
Psst, Can You Keep a Secret?

Apostol Vassilev, Nicky Mouha and Luís Brandão, NIST

The security of encrypted data depends not only on the theoretical properties
of cryptographic primitives but also on the robustness of their implementations
in software and hardware. Threshold cryptography introduces a computational
paradigm that enables higher assurance for such implementations.

Protecting sensitive information from unauthorized disclosure has always been challenging. “Two
may keep counsel, putting one away,” William Shakespeare wrote in Romeo and Juliet (1597). Later,
in Poor Richard’s Almanack (1735), Benjamin Franklin wryly observed that “Three may keep a
secret, if two of them are dead.”

Today, cryptography is a primary means of protecting digital information. In modern cryptogra-
phy the algorithms are well-known; only the keys are secret. Thus, the effectiveness of encrypting
data hinges on maintaining the keys’ secrecy. However, this is difficult in conventional cryptographic
implementations, as keys are usually stored in one place on a single device, and used there to run
the algorithm. This has led to the perception that cryptographic keys are often the Achilles’ heel of
cryptography.

For example, the internal state of a conventional implementation might be compromised through
a bug such as Heartbleed (https://nvd.nist.gov/vuln/detail/CVE-2014-0160), which lets an attacker
read the application’s private memory, including any secret keys contained therein. Another example
is the cold-boot attack,1 which allows recovery of keys from DRAM even seconds to minutes after it
has been removed from the device.

Other attacks inject faults into the computation (for example, by changing the supply voltage),
or obtain information through a side channel, such as the execution time, the amount of energy it
consumes, or the electromagnetic emanations it produces. Many of these fall into the category of
noninvasive attacks, which can be performed without direct physical contact with components within
the device. Attacks that exploit leakage of key-dependent information can lead to disastrous scenarios
in which the master key to encrypt and authenticate device firmware becomes compromised.2

To counter the inherent security risks of handling secret keys in conventional implementations of
cryptographic algorithms, technical approaches have emerged that split the secret key into two or more
shares. Each share independently processes data in such a way that the computation is correct as if the
data had been processed by a classic algorithm with the original secret key. However, the compromise
of one (or more, but not all) of the shares doesn’t reveal information about the original key.

Splitting a key into shares combined with independent processing of the shares can significantly
increase the confidentiality of secret keys in cryptographic implementations. However, it also presents
challenges to ensure the correctness of the outputs that the user receives, and the continued availability
of the overall system.

The final version (doi:10.1109/MC.2018.1151029) is published at IEEE Computer, vol. 51 (1), January 2018.

1

https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://dx.doi.org/10.1109/MC.2018.1151029


In this article, we focus on threshold cryptography: threshold schemes applied to cryptographic
primitives and usually based on secret-sharing techniques. Threshold schemes also exist in other
flavors, depending on the security aspects they address and the techniques used. They are related
to the fields of secure multiparty computation, intrusion-tolerant protocols, and fault-tolerant and
side-channel-resistant implementations.

Security considerations for cryptographic implementations

The basic security model for conventional cryptographic algorithms assumes an ideal black box, in
which the cryptographic computations are correct and all internal states, including keys, are kept
secret. Such ideal constructs have no side channels that could leak secret information. Under this
assumption, one can reduce the problem of evaluating the algorithm’s security properties to the
complexity of the best-known attack against this model. For example, one can define the security
strength, which can also be expressed as bit strength, of different classes of cryptographic algorithms
based on the amount of work needed to perform a brute-force search of the key in a large space
related to the key size.

When the algorithms are implemented in real hardware and software, the black-box assumption
can break down in several ways. For example, bugs in the implementation can lead to side effects that
compromise the secret key, as with Heartbleed. Also, the material and electromagnetic characteristics
of the platforms on which the algorithms run can cause side-channel information to leak and allow
attackers to recover the secret key.

The distinction of ideal versus real implementations can yield useful insights into the assessment
of threshold schemes for cryptographic primitives. What are the security advantages and disadvan-
tages of performing separate computations on shares of a key, compared to conventional implementa-
tions that use a single secret key? How can threshold cryptography mitigate the potentially disastrous
consequences that a coding error or a side-channel leak could have on a conventional implementation?

Example threshold computation on secret shares

Secret sharing is based on splitting the key into multiple shares. For example, to split key K into
three shares K1, K2, and K3, we randomly select shares K1 and K2 from the same key space as K, and
let the third share K3 = K1 ⊕K2 ⊕K be the one-time pad encryption of K, where ⊕ is the exclusive
OR operation if the keys are bit-strings. No two shares provide any information about the secret key
— all shares are required to recover K.

Now let’s construct a threshold scheme for digital signatures. First, we recall the RSA (Rivest-
Shamir-Adleman) signature scheme, which defines the public key as (N,e) and the private key as d,
such that ed = 1 mod φ (N). Here, the modulus N is a product of two large secret primes and φ is
Euler’s totient function. Then, the RSA signature for a (possibly hashed) message m is defined as
s = md mod N. Anyone possessing the public key can verify the signature by checking se = med =
m mod N.

To obtain a threshold variant of this signature scheme, we split the private key d into three shares
d1, d2, and d3, such that d1 + d2 + d3 = d mod φ (N). Now, without reconstructing d, it’s possible to

2



first process the message independently using each of the shares: s1 = md1 , s2 = md2 and s3 = md3 ;
and then compute the signature s = s1s2s3. Note that this is indeed a valid RSA signature, as s1s2s3 =
md1 + d2 + d3 = md mod N.

This simple threshold RSA signature scheme mitigates the risk of exposing the potentially high-
value private key d, which doesn’t appear in any of the three shares that are used in the actual computa-
tions. Thus, compromising any one of the shares, and even two of them, poses no threat of exposing d.
Moreover, frequent updates to the key shares (d1, d2, and d3) would reduce the window of opportunity
for attacks and thereby further reduce the risk. The refresh can even occur after every signature.

For this scheme to work, all three shares must be present. This might be impractical in situations
where one or more of the shares become unavailable. For such cases, a k-out-of-n threshold scheme
could be used when at least k shares are available. Such secret-sharing schemes were independently
developed by Adi Shamir and George Blakley in 1979. For RSA signatures, one can define a
two-out-of-three secret-sharing scheme, and a corresponding threshold variant of RSA.3

Threshold cryptography against single points of failure

Conventional cryptographic implementations are susceptible to single points of failure, as shown by
the Heartbleed and cold-boot attacks. But what do we gain by using threshold cryptography? For the
example of a two-out-of-three threshold RSA signature scheme, consider the case of one share being
irrecoverably lost or breached. Here the private signature key d remains intact, available, and not
breached. This means that one can continue to use the same public key to verify the signature’s correct-
ness. In contrast, when a conventional implementation is breached, the corresponding public/private
key pair would have to be revoked and a new pair issued, which typically requires an external
certification of the public key by a certificate authority and propagating it to all relying parties.

In addition, a two-out-of-three threshold signature scheme becomes more resilient to future share
loses if it continuously refreshes the key shares, provided that at most one is compromised at any
given time. Interestingly, not all two-out-of-three threshold schemes are born alike. In a scheme
composed of three separate conventional RSA implementations with independent keys, refreshing
would require updating the public/private key pairs with all entailing inconveniences. Ensuring
correctness might be more difficult for other cryptographic operations, such as encryption, but such
issues have been addressed in the literature.

The secrecy of keys can also be compromised by the leaking of key-dependent information during
computations. This is possible even without direct physical contact with components within the de-
vice. For example, the time taken, the power consumed, and the electromagnetic radiation emanated
by a device can be measured without penetrating the device enclosure. In some cases, threshold cryp-
tography can reformulate the side-channel leaks, making them more difficult or infeasible to exploit.

Consider, for example, an attack using power leakages, which requires obtaining traces of power
across an algorithm’s execution time. In differential power analysis (DPA), one collects power traces
corresponding to a finite number p of statistical distributions of the power consumption, denoted as a
p-th order attack. Security against p-th order DPA could be obtained if the attacker can recover at
most p < n shares — a (p + 1)-out-of-n threshold scheme would suffice.4

3



Under some reasonable assumptions on the statistical distributions of side-channel information,
DPA requires collecting a number of traces that is exponential in the number of shares.5 Therefore,
the attack becomes infeasible if the number of shares is sufficiently high, and is further thwarted
when the shares are refreshed before the attacker can collect enough traces.

Other attacks could inject a fault into the computation — for example, by applying a strong
external electromagnetic field. If the threshold scheme doesn’t require all shares to be present, it can
resist transient and permanent faults in parts of the computation, thereby providing resistance against
a wide range of fault attacks.

It might be that the threshold cryptographic implementation is insecure, perhaps due to a human
error or an unsafe optimization by the tools used to compile or synthesize the implementation.
It’s important to ensure that the algorithms behind threshold cryptography are secure and well-
analyzed, and to verify that they’ve been implemented correctly. These issues fall into the field of
standardization and validation.

Implications for standardization and validation

Governments recognize cryptography’s important role in protecting sensitive information from unau-
thorized disclosure or modification and tend to select algorithms with well-established theoretical
security properties. For example, US and Canadian federal agencies must use NIST-defined crypto-
graphic algorithm standards to protect sensitive data in computer and telecommunications systems.6

They must also use only validated cryptographic implementations, typically referred to as modules.

As we’ve pointed out in this article, the correct and bug-free implementation of a cryptographic
algorithm and the environment in which it executes are also very important for security. To assess
security aspects related to real hardware and software implementations, NIST established the Crypto-
graphic Module Validation Program (CMVP; https://csrc.nist.gov/projects/cryptographic-module-
validation-program) in 1995 to validate cryptographic modules against the security requirements
in Federal Information Processing Standard (FIPS) Publication 140-2.7 The CMVP leverages
independent third-party testing laboratories to test commercial-off-the-shelf cryptographic modules
supplied by industry vendors.

As technology progresses and cryptography becomes ubiquitous in the federal information
infrastructure, the number and complexity of modules to be validated increases. This makes it
increasingly difficult to detect at validation stage all possible defects that might compromise security.
This is one more reason to consider the potential of threshold cryptography in avoiding single
points of failure in real implementations. The definition of guidelines would help to develop a
structured process of formulating and validating security assertions about threshold cryptographic
implementations. One additional challenge is to enable ways to validate those assertions in an
automated fashion.

As the use of cryptographic algorithms increases, threshold cryptography becomes increasingly
relevant in addressing obstacles arising from differences between ideal and real implementations.
A major issue is the protection of secret keys, which cryptographic security relies on. Threshold
cryptography enables secure modes of operation even when some components are compromised, but
they also present new challenges for the standardization and validation of security assertions.

4

https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program


References

1. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, E. W. Felten, “Lest We Remember: Cold Boot Attacks on Encryption
Keys,” Proc. 17th USENIX Security Symp, (USENIX Security 08), 2008, pp. 45–60.

2. E. Ronen, A. Shamir, A. Weingarten, C. O’Flynn, “IoT Goes Nuclear: Creating a ZigBee Chain
Reaction,” Proc. 2017 IEEE Symp. Security and Privacy (SP 17), 2017, pp. 195–212.

3. V. Shoup, “Practical Threshold Signatures,” Advances in Cryptology—EUROCRYPT 00, B.
Preneel, ed., LNCS 1807, Springer, 2000, pp. 207–220.

4. S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations against Side-Channel
Attacks and Glitches,” Int’l Conf. Information and Communications Security (ICICS 06), P.
Ning, S. Qing, and N. Li, eds., LNCS 4307, Springer, 2006, pp. 529–545.

5. S. Chari, C. S. Jutla, J. R. Rao, P. Rohatgi, “Towards Sound Approaches to Counteract
Power-Analysis Attacks,” Advances in Cryptology—CRYPTO 99, M. Wiener, ed., LNCS 1666,
Springer, 1999, pp. 398–412.

6. Information Technology Management Reform Act of 1996, Public Law 104-106, section 5131;
https://www.dol.gov/ocfo/media/regs/ITMRA.pdf.

7. Federal Information Processing Standards Publication 140-2, Security Requirements for Cryp-
tographic Modules, NIST, 2001; http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf.

Apostol Vassilev is the Research Team Lead in the Security Testing, Validation, and Measurement
Group at NIST. He is also chair of the government–industry working group dedicated to modernizing
the Cryptographic Module Validation Program through the adoption of advanced machine-based
testing methodologies and automation. Contact him at apostol.vassilev@nist.gov.

Nicky Mouha is a guest researcher in the Cryptographic Technology Group at NIST and an
associate member of the CASCADE (Construction and Analysis of Systems for Confidentiality and
Authenticity of Data and Entities) team of ENS (École normale supérieure) Paris. Contact him at
nicky.mouha@nist.gov.

Luís Brandão is a guest researcher in the Cryptographic Technology Group at NIST. Contact
him at luis.brandao@nist.gov.

Disclaimer

The identification of any commercial product or trade name does not imply endorsement or recom-
mendation by the National Institute of Standards and Technology, nor is it intended to imply that
the materials or equipment identified are necessarily the best available for the purpose.

5

https://www.dol.gov/ocfo/media/regs/ITMRA.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

	Psst, Can You Keep a Secret
	Abstract
	Security considerations for cryptographic implementations
	Example threshold computation on secret shares
	Threshold cryptography against single points of failure
	Implications for standardization and validation
	References
	Affiliations
	Disclaimer


