contact. The zero-surface line denotes the undeformed H-surface of the QS. 

b) Three-dimensional view of the surface stress distinctively showing the annular region of tensile 

stress around the contact.   
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Figure 4. a) and c) Surface stress and b) and d) deformation profiles along the 𝑥 axis with the 

contact point at 𝑥c = 5.0 nm (a) and b)) and 𝑥c = 20.0 nm (c) and d)) from the edge of the QS 

under an applied load of 75.0 nN. The dashed lines are BEM calculations and the continuous lines 

are obtained from analytical HS models with the origin shifted at the contact points; the analytical 

calculations are shown only for half of the contact. The regions around the contact edge are 

enlarged in the oval insets of the plots. All the plots share the same color code. 
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Figure 5. Stresses a) 𝜎𝑧𝑧 and b) 𝜎𝑥𝑥 in the ZX plane of the QS for an adhesive MD 𝜆 = 0.1 contact 

with the indenter at 𝑥c = 5.0 nm from the free edge of the QS (red contours) and in the middle 

of the HS (blue contours) but shifted at 𝑥c = 5.0 nm, respectively. The indentation was 

performed under a load of 75.0 nN.  



 27 
 

 

 

 

Figure 6. Circumferences of the contact area (continuous line) and annular region (dashed line) 

at various positions in the XY plane for the same applied load of 75.0 nN and Maugis parameter 

𝜆 = 0.1. The dotted horizontal lines show that the projections of these circumferences on the 𝑦 

axis remain unchanged as the center position 𝑥c moves along the 𝑥 axis (the edge of the QS is at 

𝑥 = 0.0 nm). The center positions of the indents are marked by solid crosses of the same color 

as their corresponding circumferences. 
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Figure 7. Indentation depth versus applied force curves for different adhesive couplings (non-

adhesive and MD 𝜆 = 0.1) as calculated by analytical models and BEM for contact positions at 

𝑥c = 5.0 nm and 𝑥c = 10.0 nm from the edge of the QS. The arrows indicate the differences 

between the HS contacts and their QS counterparts. 
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Figure 8. a) Contact stiffness versus applied force curves for different adhesive couplings (non-

adhesive and MD 𝜆 = 0.1) as calculated by analytical models and BEM for contact positions 𝑥c =

5.0 nm and 𝑥c = 10.0 nm from the edge of the QS. The arrows indicate the shifts of the Hertz 

and MD 𝜆 = 0.1 curves from their HS cases to their 𝑥c = 5.0 nm QS counterparts. B) At various 

locations from the edge of the QS, relative deviations of the contact stiffness values were 

calculated with respect to their HS counterparts by considering different adhesive couplings 

(non-adhesive and MD with 𝜆 = 0.1  and 𝜆 = 0.5).  
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Figure A1. Comparison between the results of the current BEM algorithm (red curves) and those 

of Zhang et al. (Zhang et al., 2013) (black curves) for the 𝜎𝑧𝑧 and 𝜎𝑥𝑥 stress contours in the ZX 

plane of the QS. The contact was considered at the edge of the QS with a prescribed Hertz contact 

distribution. The stress values were normalized to the peak value of the Hertz contact pressure 

and the coordinates to the Hertz contact radius. 

 


