
PHYSICAL REVIEW A 99, 012323 (2019)

Quantum algorithm for simulating the wave equation

Pedro C. S. Costa,1 Stephen Jordan,2,3 and Aaron Ostrander3,4

1Brazilian Center for Research in Physics-CBPF, Rua Dr. Xavier Sigaud, 150-Urca- Rio de Janeiro-RJ -Brazil
2Microsoft Quantum Architectures and Computation Group, Redmond, Washington 98052, USA

3University of Maryland, College Park, Maryland 20742, USA
4Joint Center for Quantum Information and Computer Science, College Park, Maryland 20742, USA

(Received 9 October 2018; published 15 January 2019)

We present a quantum algorithm for simulating the wave equation under Dirichlet and Neumann boundary
conditions. The algorithm uses Hamiltonian simulation and quantum linear system algorithms as subroutines.
It relies on factorizations of discretized Laplacian operators to allow for polynomially improved scaling in
truncation errors and improved scaling for state preparation relative to general purpose quantum algorithms
for solving linear differential equations. Relative to classical algorithms for simulating the D-dimensional wave
equation, our quantum algorithm achieves exponential space savings and achieves a speedup which is polynomial
for fixed D and exponential in D. We also consider using Hamiltonian simulation for Klein-Gordon equations
and Maxwell’s equations.

DOI: 10.1103/PhysRevA.99.012323

I. INTRODUCTION

Here, we present a quantum algorithm for simulating the
wave equation, subject to nontrivial boundary conditions.
In particular, the algorithm can simulate the scattering of a
wave packet off of scatterers of arbitrary shape, with either
Dirichlet or Neumann boundary conditions. The output of the
simulation is in the form of a quantum state proportional to
the solution to the wave equation. By measuring this state one
obtains a sample from a distribution proportional to the square
of the amplitude, which in this case can be interpreted as the
intensity of the wave.

Compared to classical algorithms, our method uses a
number of qubits that scale only logarithmically with the
number of lattice sites, whereas classical methods require a
number of bits scaling linearly with the number of lattice sites.
Additionally, for simulating the wave equation in a region
of diameter � in D dimensions, discretized onto a lattice
of spacing a, our quantum algorithm has a state-preparation
step with time complexity Õ(D5/2�/a) and a Hamiltonian
simulation step with time complexity Õ(T D2/a), where T

is the evolution time for the wave equation. In contrast, all
classical algorithms outputting a full description of the field,
whether based on finite-difference methods or finite-element
methods, must have time complexity scaling at least linearly
with the number of lattice sites, i.e., as �((�/a)D).

Several prior works give quantum algorithms for related
problems. Berry gave an algorithm for first-order linear dif-
ferential equations that encodes a linear multistep method into
a linear system which is then solved using a quantum linear
system algorithm [1]. This algorithm was recently improved
upon in Ref. [2] which gives an algorithm that scales better
than the algorithm of [1] with respect to several system param-
eters. Through standard transformations, the wave equation
in a region of diameter � can be discretized onto a lattice of
spacing a and transformed into a system of linear first-order

differential equations, which could then in general be solved
by the quantum algorithms of [1,2] with complexity of order
(�/a)2 (see Sec. XI). The complexity the quantum algorithm
that we present here scales linearly with (�/a). This quadratic
improvement is achieved in exchange for being specialized for
solving wave equations rather than general linear differential
equations. At even greater generality, Leyton and Osborne
proposed an algorithm for a class of nonlinear initial value
problems [3]. This greater generality comes at a further cost in
performance in that the complexity of the quantum algorithm
scales exponentially with the evolution time. Related work on
quantum algorithms for solving the Poisson equation can be
found in Ref. [4]. A quantum algorithm for the problem of
evaluating transmission line matrices in electromagnetics was
given in Ref. [5].

The improved scaling of our algorithm relies on higher-
order approximations of the Laplacian operator and their fac-
torizations using hypergraph incidence matrices. We describe
how to find these operators and their hypergraph incidence
matrices, and we provide numerical values for up to 10th
order. (Throughout this paper we use the term kth-order
Laplacian to mean a discretization of the Laplacian which,
when used on a lattice of spacing a, has leading error term
of order ak .) To our knowledge, these hypergraph incidence
matrix factorizations do not appear elsewhere in the litera-
ture. These higher-order Laplacians also allow us to improve
how errors scale with respect to lattice spacing at the cost
of simulating more complex (less sparse) Hamiltonians. In
particular, using an s-sparse Hamiltonian to simulate the wave
equation for a volume of diameter � in D dimensions produces
error on the order of T a2(s/D)−2, so a scales as (ε/T)D/2(s−D)

(where ε is the error in the state output by the algorithm).
Expressing the time complexity of our algorithm in terms of ε

and s, we find that the state preparation has time complexity
Õ(sD3/2�(T/ε)D/2(s−D)) and the Hamiltonian simulation has
time complexity Õ(sDT (T/ε)D/2(s−D)). Generally, s is an

2469-9926/2019/99(1)/012323(22) 012323-1 ©2019 American Physical Society

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

scatterer

wavepacketdetector

FIG. 1. For a given initial wave packet and a given scatterer,
we would like to estimate the resulting spatial distribution of wave
intensity resulting at some later time t . In particular, one may wish
to know the total intensity captured by a detector occupying some
region of space. This can be estimated using a quantum simulation in
which the wave function directly mimics the dynamics of the solution
to the wave equation. The final intensity in the detector region is
equal to the probability associated with the corresponding part of the
Hilbert space, which can be estimated from the statistics resulting
from a projective measurement.

integer multiple of D, so these complexities scale polynomi-
ally in D even though D appears in an exponent.

In Ref. [6], Jacobs, Clader, and Sprouse proposed a quan-
tum algorithm for calculating electromagnetic scattering cross
sections that is based on solving boundary value problems in
the special case of monochromatic waves. This monochro-
maticity assumption allows separation of variables, thereby
reducing the calculation to a time-independent problem.

Rather than finite-difference methods, as discussed here,
it is also possible to obtain approximate solutions to the full
time-dependent wave equation through finite-element meth-
ods such as the Galerkin method. In Ref. [7] Montanaro and
Pallister analyze, in a general context, the degree to which
quantum linear algebra methods such as [8,9] allow speedup
for finite-element methods. Detailed analysis of how this can
be applied to the wave equation specifically, particularly with
the aid of preconditioners, is a complex subject which we
defer to future work.

Following [6], we consider as our primary application
the simulation of scattering in complicated geometries,1 as
illustrated in Fig. 1. In this case, the initial condition at time
zero is a localized wave packet and its time derivative, and
the final output of the simulation algorithm is an estimate
of the intensity of the wave at a later time t within some
region of space occupied by the detector. After discretizing
space, the scatterer can be modeled as a hole in the lattice
where some points have been removed. Dirichlet or Neumann
boundary conditions can be imposed on the boundary of this
hole, as discussed in Sec. III. In Sec. IV we describe how
to accommodate various initial conditions in our approach.
In Sec. V we provide numerical evidence that our approach
accurately simulates the wave equation with appropriate be-
havior at boundaries. In Secs. VI and VII we describe higher-
order approximations of the Laplacian operator which allow

1Note that the presence of a scatterer breaks translational invariance
and consequently the Laplacian cannot simply be diagonalized by a
Fourier transform.

for more precise approximations. In Sec. VIII we provide
numerical confirmation that higher-order Laplacians improve
how errors scale. In Sec. X we discuss the post-processing
step which follows Hamiltonian simulation. In Sec. XI we
compare our approach to other quantum algorithms for the
wave equation. In Secs. XII and XIII we address the use
of Hamiltonian simulation for simulating the Klein-Gordon
equation and Maxwell’s equations, respectively.

II. ALGORITHM

In any number of dimensions, the wave equation is

d2

dt2
φ = c2∇2φ. (1)

To avoid cumbersome notation, in the rest of this paper we
will take the wave propagation speed to be c = 1. For a
given initial condition specifying φ(�x, t) and dφ(�x,t)

dt
at t = 0,

our goal is to obtain a quantum state encoding the solution
φ(�x, T) determined by (1) at some later time t .

To achieve this, we will first discretize space. We can
then think of ∇2 as a matrix acting on a vector φ whose
entries encode the value of the field at each point in discrete
space (with appropriate boundary conditions). Discrete ap-
proximations of the Laplacian operator have been thoroughly
studied in both spectral graph theory and quantum chemistry,
and we draw upon this previous work. In the simplest case,
we can discretize a finite region of Rn onto a cubic grid
of lattice spacing a. The resulting points can be thought of
as a graph Ga , with edges between nearest neighbors. The
corresponding graph Laplacian L(Ga) is the square matrix
whose rows and columns index the vertices of this graph,
and whose off-diagonal matrix elements are minus one for
connected vertices and zero otherwise. Each diagonal matrix
element is equal to the degree of the corresponding vertex, i.e.,
the number of other vertices it is connected to. The operator
− 1

a2 L(Ga) approximates ∇2 in the limit a → 0. For example,
in one dimension,

− 1

a2
[L(Ga)φ]j = φj−1 − 2φj + φj+1

a2
, (2)

which becomes the second derivative of φ in the limit a → 0.
At finite a, the truncation error is O(a2).

After discretization, we are faced with the task of
simulating

d2

dt2
φ = − 1

a2
Lφ. (3)

To this end, consider a Hamiltonian of the following block
form, which by construction is Hermitian independent of the
specific choice of matrix B:

H = 1

a

[
0 B

B† 0

]
. (4)

Schrödinger’s equation then takes the form

d

dt

[
φV

φE

]
= −i

a

[
0 B

B† 0

][
φV

φE

]
(5)

012323-2

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

which implies

d2

dt2

[
φV

φE

]
= −1

a2

[
0 B

B† 0

]2[
φV

φE

]
(6)

= −1

a2

[
BB† 0

0 B†B

][
φV

φE

]
. (7)

So, if BB† = L, then a subspace of the full Hilbert space
evolves according to a discretized wave equation.

For any graph, weighted or unweighted, and with or with-
out self-loops, BBT = L is achieved by taking B to be the
corresponding signed incidence matrix, defined as follows.
For a given graph with |V | vertices and |E| edges, B is a |V | ×
|E| matrix with rows indexed by vertices and columns indexed
by edges. One starts by arbitrarily assigning orientations to
the edges of the graph. This arbitrary choice affects B but
does not affect BBT , which always equals the Laplacian of
the undirected graph. The general definition of the incidence
matrix for a graph where edge j has weight Wj is

Bij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

Wj if j is a self-loop of i,√
Wj if j is an edge with i, as source,

−√Wj if j is an edge with i as sink,

0 otherwise.

(8)

In the special case that the graph is unweighted, Wj = 1 for
every edge.

From the above, one sees that the Hilbert space associated
with the graph is

H = HV ⊕ HE, (9)

where HV is the vertex space (where φV is supported) and
HE is the edge space (where φE is supported). The dynamics
on the vertex space obeys the discretized wave equation. The
amplitudes associated with the edges are extra variables that
necessarily arise when converting second-order differential
equations into first-order differential equations.

Simulating the time evolution according to (5) can be
achieved using state-of-the-art quantum algorithms for simu-
lating the dynamics induced by general sparse Hamiltonians.
One sees that the dimension of the Hilbert space H is equal to
the number of vertices of the graph plus the number of edges:
|V | + |E|. In particular, for a cubic region of side length l in D

dimensions, discretized into a cubic grid of lattice spacing a,
one has |V | = (l/a)D and |E| = D(l/a)D . Thus, the number
of qubits needed is log2 [(1 + D)(l/a)D]. The largest matrix
element of H has magnitude 1/a, and the number of nonzero
matrix elements in each row or column of H is at most 2D.

Using the method of [10] we can approximate the unitary
time evolution e−iH t to within ε using a quantum circuit of

g = O

{
τ [n + log5/2 (τ/ε)]

log (τ/ε)

log log (τ/ε)

}
(10)

gates, where τ = s‖H‖maxt , where ‖H‖max is the largest
matrix element of H in absolute value, s = sparsity of H , and
n = number of qubits. For the Hamiltonian of (4), s = 2D,
‖H‖max = 1/a, and n = log2 [(1 + D)(l/a)D], and therefore

the total complexity of simulating the time evolution is

g = O

{
Dt

a

[
log[(1 + D)(l/a)D]

+ log5/2

(
2Dt

aε

)]
log
(

2Dt
aε

)
log log

(
2Dt
aε

)} = Õ

[
tD2

a

]
, (11)

where the notation Õ indicates that we are suppressing log-
arithmic factors. The table below compares the asymptotic
runtime and memory usage of our algorithm against standard
classical numerical methods for solving differential equations:

Classical Quantum

Time �[T (l/a)h] Õ[tD2/a]
Space (l/a)h D log(l/a)

The remaining considerations are the implementation of
desired boundary conditions, the preparation of an initial state
implementing the desired initial conditions, errors induced by
discretizing the wave equation, and the relative probability to
obtain samples from the vertex space versus the edge space
at the end of the computation. In the following sections we
address each of these issues in turn. These considerations
motivate various improvements and extensions to the above
algorithm, which we introduce along the way, in particular the
use of higher-order discretizations of ∇2.

III. BOUNDARY CONDITIONS

Here, we will consider how to implement two commonly
used boundary conditions: Dirichlet and Neumann. With
Dirichlet boundary conditions φ = 0 at the boundary. With
Neumann boundary conditions ∇φ · n̂ = 0 at the boundary,
where n̂ is the unit vector normal to the boundary. For any
shape of boundary and in any number of dimensions our
prescription is as follows. To implement Neumann boundary
conditions, use the ordinary graph Laplacian of the graph
obtained by starting with the cubic grid and removing the
vertices interior to the scattering object. To implement Dirich-
let boundary conditions, one must add weighted self-loops
to each of the vertices on the boundary with weights equal
to the number of edges that are missing relative to interior
vertices. (This ensures that the diagonal matrix elements of
the resulting graph Laplacian are all equal.) See Fig. 2 for an
illustration. For pedagogical reasons, we give two derivations
of the Laplacians implementing these boundary conditions,
using the one-dimensional path graph as an example. One
derivation is based on discretization of derivatives, and the
other is by linear algebra on an already-discretized system.

A. Neumann boundary conditions by discretization

Consider the line segment [0,1]. Within this, the second
derivative discretizes to

d2φ

dx2
= lim

a→0

dφ

dx
(x + a/2) − dφ

dx
(x − a/2)

a

= lim
a→0

φ(x+a)−φ(x)
a

− φ(x)−φ(x−a)
a

a
. (12)

012323-3

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

FIG. 2. To implement Dirichlet boundary conditions in a dis-
cretized square region with a square hole, one adds self-loops as
illustrated above. The thick red self-loops at the corners have weight
two. All other edges (self-loops and otherwise) have weight one.
This prescription was used in the numerical examples of Sec. V. To
implement Neumann boundary conditions, one omits all self-loops.

This yields at internal vertices the familiar form of a discrete
Laplacian

d2φ

dx2
(x) = lim

a→0

φ(x + a) − 2φ(x) + φ(x − a)

a2
(13)

with Neumann boundary conditions dφ

dx
= 0 at the boundaries.

Thus, at the leftmost vertex we have

d2φ

dx2
(0) = lim

a→0

dφ

dx
(a/2) − dφ

dx
(−a/2)

a

= lim
a→0

dφ

dx
(a/2)

a
= lim

a→0

φ(a) − φ(0)

a2
. (14)

Similarly, dφ

dx
(x + a/2) vanishes at the rightmost vertex.

For example, if we discretize the segment [0,1] into five lattice
sites we would have

− 1

a2
LNeumannφ

= 1

a2

⎡⎢⎢⎢⎣
−1 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ(0)
φ(a)
φ(2a)
φ(3a)
φ(4a)

⎤⎥⎥⎥⎦. (15)

LNeumann is recognizable as the ordinary graph Laplacian for
the path graph of five vertices:

This holds more generally; the ordinary graph Laplacian on
discretized regions of any shape in any number of dimensions
yields Neumann boundary conditions. Note that in the above
example, discretizing the unit interval with five vertices, one
should take a = 1

5 because each of the four edges in the graph

corresponds to a distance of a, but as we see from the above
argument, the boundary conditions correspond to dφ/dx = 0
at x = −a/2 and x = 1 + a/2.

B. Dirichlet boundary conditions by discretization

In the Dirichlet case, we have φ = 0 at the leftmost and
rightmost vertices. Thus, at the leftmost point, the discretized
second derivative becomes

d2φ

dx2
(a) = φ(0) − 2φ(a) + φ(2a)

a2
= φ(2a) − 2φ(a)

a2
(16)

and similarly we take φ(x + a) = 0 at the rightmost point. On
a discretization of the interval [0,1] this would yield

− 1

a2
LDirichletφ

= 1

a2

⎡⎢⎢⎢⎣
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ(a)
φ(2a)
φ(3a)
φ(4a)
φ(5a)

⎤⎥⎥⎥⎦. (17)

LDirichlet is recognizable as the Laplacian of the path graph
with weight-one self-loops on the end points:

.

For a region of arbitrary shape in D dimensions, Dirichlet
boundary conditions are achieved by adding weighted self-
loops to the boundary vertices such that the diagonal matrix
elements in the Laplacian are all equal. In particular, for a
cubic lattice in D dimensions, we take LDirichlet = 2D1 −
A(G) where A(G) is the adjacency matrix of the lattice.

One should think of the above example as a seven-vertex
six-edge discretization of the interval [0,1] where we have
ignored the variables φ(0) and φ(6a) as they are permanently
equal to zero. In other words, the above 5 × 5 matrix, if
thought of as a discretization of d2

dx2 on [0,1], should have
a = 1

6 .
An alternative way to derive these boundary conditions is

to start with an infinite lattice and then fix some variables to
zero (in the Dirichlet case) or some variables to be equal to
each other (in the Neumann case), as we now discuss.

C. Neumann boundary conditions, algebraic derivation

We first consider the Laplacian L for an infinite path graph
with vertices labeled by Z, which is a tridiagonal matrix with
2 on the diagonal and −1 on the off diagonals. It suffices to
consider imposing the boundary conditions at the left end of
the interval, which we assume corresponds to the vertex 0 in
our discrete space. Then, for Neumann boundary conditions
the field φ is constant on all vertices v ∈ Z−, that is, φv = φ0.

012323-4

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

Then, consider how L acts on the field in the neighborhood of
0. We represent this as

L �φ =

⎡⎢⎢⎢⎣
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ−2

φ−1

φ0

φ1

φ2

⎤⎥⎥⎥⎦ (18)

�→ LNeumann �φ =

⎡⎢⎢⎢⎣
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ0

φ0

φ0

φ1

φ2

⎤⎥⎥⎥⎦ (19)

=

⎡⎢⎢⎢⎣
0
0

φ0 − φ1

2φ1 − φ0 − φ2

. . .

⎤⎥⎥⎥⎦ (20)

=

⎡⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ0

φ0

φ0

φ1

φ2

⎤⎥⎥⎥⎦. (21)

So, we see that imposing Neumann boundary conditions
allows us to ignore the vertices labeled by negative numbers.
To give a finite example, if we restrict to the vertices 0,1,2,3
(i.e., impose Neumann boundary conditions for vertices to the
left of 0 and to the right of 3), then the Laplacian we produce
is

L =

⎡⎢⎣ 1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎤⎥⎦, (22)

which is exactly the graph Laplacian for the path graph on
four vertices.

D. Dirichlet boundary conditions, algebraic derivation

We use similar arguments to show how to impose Dirichlet
boundary conditions. Consider imposing φ = 0 to the left of
0. Then, L acts as

L �φ =

⎡⎢⎢⎢⎣
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ−2

φ−1

φ0

φ1

φ2

⎤⎥⎥⎥⎦ (23)

�→ LDirichlet �φ =

⎡⎢⎢⎢⎣
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
0
φ0

φ1

φ2

⎤⎥⎥⎥⎦ (24)

=

⎡⎢⎢⎢⎣
0

−φ0

2φ0 − φ1

2φ1 − φ0 − φ2

. . .

⎤⎥⎥⎥⎦ (25)

=

⎡⎢⎢⎢⎣
0 0 0 0 0
0 0 −1 0 0
0 0 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
0
φ0

φ1

φ2

⎤⎥⎥⎥⎦. (26)

Since we are only concerned with how the Laplacian acts
on vertices 0, 1, 2 . . . and not on −1 we can ignore the fact
that (L �φ)−1 = −φ0. Another way to motivate this is that by
restricting the wave equation to act on vertices 0, 1, 2 . . .

we do not provide a dynamical equation for φ−1, so it will
remain 0.

To compare this with the Neumann case, if we restrict to
the vertices 0,1,2,3, then the Laplacian we produce is

L =

⎡⎢⎣ 2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤⎥⎦, (27)

which differs from the Neumann Laplacian in the upper-left
and lower-right entries.

IV. INITIAL CONDITIONS

The first step in our quantum algorithm is to prepare a
quantum state [φV , φE] corresponding to desired initial con-
ditions φ(x) and ∂φ

∂t
(x) at t = 0. Our method for preparing the

initial state and its complexity varies depending on the specific
type of initial conditions.

As a first example, consider a line segment with Dirichlet
boundary conditions, discretized into four lattice sites. In this
case, by (4) and (8), we have

H = 1

a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
1 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)

This can be viewed as a discretization of

H =
[

0 d
dx

− d
dx

0

]
, (29)

where we use the forward difference to approximate d
dx

and
the backward difference to approximate − d

dx
. More generally,

in an arbitrary number of dimensions, the Hamiltonian (4) can
be seen as a discretization of

H =
[

0 �∇T

−�∇ 0

]
. (30)

(We here view φE as describing a vector field, where the
value associated with a given edge in the graph is the vector
component along the direction that the edge points.) Conse-
quently, for an arbitrary initial condition specified by φ0(x)
and d

dt
φ0(x) one must prepare a corresponding initial quantum

012323-5

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

state that is a solution to

φV = φ0,

�∇ · �φE = i
d

dt
φ0. (31)

In more than one dimension, Eq. (31) does not uniquely
determine φE since �∇ × �φE is unspecified. (In one dimension,
φE is determined up to an additive constant.) In the remainder
of this section, we consider how to compute a solution to (31)
and how to prepare the initial state [φV , φE] on a quantum
computer in various cases of interest.

A. Static initial state

The simplest case is to prepare a state with d
dt

φ uniformly
equal to zero. Then, one can use φE = 0 as an initial quantum
state. The state-preparation problem then reduces to preparing
φV ; however, this is not necessarily efficient for arbitrary
φV . Preparation of a completely arbitrary quantum state in
an N -dimensional Hilbert space has complexity of order N ,
i.e., exponential in the number of qubits. Specifically, suppose
one were given an oracle, which when queried with a bit
string x returned a corresponding amplitude ψ (x) written (to
some number of bits of precision) into an output register.
One wishes to prepare the corresponding quantum state |ψ〉 =∑

x∈{0,1}n ψ (x) |x〉. The worst-case complexity of this task is

�(
√

N) [11]. In many cases of interest, the complexity for
preparing the initial state may be much lower. In particular, as
was originally shown in Ref. [12], a state of the form∑

x∈{0,1}n

√
p(x) |x〉 (32)

can be prepared in poly(n) time on a quantum computer
provided that each of the conditional probabilities

p(x1x2 . . . xr |xr+1xr+2 . . . xn), r = 1, 2, 3, . . . (33)

can be efficiently computed. As discussed in Ref. [13], these
conditional probabilities can be efficiently computed for all
log-concave probability distributions.

B. Rigidly translating wave packet

In one spatial dimension, for any twice-differentiable
wave-packet shape w,

φ(�x, t) = w(x − ct) (34)

is a solution to the wave equation d2

dt2 φ = c2∇2φ. (In this
paper we will generally take c = 1.) From (29) one sees that
the quantum state [

φV

φE

]
=
[

w(x − t)
iw(x − t)

]
(35)

represents this solution in the continuum limit. For a lat-
tice with Neumann or Dirichlet boundary conditions, the
vertex and edge Hilbert spaces have different dimensions,
so the initial state is not merely (|0〉 + i|1〉)|w(0)〉/√2
where |w〉 ∝∑x w(x) |x〉. This can be overcome by
instead preparing (|0〉|w(0)V 〉 + i|1〉|w(0)E〉)/

√
2 where

|w(0)V 〉 ∝∑j∈V w(ja) |j 〉 and |w(0)E〉 ∝∑(j,k)∈E w((j +

k)a/2) |(j, k)〉. So if the quantum state
∑

x w(x) |x〉 (suitably
discretized in each Hilbert space) can be prepared in polyno-
mial time, then so can the state (35). More generally, in an
arbitrary number of dimensions, one can obtain an analogous
initial state proportional to[

φV

�φE

]
=
[

w(x)
i�vw(x)

]
(36)

with |�v| = c. This initially represents a wave-packet traveling
with velocity �v, but unlike in the one-dimensional case, the
wave packet will eventually suffer dispersion rather than
simply translating rigidly.

C. General case

In the general case we may imagine that we are given effi-
cient quantum circuits preparing the states |φ0〉 =∑�x φ(�x, 0)
|�x〉 and |φ̇0〉 ≡∑�x

∂φ(x,t)
∂t

|
t=0

|�x〉. The discrete analog of (31)
is, via our incidence-matrix discretization,

φV = φ0, (37)

− i

a
BφE = φ̇0. (38)

In two and higher dimensions, the solution to i
a
BφE = φ̇0

is nonunique in general since the number of edges in the
graph Ga exceeds the number of vertices. Thus, the number
of columns of B exceeds the number of rows by a factor of
order D, the number of spatial dimensions. One valid solution
is to use as our quantum initial state[

φV

φE

]
∝
[

φ0

iaB+φ̇0

]
, (39)

where B+ denotes the Moore-Penrose pseudoinverse of the
matrix B. A Moore-Penrose pseudoinverse has the property
that the image of B+ is the orthogonal complement of the
kernel of B. Recall that B is a map from HE → HV . For the
case of the standard second-order Laplacian, the correspond-
ing B is the signed incidence matrix of a graph. In this case,
B can be interpreted in the continuum limit as a divergence.
The Helmholtz decomposition theorem says that any twice-
differentiable vector field can be decomposed into a curl-free
component and a divergence-free component, the latter of
which corresponds to the kernel of B in the continuum limit.
Thus, φE = −iaB+φ̇0 corresponds in the continuum limit to
the solution to the following system of equations:

�∇ · �φE = −iφ̇0, (40)

�∇ × �φE = 0. (41)

To construct the state (39), we can use the quantum linear
systems algorithm of [9]. Specifically, we wish to prepare the
state proportional to the solution to Ax = b where

A =
[
1 0
0 ia−1B

]
, (42)

b =
[
φ0

φ̇0

]
. (43)

012323-6

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

This can be done using the quantum linear systems algorithm
of [9], whose time complexity is Õ(κ), where κ is the condi-
tion number of A, which in this case is equal to the condition
number of the incidence matrix B.

Using the state (39) restricts the classes of solutions which
our algorithm simulates. This is because B+φ̇0 does not have
support in the kernel of B. This is significant for Neumann
boundary conditions because the kernel of B (and of the
Laplacian) is the all-ones vector, whereas for Dirichlet bound-
ary conditions the kernel is trivial. This means that, even if φ̇0

had support in the space spanned by the all-ones vector, the
algorithm will simulate the system with the modified initial
condition where φ̇0 does not have support in this space. This
restriction may seem artificial, but it is a natural consequence
of the unitarity of Hamiltonian dynamics. If the uniform sup-
port of φ̇0 were not projected out, then our algorithm would be
able to simulate the solution φ(�x, t) ∝ t (with no dependence
on �x) for which φ̇ is constant. This would result in the norm
of the quantum state changing in time, in contradiction to
unitarity.

In more detail, an algorithm from [9] can perform the
transformation φ̇0 → −iaB+φ̇0 using a number of gates that
scale as Õ(sκ log N) where s is the sparsity of B, κ is the
condition number of B, and N is the dimension of the Hilbert
space. The condition number of B is the square root of the
condition number of the graph Laplacian L. L has norm O(D)
and smallest eigenvalue O(�2/a2), independent of D, where
the volume under consideration is � × � × . . . × � which
discretized onto a grid of spacing a. Thus, κ ∼ √

D�/a. The
sparsity of B is s ∼ D for any fixed order of discretization,
and the Hilbert space dimension is N ∼ (�/a)D . Putting this
together yields an overall complexity of Õ(D5/2�a−1) for
state preparation in this case (neglecting log factors).

V. NUMERICAL EXAMPLES

The above analysis can be confirmed by numerical exam-
ples, as shown in this section. In all cases Figs. 3–6, one sees
that the dynamics and implementation of initial conditions and
boundary conditions are consistent with theoretical expecta-
tions. Our quantum algorithm is implemented on a gate model
quantum computer, and time evolution is disretized into a
sequence of elementary gates through the method of [10]. The
error induced by this time discretization is rigorously upper
bounded in Ref. [10]. Thus, the focus of our numerical study
is to investigate the errors induced by spatial discretization and
verify the implementation of boundary conditions and initial
conditions. To this end, we use the Dormand-Prince method2

[14] (a variant of Runge-Kutta) to solve Schrödinger’s equa-
tion with Hamiltonians arising from our incidence matrix
prescription.

As we know from [15] there is a relation between the time
step and the lattice spacing that is necessary, but not sufficient,
to keep the numerical simulations stable, which is

�t < a,

2This is implemented as ODE45 in MATLAB.

FIG. 3. Shape preserving on line segment Dirichlet. Here, we
consider the case of a rigidly translating wave packet as described
by (35). We can see two different views of the same wave packet
starting in the middle point in a box with size 20, where space is
represented by the x axis while in the y axis we have the time and
the units are meters and seconds, respectively. We can see the packet
going back and forward between the extremes of the box. Although
its wave amplitude is preserved in time, when the wave packet arrives
at the end points, the amplitude reflects simultaneously with the
propagation’s direction. The red color gives us the positive amplitude
against the blue one with negative value. In (b) the amplitude height
is plotted in the z axis and its units are meters. In this example,
we choose lattice spacing a = 0.2469 and Gaussian wave packet of
width σ = 1.6.

because of that we used this relation in all our numerical anal-
yses. In small examples, we verified the accuracy numerical
solution to the differential equations by comparing against
direct computation of the entire unitary operator e−iH t applied
to the initial state vector.

VI. HIGHER-ORDER LAPLACIANS

As we have seen, the graph Laplacian is related by a
multiplicative constant to the first-order approximation of the
continuous Laplacian operator; however, higher-order approx-
imations might be desired to improve accuracy. In Ref. [16]
the authors give an expression for a finite-difference approxi-
mation of the Laplacian operator that is based on the Lagrange
interpolation formula and can be taken to arbitrarily high
orders of accuracy.

The Lagrange interpolation formula is an exact formula for
fitting a polynomial to a set of points {xi, f (xi) = fi}. For
2N + 1 values of xj labeled by j ∈ {−N,−N + 1, . . . N},
the formula is

f (x) =
N∑

k=−N

f (xk)
N∏

l=−N,l �=k

(
x − xl

xk − xl

)
. (44)

012323-7

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

FIG. 4. Spreading wave on line segment Dirichlet. In these fig-
ures we kept with the same parameters used for the previous plots,
changing only the initial condition for �φE . Now, we can see the wave
spreading equally for the both sides, reflecting in the boundary and
then meeting themselves again in the center, but with the amplitude
inverted. The units are the same used in the previous plots, meters
and seconds.

FIG. 5. Standing wave. Here, we consider a standing wave,
which can be described analytically by φ(x, t) = cos(ωt) sin(πx).
This can be simulated by Schrödinger’s equation if we work with
�φ0 = sin(πx) and d �φ0/dt = 0 as long as we start with t = 0. The
units are the same ones used in the previous figures.

FIG. 6. Wave packet in a cavity. Here, the initial state is a
Gaussian wave packet, but now in a two-dimensional region with
nontrivial boundary. Specifically, we simulate scattering of the wave
packet off a square object with Dirichlet boundary conditions. This is
implemented as a square hole in the underlying discrete lattice. These
four views represent the same wave packet in different time instants,
where ta > tb > tc > td . As in the one-dimensional example, we
worked with Dirichlet boundary conditions; however, the shape is
not preserved. Here, the box has size 10 in both axes, and we choose
a = 0.1563 and σ = 0.4.

012323-8

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

Taking the second derivative of this formula gives an
interpolation formula for an approximation of the Laplace
operator. Assuming the values xj are taken from a uniform
lattice (i.e., xj = ja for j ∈ Z), we can approximate the
Laplacian of f at x0 using

f ′′(x0) = −1

a2

[
2f (x0)

N∑
l=1

1

l2

−
N∑

k=1

f (xk) + f (x−k)

k2

N∏
l=−N,l �=k

l2

l2 − k2

]
. (45)

If we truncate this expression at N = 1, then we recover
the standard second-order Laplacian approximation. [Recall
that we define kth order to mean leading error term O(ak) on
a lattice of spacing a.]

The next higher-order (N = 2) approximation of f ′′(x0) is

f ′′(x0) = −1

a2

{
5

2
f (x0) − 4

3
[f (x1) + f (x−1)]

+ 1

12
[f (x2) + f (x−2)]

}
. (46)

Assuming the lattice has periodic boundary conditions, then
similar formulas hold at points other than x0. In particular, we
can write the fourth-order Laplacian for a periodic lattice as

L = (−1/a2){(5/2)1 − (4/3)(S + S†)

+ (1/12)[S2 + (S†)2]}. (47)

Here, S is the matrix representation of the cyclic permutation
(1, 2, . . . , N), i.e., it has entries Si,j = δi,j+1 mod N .

VII. BOUNDARY CONDITIONS FOR
HIGHER-ORDER LAPLACIANS

We can accommodate Neumann and Dirichlet boundary
conditions by modifying Laplacians for periodic boundary
conditions. In particular, we follow the algebraic derivation
described in Sec. III.

A. Dirichlet boundary conditions

As before, we consider a small neighborhood of vertices
around 0. By imposing that φj = 0 for all j ∈ Z−, we modify
the Laplacian as below:

L �φ =

⎡⎢⎢⎢⎣
5/2 −4/3 1/12 0 0

−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ−2

φ−1

φ0

φ1

φ2

⎤⎥⎥⎥⎦

→

⎡⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 5/2 −4/3 1/12
0 0 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
0
φ0

φ1

φ2

⎤⎥⎥⎥⎦. (48)

So, imposing Dirichlet boundary conditions simply amounts
to taking a principal submatrix.

B. Neumann boundary conditions

To account for Neumann boundary conditions, impose
φj = φ0 for all j ∈ Z−. The Laplacian is modified as below:

L �φ =

⎡⎢⎢⎢⎣
5/2 −4/3 1/12 0 0

−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ−2

φ−1

φ0

φ1

φ2

⎤⎥⎥⎥⎦
(49)

�→

⎡⎢⎢⎢⎣
5/2 −4/3 1/12 0 0

−4/3 5/2 −4/3 1/12 0
1/12 −4/3 5/2 −4/3 1/12

0 1/12 −4/3 5/2 −4/3
0 0 1/12 −4/3 5/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ0

φ0

φ0

φ1

φ2

⎤⎥⎥⎥⎦ (50)

=

⎡⎢⎣ 0
(5/2 − 4/3 − 4/3 + 1/12)φ0 + (1/12)φ1

(5/2 − 4/3 + 1/12)φ0 − (4/3)φ1 + (1/12)φ2

. . .

⎤⎥⎦ (51)

=

⎡⎢⎢⎢⎣
0 0 0 0 0
0 0 −1/12 1/12 0
0 0 5/4 −4/3 1/12
0 0 −5/4 5/2 −4/3
0 0 1/12 −4/3 5/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ0

φ0

φ0

φ1

φ2

⎤⎥⎥⎥⎦. (52)

Note that this is not a symmetric approximation of the
Laplacian, not even when restricted to vertices 0, 1, and 2.
However the decoupled second-order dynamics of Eq. (7)
requires symmetric operators since BB† is Hermitian by con-
struction, so our algorithm cannot use higher-order Laplacians
for simulating dynamics with Neumann boundary conditions.

C. Hypergraph incidence matrices

Now that we have seen how to impose Dirichlet boundary
conditions on higher-order Laplacians, we should consider
how to generate their incidence matrices. Recall that the
fourth-order Laplacian with periodic boundary conditions is

L = (−1/a2){(5/2)1 − (4/3)(S + S†)

+(1/12)[S2 + (S†)2},
which is a sum of circulant matrices. This suggests that a
reasonable ansatz for the incidence matrix is cS − (c + b)1 +
bS†. By construction, this ansatz has zero sum rows which
guarantees that the Laplacian matrix acting on a vector whose
entries all have the same value will evaluate to 0 (which is
consistent with the fact that the Laplacian operator acting on
a constant function evaluates to 0).

From this ansatz we arrive at the following system of
degree 2 polynomial equations in b and c:

2(c2 + b2 + cb) = 5/2, (53)

cb = 1/12, (54)

(c + b)2 = 4/3. (55)

Once any two of these is satisfied, the third will also be
satisfied since the row sums of the matrix must all be zero. The
middle equation gives us b = 1/12c, which substituted into

012323-9

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

the last equation gives 4/3 = c4 − (7/6)c2 + (1/144) which
has solutions satisfying c2 = (7/12) ± √

1/3. This gives val-
ues of c ≈ 1.077 35 and b ≈ 0.077 35 (switching their values
gives another solution).

D. Two dimensions and beyond

The continuous Laplacian in two dimensions can be writ-
ten as ∇2 = ∂2

∂x2 + ∂2

∂y2 , i.e., the sum of the one-dimensional
Laplacians in the x and y directions (note that each of these is
basis dependent although the total Laplacian is not). Discrete
Laplacians in two dimensions are similarly constructed.

We discretize space into a square lattice and remove some
edges and vertices according to boundary conditions. The
resulting graph (V,E) is a subgraph of the square lattice, so
we can separate its edge set into vertical edges Ey and hori-
zontal edges Ex . The subgraphs associated with this partition,
Gx = (V,Ex) and Gy = (V,Ey), are composed of several
disconnected path graphs (or cycles under periodic boundary
conditions). If the lattice is n vertices wide and m vertices
tall, then Gx consists of m-path graphs each on n vertices;
similarly, Gy consists of n-path graphs each on m vertices. If
scatterers are introduced, then the path graphs composing Gx

and Gy will depend on what edges and vertices are removed
to account for the scatterers.

Since Gx and Gy are composed of several disconnected
path graphs, we can write their Laplacians and factor them
into incidence matrices. The Laplacians L(Gx) and L(Gy)
approximate ∂2

∂x2 and ∂2

∂y2 , respectively, so L(Gx) + L(Gy)

approximates ∇2. If L(Gx) = B
†
xBx and L(Gy) = B

†
yBy , then

L(Gx) + L(Gy) = C†C where C is the |Ex ∪ Ey | × V ma-
trix produced by vertically concatenating Bx and By .

Generalizing this to n dimensions, the procedure is to
(1) separate the lattice into n graphs (each composed of
disconnected paths or cycles) corresponding to each direction
in space, (2) write the Laplacians for these n graphs and factor
them into incidence matrices, and (3) vertically concatenate
their incidence matrices.

E. Sixth- (and higher-) order Laplacians

So far, our discussion has been restricted to second- and
fourth-order Laplacians; however, we can arrive at higher-
order Laplacians by (1) taking higher-order expansions of
the Lagrange interpolation formula, (2) differentiating twice
and evaluating at x = 0, and (3) reading off the interpolation
formula coefficients as matrix coefficients. Periodic boundary
conditions are achieved by requiring that the Laplacian be
circulant. As before, Dirichlet boundary conditions can be
imposed by taking principal submatrices of the Laplacian. Our
remarks about generalizing beyond one dimension (1D) also
hold for higher-order Laplacians.

The problem of finding the incidence matrices of higher-
order Laplacians is a little more involved that in the first-order
case where the graph-theoretic interpretation facilitates the
factorization. We let N denote the radius of a discrete Lapla-
cian. That is, a Laplacian matrix with nonzero entries only
out to nearest neighbors has N = 1, second-nearest neighbors
has N = 2, and so on. In general, the radius N Laplacian
will be factored into incidence matrices of hypergraphs where

each hyperedge can contain up to N + 1 vertices. (Note:
Hyperedges with fewer than N + 1 vertices will appear if
Dirichlet boundary conditions are used.)

As in the N = 1 and 2 (i.e., second- and fourth-order)
cases, the entries of these incidence matrices can be found
by considering the factorization of a Laplacian with periodic
boundary conditions. The translational invariance of this case
guarantees that all hyperedges will have the same weights and
can be oriented identically. Then, the entries of the incidence
matrix can be found by choosing an appropriate ansatz (one
of the form

∑n
j=−m ajS

j for some n and m) and solving the
appropriate system of polynomial equations [similar to how
(53) was solved]. We provide numerical values for the entries
of Laplacians and their incidence matrices up to 10th order in
Appendix C.

VIII. DISCRETIZATION ERRORS

Using a kth-order Laplacian, as described in Sec. VI one
expects discretization errors to shrink with lattice spacing as
O(ak). To obtain a more quantitative assessment of discretiza-
tion errors, we can numerically compute a metric called the
Q factor, which is used to quantify discretization errors in
numerical simulations [17].

To compute this factor, we use the discretized solutions at
three different lattice spacings �a , �2a , and �4a . The Q factor
is then defined by

Q(t) = ‖�4a − �2a‖2

‖�2a − �a‖2
. (56)

�4a and �2a are defined on different lattices, and thus they
are vectors of different dimension. However, we choose the
lattices so that the vertices present in the lattice of spacing 4a

are a subset of the vertices present in the lattice of spacing
2a. Then, by ‖�4a − �2a‖ we really mean the l2 norm of the
vector �4a − I4a (�2a), where I4a is the inclusion map that
discards the vector components associated with the vertices
absent from the lattice of spacing 4a. For notational simplic-
ity, we drop explicit reference to this inclusion map.

Now, we want to see the value associated with Eq. (56)
when we take the continuum limit a → 0. Straightforward
Taylor expansion shows that a kth-order discretized Lapla-
cian, which leaves errors of order ak should yield a corre-
sponding Q factor of 2k in the limit of a going to zero,
provided errors from other steps in the algorithm, such as
state preparation do not dominate. Now, we present a table of
values that shows the average of Q from t = 0 to 0.5, working
with 0.0001 as the time step:

Second order Fourth order

〈Q〉spreading 3.98 15.69
〈Q〉rigidly translating 1.99 2.00
〈Q〉standing 3.99 15.89

One sees that for the spreading wave-packet case and
the standing-wave case (both static initial conditions), the Q

factors are in good agreement with the expected values of 4
and 16 for the second- and fourth-order Laplacians. In the case

012323-10

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

of the rigidly translating wave packet [which corresponds to
the initial condition of (35)], the Q factor is approximately 2,
independent of the order of the discretized Laplacian. This
is because, in this case, the dominant source of error is in
the state preparation. Exact state preparation would involve
inverting the incidence matrix, as described in Sec. IV C. The
initial state described by (35) is accurate only up to errors of
order a, thus yielding a Q factor of 2. In Appendix B we also
obtain an analytical calculation of the Q factor for the special
case of a standing wave, treated with a first-order Laplacian.

Since a kth-order Laplacian gives truncation errors of order
ak , the total error accumulated for evolution time T will
be order akT . A D-dimensional Laplacian of order k has
an incidence matrix which is D(k/2 + 1) sparse; so, if an
s-sparse Hamiltonian is used, then k = 2(s/D) − 2. Then, the
total error accumulated is on the order of T a2(s/D)−2.

IX. SMOOTHNESS

In preceding sections we have discussed the impact of
using higher-order discretizations to minimize error. In gen-
eral, both classically and quantumly, one chooses the order
of the discretization of the Laplacian on a lattice to obtain
discretization errors of order ak , where a is the lattice spac-
ing. The choice of k is influenced by the smoothness of
the underlying continuum solution that one is attempting to
discretize [18]. A high-order discretization with error O(ak)
of an mth derivative is only justified if the exact solution is
(k + m) times differentiable since any such discretization of
an mth derivative is derived by Taylor expanding the exact
solution to order k + m. Furthermore, knowing the magnitude
of these higher derivatives allows quantitative error bounds to
be derived, as we show in this section.

Theorem 1. Let � be a bounded convex domain in Rd . Let
f be a smooth function on � that vanishes on the boundaries.
Let �v(�x) be the solution to

�∇ · �v(�x) = f (�x) (57)

on � with zero divergenceless component. Then,√∫
�

ddx �v(�x) · �v(�x) � �

π

√∫
�

ddx f (�x)2, (58)

where � is the diameter of �.
Proof. The divergence operator is not invertible because

it has a kernel. However, it does have a Moore-Penrose
pseudoinverse Div−1, which is typically expressed in terms
of the Green’s function, as follows:

Div−1[f](�x) =
∫

�

ddy f (�y)
�y − �x

|�y − �x|d . (59)

We next note that the Laplacian operator can be written as
∇2 = ∇†∇. (Here, we think of ∇ as a column vector of partial

derivative operators.) The singular values of the Laplacian are
therefore the squares of the singular values of ∇†, which is the
Divergence operator. The fundamental gap theorem [19,20]
states that on a convex bounded domain �, the smallest
nontrivial eigenvalue of the Laplacian subject to Neumann
boundary conditions is lower bounded by π2/�2 where � is the
diameter of �. Consequently, the smallest nonzero singular
value of ∇†, i.e., the divergence operator, can be at most π/�.
Hence, the largest singular value of Div−1 can be at most �/π .
Thus, we obtain (58). �

Theorem 2. Let D be Hermitian linear combination of
finite-order partial derivatives on Rd . Let φλ be the solution to

∂2φλ

∂t2
= ∇2φλ − λ2D2φλ (60)

on some continuous domain � ⊂ Rd subject to Dirichlet or
Neumann boundary conditions. We take initial conditions at
t = 0 to be fixed functions φ(�x, 0), and φ̇(�x, 0) independent
of λ. Then, for any ε ∈ R and any t � 0,

‖φε(t) − φ0(t)‖ �
√

2tε

⎡⎣⎛⎝‖φ(0)‖2 +
d∑

j=1

‖ψj (0)‖2

⎞⎠
×
⎛⎝‖Dφ(0)‖2 +

d∑
j=1

‖Dψj (0)‖2

⎞⎠⎤⎦1/4

,

(61)

where ‖f ‖ ≡
√∫

�
ddx|f (�x)|2 and

�ψ (�x, 0) =
∫

ddy
�x − �y

|�x − �y|d φ̇(�y, 0). (62)

Proof. Let

Sλ =
[
φλ

�ψλ

]
, (63)

H0 =

⎡⎢⎢⎢⎣
0 ∂

∂x1
. . . ∂

∂xd

− ∂
∂x1

0 . . . 0
... 0 . . . 0

− ∂
∂xd

0 . . . 0

⎤⎥⎥⎥⎦, (64)

HD =

⎡⎢⎢⎣
D 0 . . . 0
0 −D . . . 0
...

. . .
0 0 . . . −D

⎤⎥⎥⎦, (65)

Hλ = H0 + λHD , (66)

dSλ

dt
= −iHλSλ. (67)

By (67),

d2

dt2
Sλ = −H 2

λ Sλ =

⎡⎢⎢⎢⎢⎣
∇2 − λ2D2 0 . . . 0

0 ∂2

∂x2
1

− λ2D2 . . . ∂2

∂x1∂xd

...
. . .

0 ∂2

∂xd∂x1
. . . ∂2

∂x2
d

− λ2D2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

φ

ψ1
...

ψd

⎤⎥⎥⎦. (68)

012323-11

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

Thus, the solution to (67) satisfies (60). As initial conditions (t = 0) for �ψλ we can take

�ψ (0) = Div−1[φ̇(0)], (69)

where Div−1 is as defined in Eq. (59). By (67) we have

d

dt
〈Sε, S0〉 = 〈Ṡε(t), S0(t)〉 + 〈Sε(t), Ṡ0(t)〉 (70)

= 〈−i(H0 + εHD)Sε(t), S0(t)〉 + 〈Sε(t),−iH0S0(t)〉 (71)

= 〈Sε(t), i(H0 + εHD)S0(t)〉 + 〈Sε(t),−iH0S0(t)〉 (72)

= iε〈Sε(t),HDS0(t)〉. (73)

Thus, by the Cauchy-Schwarz inequality ∣∣∣∣ d

dt
〈Sε, S0〉

∣∣∣∣ � ε‖Sε(t)‖ × ‖HDS0(t)‖, (74)

where ‖S‖ is a shorthand for
√〈S, S〉. Hλ is Hermitian for real λ and therefore ‖Sε(t)‖ = ‖Sε(0)‖:∣∣∣∣ d

dt
〈Sε, S0〉

∣∣∣∣ � ε‖Sε(0)‖ × ‖HDS0(t)‖. (75)

Next, we observe that

‖HDS0(t)‖ = ‖H+
DS0(t)‖, (76)

where the operator

H+
D =

⎡⎢⎢⎣
D 0 . . . 0
0 D . . . 0
...

. . .
0 0 . . . D

⎤⎥⎥⎦ (77)

is Hermitian and commutes with H0. Thus, ‖HDS0(t)‖ is conserved, and (75) becomes∣∣∣∣ d

dt
〈Sε, S0〉

∣∣∣∣ � ε‖Sε(0)‖ × ‖HDS0(0)‖, (78)

which expands out to ∣∣∣∣ d

dt
〈Sε, S0〉

∣∣∣∣ � ε

√√√√‖φ(0)‖2 +
d∑

j=1

‖ψj (0)‖2

√√√√‖Dφ(0)‖2 +
d∑

j=1

‖Dψj (0)‖2. (79)

By definition,

‖Sε(t) − S0(t)‖ = 〈Sε(t) − S0(t), Sε(t) − S0(t)〉 = 〈Sε(t), Sε(t)〉 + 〈S0(t), S0(t)〉 − 2Re〈Sε, S0〉. (80)

The “Hamiltonians” H0 and HD are Hermitian so 〈Sε(t), Sε(t)〉 and 〈S0(t), S0(t)〉 are time independent. Thus,

d

dt
‖Sε(t) − S0(t)‖2 = −2 Re

d

dt
〈Sε, S0〉. (81)

Applying (79) yields∣∣∣∣ d

dt
‖Sε(t) − S0(t)‖2

∣∣∣∣ � 2ε

√√√√‖φ(0)‖2 +
d∑

j=1

‖ψj (0)‖2

√√√√‖Dφ(0)‖2 +
d∑

j=1

‖Dψj (0)‖2. (82)

The triangle inequality and (82) yield

‖Sε(t) − S0(t)‖2 = ‖Sε(0) − S0(0)‖2 +
∫ t

0
dτ

d

dτ
‖Sε(τ) − S0(τ)‖2

� ‖Sε(0) − S0(0)‖2 +
∫ t

0
dτ

∣∣∣∣ d

dτ
‖Sε(τ) − S0(τ)‖2

∣∣∣∣
� ‖Sε(0) − S0(0)‖2 + 2tε

√√√√‖φ(0)‖2 +
d∑

j=1

‖ψj (0)‖2

√√√√‖Dφ(0)‖2 +
d∑

j=1

‖Dψj (0)‖2. (83)

012323-12

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

The initial conditions have Sε(0) = S0(0), and therefore

|Sε(t) − S0(t)‖2 � 2tε

√√√√‖φ(0)‖2 +
d∑

j=1

‖ψj (0)‖2

√√√√‖Dφ(0)‖2 +
d∑

j=1

‖Dψj (0)‖2. (84)

Recalling the definition of Sλ [Eq. (63)],

‖Sε(t) − S0(t)‖2 = ‖φε(t) − φ0(t)‖2 + ‖ �ψε(t) − �ψ0(t)‖2. (85)

Thus, (84) implies the bound

‖φε(t) − φ0(t)‖2 � 2tε

√√√√‖φ(0)‖2 +
d∑

j=1

‖ψj (0)‖2

√√√√‖Dφ(0)‖2 +
d∑

j=1

‖Dψj (0)‖2. (86)

From this we obtain the final bound. �
In the special case that D = ∇2 and � is convex, we can

bound ‖HDS0(0)‖ in terms of more accessible quantities, as
follows.

Theorem 3. Let φλ be the solution to

∂2φλ

∂t2
= ∇2φλ − λ2(∇2)2φλ (87)

on some convex domain � ⊂ Rd subject to Dirichlet or
Neumann boundary conditions. We take initial conditions at
t = 0 to be fixed functions φ(�x, 0), and φ̇(�x, 0) independent
of λ. Then, for any ε ∈ R and any t � 0

‖φε(t) − φ0(t)‖ �
√

2tε‖∇2φ(0)‖

×
(

‖φ(0)‖2 + �2

π2
‖φ̇(0)‖2

)1/4

, (88)

where ‖f ‖ ≡
√∫

�
ddx|f (�x)|2.

Proof. By Theorem 2,

‖φε(t) − φ0(t)‖ �
√

2tε

⎡⎣⎛⎝‖φ(0)‖2 +
d∑

j=0

‖ψj (0)‖2

⎞⎠
×
⎛⎝‖∇2φ(0)‖2 +

d∑
j=0

‖∇2ψj (0)‖2

⎞⎠⎤⎦1/4

.

(89)

By Eq. (58),

d∑
j=0

‖ψj (0)‖2 � �2

π2
‖φ̇(0)‖. (90)

Recalling (59), we have

∇2 �ψ (0) = ∇2
∫

ddy
�x − �y

|�x − �y|d φ̇(�y) (91)

=
∫

ddy

(
∇2 �x − �y

|�x − �y|d
)

φ̇(�y) (92)

= �0. (93)

Substituting (90) and (93) into (89) yields (88). �
Theorem 2 gives a very nice quantitative upper bound on

discretization errors in terms of directly accessible properties

of the initial conditions. However, it only applies under the
specific condition that the error term of interest is expressible
as a negative coefficient times the square of a Hermitian
linear combination of partial derivatives. Not all discretized
Laplacians satisfy this. However, it is possible to engineer
high-order Laplacians such that this is the case. We illustrate
this by giving an explicit discretized Laplacian in two dimen-
sions with error of order a2, which satisfies this condition. The
formula is

1

a2

{
− 2

15
[φ(x, y + 2a) + φ(x, y − 2a) + φ(x + 2a, y)

+ φ(x−2a, y)] − 1

10
[φ(x + a, y + a) + φ(x − a, y + a)

+ φ(x + a, y − a) + φ(x − a, y − a)]

+ 26

15
[φ(x + a, y) + φ(x − a, y) + φ(x, y + a)

+ φ(x, y − a)] − 6φ(x, y)

}
= ∇2φ(x, y) − a2

20
(∇2)2 + O(a6), (94)

as one can verify by Taylor expansion. Thus, “stencil” for
discretizing a two-dimensional Laplacian is illustrated in
Fig. 7. An incidence matrix factorization for this stencil-based
Laplacian is given in Appendix C 3.

Theorem 3 has the benefit that the error bound is char-
acterized directly in terms of easily accessible quantities (φ
and φ̇). However, the downside is that the condition on the
error term (namely, that it should take the form of a negative
coefficient times the square of a Laplacian) is somewhat
restrictive. Theorem 2 is more general in that the error term
could be higher order, but still requires it to be the square of a
differential operator. In Appendix A we derive an alternative
theorem which relaxes this restriction and can be applied to
Laplacians that are constructed directly as a sum of discretized
second partial derivatives. Relative to stencil-based discrete
Laplacians such as in Fig. 7, these Laplacians are much easier
to derive and factor into incidence matrices at any order. On
the other hand, we do not know how to use the methods of
Appendix A which appears to obtain an error bound directly
in terms of φ and φ̇. (In other words, Appendix A contains
only an analog of Theorem 2 but no analog of Theorem 3.)

012323-13

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

−1
10

−1
10

−1
10

−1
10

15
26

15
26

15
26

15
26

−2
15

−2
15

−2
15

−2
15

−6

FIG. 7. This linear combination of values at neighboring lattice
sites produces a discrete approximation to the Laplacian with errors
of order a2 satisfying the conditions of Theorem 2. Specifically,
one obtains ∇2φ(x, y) − a2

20 (∇2)2 + O(a6). Thus, the operator D in
Theorem 2 is in this case ∇2.

We include both versions of our analysis as we believe it
may depend on the context as to which one is more useful. A
related question, which we leave for future work, is whether
the specialized forms for the discretized Laplacians devised in
this section and in Appendix A result in smaller discretization
errors than other discretized Laplacians at the same order. It
is quite possible that they only aid in yielding provable error
bounds but do not actually yield smaller error in practice.

X. POSTPROCESSING

After performing Hamiltonian simulation we are left with a
state which encodes both φ(T) and B−1dφ(T)/dt . Depending
on the application, we might be interested in just φ or just
dφ/dt or both.

If our goal is to produce a state proportional to φ, then
the postprocessing amounts to measuring if the state is in
HV or HE (recall the full Hilbert space is HV ⊕ HE), with
success if it is measured in HV . In general, we cannot give
a reasonable lower bound on the success probability of this
measurement, even for simple systems. To see this, consider
the case of the standing wave in 1D with Dirichlet boundary
conditions. The initial conditions are φ(x, 0) = cos(x) and
dφ(0)/dt = 0, and at any other time the field can be written
φ(x, t) = f (t) cos(x) for some f that oscillates between 1
and −1. If the evolution time T is chosen so that f (T) = 0,
then φ(x, T) = 0. So the state will have no support (up to
errors from the finite-difference method) in HV . However, at
least in this example, for average choice of T instead of worst
case, one will have an O(1) probability of obtaining the φ

subspace. The same issue arises if we instead wish to extract
dφ/dt from the complementary subspace.

If our goal is to produce a state proportional to dφ/dt ,
then the postprocessing is a little more complicated. We begin
by measuring if the state is in HV or HE , with success if
it is measured in HE . The resulting state is proportional to
B−1dφ/dt , so it remains to cancel B−1. This inverse can be
canceled in much the same way that B−1 was originally ap-
plied. Mirroring the procedure for matrix inversion in Ref. [8],
the procedure for matrix multiplication is

|B−1dφ/dt〉|0〉|0〉=
∑

j

αj |�j 〉|0〉|0〉 (95)

�→
∑

j

αj |�j 〉|λ̃j 〉|0〉 (96)

�→
∑

j

αj |�j 〉|λ̃j 〉
⎛⎝ λ̃j

C
|0〉+

√
C2−λ̃2

j

C
|1〉
⎞⎠.

(97)

The first line reexpresses the initial state in the eigenbasis
{|�j 〉} of the Hamiltonian which is simulated in the subse-
quent phase estimation step.

In the second line we run phase estimation on the unitary
exp (−iH), where H is exactly the same Hamiltonian we used
for simulating the wave equation, and write the eigenvalues to
the second register. We use |�j 〉 to denote the eigenstate with
eigenvalue λj , but we use |λ̃j 〉 to denote a state encoding the
approximation of the eigenvalue output by phase estimation.

In the third line we perform a controlled rotation of the
second qubit. The constant C must satisfy C � √||L|| so that
the argument under the square root is not negative. Setting it
to �(

√||L||), the probability of measuring the last qubit in
|0〉 is κ (L)−2 in the worst case (i.e., when the initial state only
has support in the ground space of the Hamiltonian.). Then,
we produce a state proportional to dφ(T)/dt conditioned on
measuring the last qubit in the state |0〉.

XI. COMPARISON TO OTHER QUANTUM ALGORITHMS

As discussed in the Introduction, there are three quantum
algorithms to which ours can be meaningfully compared. The
algorithm of Clader, Jacobs, and Sprouse solves a problem re-
lated to, but not identical with, that solved here. Namely, they
give a quantum algorithm to compute scattering cross sections
in the special case of monochromatic illumination [6]. In
Ref. [7], Montanaro and Pallister analyze the degree to which
quantum linear system algorithms can achieve speedups for
finite-element methods. The performance of such quantum
algorithms when applied to wave equations is a complex
question that we defer to future work.

The most direct comparison to our algorithm can be made
with the algorithm of Berry, Childs, Ostrander, and Wang
[2]. Since the algorithm of [2] only works for first-order
differential equations, we must introduce ancillary variables
to simulate a second-order differential equation. To simulate
the wave equation for φ(x), we introduce the variable θ (x) ≡
a

dφ

dt
, in which case we have the first-order equation

d

dt

[
φ

θ

]
= 1

a

[
0 1

−L 0

][
φ

θ

]
. (98)

012323-14

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

Let

A = 1

a

[
0 1

−L 0

]
(99)

and let V be a matrix that diagonalizes A:

A = V −1DV D diagonal. (100)

(V is defined only up to an overall normalization.) The com-
plexity of the algorithm of [2] is dictated by κV , the condition
number of V (which is independent of the normalization of
V). Specifically, Theorem 9 of [2] gives a runtime upper
bound for their quantum algorithm of

Õ(κV sgT ‖A‖), (101)

where s is the sparsity of A, and g is a measure of how much
the norm of the solution vector x(t) varies over the duration
of the simulation, namely,

g = max
t∈[0,T]

‖�x(t)‖/‖�x(T)‖. (102)

We can see that for the problem at hand, as the lattice
spacing a is taken to zero,

s = O(1), T = O(1), g = O(1), ‖A‖ = O(a−1).
(103)

We can work out κV by noting that A is diagonalized by the
matrix whose columns are the eigenvectors of A. That is, if the
eigenvectors of A are �v1, . . . , �vN with corresponding eigen-
values λ1, . . . , λN , then V −1AV = diag(λ1, . . . , λN) where

V =
⎡⎣�v1 �v2 . . . �vN

⎤⎦. (104)

Let �y1, . . . , �yN denote the eigenvectors of L. By inspecting
(99), one sees that the eigenvectors of A are[�y1

i
√

λ1 �y1

]
,

[�y1

−i
√

λ1 �y1

]
, . . . ,

[�yM

i
√

λM �yM

]
,

[�yM

−i
√

λM �yM

]
.

(105)

(M is the dimension of L and N = 2M is the dimension
of A.)

We can thus write V in the following block form:

V =
[

Y Y

iZ −iZ

]
, (106)

where

Y =
⎡⎣�y1 �y2 . . . �yM

⎤⎦ (107)

and

Z =
⎡⎣√

λ1 �y1
√

λ2 �y2 . . .
√

λM �yM

⎤⎦. (108)

L is a symmetric matrix so �y1, . . . , �yM form an orthogonal
basis. We choose the normalizations to make it orthonormal.
Let U be the orthogonal matrix that diagonlizes Y . Then,[

UT 0
0 UT

]
[V]

[
U 0
0 U

]
=
[
1 1

iS −iS

]
, (109)

where

S =

⎡⎢⎣
√

λ1

. . . √
λM

⎤⎥⎦. (110)

Permuting the basis then yields⎡⎢⎢⎣
B1

B2

. . .
BM

⎤⎥⎥⎦, (111)

where for each j = 1, . . . ,M the block Bj is given by the
following 2 × 2 matrix:

Bj =
[

1 1
i
√

λj −i
√

λj

]
. (112)

This preceding manipulations were all changes of basis, which
do not affect the eigenspectrum of. Thus, the eigenvalues of V

are the eigenvalues of B1, . . . , BM . By direct calculation, the
eigenvalues of Bj are q

(+)
j and q

(−)
j where

q
(±)
j = 1

2 (1 + i
√

λj ±
√

1 − 6i
√

λj − λj). (113)

For a path graph of N vertices the eigenvalues of the
Laplacian range from ∼1/N2 to 1, and the same is true for
any larger constant number of dimensions for the eigenvalues
of an N × N × · · · × N grid. The smallest eigenvalue of V is
thus q

(−)
i where i indexes the smallest eigenvalue of L. Thus,

for large N , we can approximate q
(−)
i by Taylor expanding to

lowest order in
√

λi , obtaining

q
(−)
i = 1

2 (1 + i
√

λj −
√

1 − 6i
√

λj − λj) (114)

� 2i
√

λj , (115)

which is of order a. Similarly, we can see that the largest
eigenvalue of V is O(1) and thus

κV = �(a−1). (116)

Substituting (116) and (103) into (101) yields a total complex-
ity of O(a−2) for the quantum algorithm of [2].

In the algorithm presented here, we have quadratically
better dependence on κ . There are three places for this de-
pendence to come into the total complexity of our algorithm.
First, if we choose to prepare an arbitrary initial state, then the
first step of our algorithm is to implement, via quantum linear
algebra methods [8,9,21], the Moore-Penrose pseudoinverse
of the incidence matrix B. The complexity of this step is
proportional to the condition number of B, which is the
square root of the condition number of the Laplacian L.3

A second place that the condition number can contribute to

3The condition numbers of B and L will both depend on the
connectivity of the lattice. These condition numbers can be large
if scatterers are present which create bottlenecks in the lattice, i.e.,
convex locations where only a few edges can be removed that will
partition the lattice into two relatively large components.

012323-15

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

the complexity is in the postprocessing, as we saw when we
considered producing a state proportional to dφ/dt . Here, our
approach also scales quadratically better with respect to the
condition number of the Laplacian. Additionally, the number
of qubits required by our algorithm is log N where N is the
number of lattice sites, whereas the number of qubits required
by the algorithm of [2] is O[log(N) + log t], where t is the
duration of the process to be simulated.

It is worthwhile to relate the Laplacian’s condition number,
which is a fairly abstract quantity, with parameters of more
direct physical significance. In the case of a Laplacian for
a D-dimensional cubic volume of dimension � × � × · · ·
discretized into a cubic lattice of spacing a, one sees that the
largest eigenvalue of − 1

a2 L is of order D/a2 and the smallest
eigenvalue is of order 1/�2. Thus, the condition number of
the Laplacian is of order D�2/a2, so the incidence matrix has
a condition number of order

√
D�/a. In our algorithm, the

simulation of the time evolution itself, achieved using [10],
scales as Õ(stD/a). Thus, both state preparation and time
evolution have complexity scaling linearly in a−1.

XII. KLEIN-GORDON EQUATION

Going to relativistic theories we know that spinless parti-
cles are described by the Klein-Gordon equation

1

c2

∂2φ

∂t2
− ∇2φ + m2c2

h̄2 φ = 0, (117)

where m is the particle mass, c is the speed of light, and h̄

the Planck constant. In order to not carry these constants any
more we will adopt the natural units, which implies c = 1 and
h̄ = 1.

As we can see, we are dealing with a wave equation, and
thus it also should admit some Hamiltonian in our Schrödinger

equation. Suppose we have a graph G′, where

∂2φ

∂t2
= 1

a2
L(G′)φ

is the discretized version of Eq. (117). It means that our
Laplacian has the whole information about the particle, which
includes its mass term. In fact, this graph G′ can be easily
achieved from a graph G that gives our ordinary wave equa-
tion, which means L(G) does not have a mass term.

Starting with G, the mass term can be realized by adding
self-loops with W = (am)2 as its weight on all vertices of G.
This manipulated graph is our graph G′. Finally, as we did
before, we need to construct its incidence matrix B(G′) in
order to get the Laplacian

B(G′)†B(G′) = L(G′).

Besides, without difficulty we can see how this Laplacian is
related with the Laplacian from G,

L(G′) = L(G) + a2m2I,

where I is the identity matrix. Therefore, whereas B(G)
gives our ordinary wave equation, applying B(G′) in our
Hamiltonian gives our relativistic wave equation.

XIII. MAXWELL’S EQUATIONS

With μ0 = ε0 = 1 and without sources, Maxwell’s equa-
tions governing the time evolution of electric and magnetic
fields take the form

∂ �E
∂t

= �∇ × �B ∂ �B
∂t

= −�∇ × �E

which imply that �E and �B both follow the wave equation. If
we consider discretizing space, then we can write these as

∂

∂t

[�E
�B
]

=
[

0 C

−C 0

][�E
�B
]
,

where C is the finite-difference approximation of the curl
operator. To see how to construct C, consider the following:

�∇ ×
⎡⎣a

b

c

⎤⎦ =
⎡⎣∂c/∂y − ∂b/∂z

∂a/∂z − ∂c/∂x

∂b/∂x − ∂a/∂y

⎤⎦ =
⎡⎣ 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x

−∂/∂y ∂/∂x 0

⎤⎦⎡⎣a

b

c

⎤⎦.

This suggests we should consider the linear differential equation

∂

∂t

⎡⎢⎢⎢⎢⎢⎣
Ex

Ey

Ez

Bx

By

Bz

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 −∂/∂z ∂/∂y

0 0 0 ∂/∂z 0 −∂/∂x

0 0 0 −∂/∂y ∂/∂x 0
0 ∂/∂z −∂/∂y 0 0 0

−∂/∂z 0 ∂/∂x 0 0 0
∂/∂y −∂/∂x 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Ex

Ey

Ez

Bx

By

Bz

⎤⎥⎥⎥⎥⎥⎦. (118)

We can discretize space into a uniform cubic lattice and
approximate the differential operators using finite-difference
methods to reduce this to an ordinary differential equation.
(Appendix C contains numerical values for the entries of these
operators up to 10th order.) This ordinary differential equation

will be a case of Schrödinger’s equation since the approximate
differential operators coming from the Lagrange interpolation
formula are anti-Hermitian. In this case, unitarity translates
to conservation of the classical energy contained in the field∫
V

| �E(�x)|2 + | �B(�x)|2.

012323-16

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

XIV. FUTURE WORK

It is an interesting open question as to whether our quantum
algorithm is optimal. In particular, it is natural to ask whether
an analog of the no-fast-forwarding theorem from [22] could
yield a lower bound for the complexity of the problem of sim-
ulating wave equations that matches the complexity of the al-
gorithm presented here. It is also interesting to investigate the
performance of quantum algorithms for simulating the wave
equation based on finite-element methods, rather than finite-
difference methods, as considered here. Another direction for
future work is to use automated circuit synthesis techniques
to generate concrete quantum circuits implementing our algo-
rithm and thereby obtain quantitative resource estimates for
benchmark instances of wave-equation simulation problems.
Lastly, one can consider extending the quantum algorithm
presented here to more complicated wave equations.

ACKNOWLEDGMENTS

The authors thank Y.-K. Liu and E. Tiesinga for insightful
discussions. The authors also thank D. Gosset, G. Alagic, P.
Bierhorst, and anonymous referees for useful feedback on the
manuscript. This research was supported by the Department
of Energy under Award No. DE-SC0016431. Parts of this
research were completed while S.J. was an employee of the
National Institute of Standards and Technology, an agency of
the US government. The resulting portions of this manuscript
are not subject to US copyright.

APPENDIX A: ALTERNATIVE SMOOTHNESS ANALYSIS

Theorem 4. Let φλ be the solution to

∂2φλ

∂t2
= ∇2φλ + λ2

d∑
j=1

(
∂k

∂xk
j

)2

φλ (A1)

on some compact continuous domain � ⊂ Rd subject to some
specified boundary conditions. We take initial conditions at
t = 0 to be fixed functions φ(�x, 0) and φ̇(�x, 0) independent
of λ. Then, for any ε ∈ R and any t � 0,

‖φε(t) − φ0(t)‖

�
√

2tε

⎧⎨⎩
⎛⎝‖φ(0)‖2 +

d∑
j=1

‖ψj (0)‖2

⎞⎠
×
⎡⎣ d∑

j=1

⎛⎝∥∥∥∥∥ ∂

∂xk
j

φ(0)

∥∥∥∥∥
2

+
d∑

l=1

∥∥∥∥∥ ∂k

∂xk
j

ψl (0)

∥∥∥∥∥
2
⎞⎠⎤⎦⎫⎬⎭

1/4

,

where ‖f ‖ ≡
√∫

�
ddx|f (�x)|2 and

�ψ (�x, 0) =
∫

ddy
�x − �y

|�x − �y|d φ̇(�y, 0). (A2)

Proof. Let

Sλ =
⎡⎣φλ

�ψλ

�θλ

⎤⎦, (A3)

∇ =
[

∂

∂x1
, . . . ,

∂

∂xd

]
, (A4)

∇k =
[

∂k

∂xk
1

, . . . ,
∂k

∂xk
d

]
, (A5)

H0 =
⎡⎣ 0 ∇ 0

−∇T 0 0
0 0 0

⎤⎦, (A6)

H1 =
⎡⎣ 0 0 ∇k

0 0 0
−∇T

k 0 0

⎤⎦, (A7)

Hλ = H0 + λH1, (A8)

dSλ

dt
= −iHλSλ. (A9)

By (A9),

d2

dt2
Sλ =−H 2

λ Sλ (A10)

=
⎡⎣∇2 + λ2∇2

k 0 0
0 ∇T ∇ λ∇T ∇k

0 λ∇T ∇k λ2∇T
k ∇k

⎤⎦⎡⎣φ
�ψ
�θ

⎤⎦. (A11)

Thus, the solution to (A9) satisfies (A1). As initial conditions
(t = 0) for �ψλ we take

�ψ (0) = Div−1[φ̇(0)], (A12)

�θ (0) = 0, (A13)

where Div−1 is as defined in Eq. (59). By (A9) we have

d

dt
〈Sε, S0〉 = 〈Ṡε(t), S0(t)〉 + 〈Sε(t), Ṡ0(t)〉 (A14)

= 〈−i(H0 + εH1)Sε(t), S0(t)〉
+ 〈Sε(t),−iH0S0(t)〉 (A15)

= 〈Sε(t), i(H0 + εH1)S0(t)〉
+ 〈Sε(t),−iH0S0(t)〉 (A16)

= iε〈Sε(t),H1S0(t)〉. (A17)

Thus, by the Cauchy-Schwarz inequality∣∣∣∣ d

dt
〈Sε, S0〉

∣∣∣∣ � ε‖Sε(t)‖ × ‖H1S0(t)‖, (A18)

where ‖S‖ is a shorthand for
√〈S, S〉. Hλ is Hermitian for real

λ and therefore ‖Sε(t)‖ = ‖Sε(0)‖. Thus, (A18) simplifies to∣∣∣∣ d

dt
〈Sε, S0〉

∣∣∣∣ � ε‖Sε(0)‖ × ‖H1S0(t)‖. (A19)

Next, observe that

‖H1S0(t)‖ =

√√√√√
∥∥∥∥∥∥

d∑
j=1

∂k

∂xk
j

θj

∥∥∥∥∥∥
2

+
d∑

j=1

∥∥∥∥∥ ∂k

∂xk
j

φ

∥∥∥∥∥
2

(A20)

012323-17

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

and ∥∥∥∥∥ ∂k

∂xk
j

φ

∥∥∥∥∥
2

�
∥∥∥∥∥ ∂k

∂xk
j

φ

∥∥∥∥∥
2

+
d∑

l=1

∥∥∥∥∥ ∂k

∂xk
j

ψl

∥∥∥∥∥
2

(A21)

= ∥∥H (k)
j S0(t)

∥∥2
, (A22)

where

H (k)
j = ik

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂k

∂xk
j

∂k

∂xk
j

. . .
∂k

∂xk
j

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A23)

For any k, H (k)
j commutes with the H0 and is Hermitian.

Thus, ∥∥H (k)
j S0(t)

∥∥ = ∥∥H (k)
j S0(0)

∥∥. (A24)

Next, we observe that∥∥∥∥∥∥
d∑

j=1

∂k

∂xk
j

θj

∥∥∥∥∥∥ �
d∑

j=1

∥∥∥∥∥ ∂k

∂xk
j

θj

∥∥∥∥∥ (A25)

�
√

d

√√√√√ d∑
j=1

∥∥∥∥∥ ∂k

∂xk
j

θj

∥∥∥∥∥
2

(A26)

=
√

d‖HθS0(t)‖, (A27)

where

Hθ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . 0 0 . . . 0
0 0 . . . 0 ∂k

∂xk
1

...
...

...
. . .

0 0 . . . 0 ∂

∂xk
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A28)

Hθ is Hermitian and commutes with H0, thus, by (A13),

‖HθS0(t)‖ = ‖HθS0(0)‖ = 0. (A29)

Substituting these results into (A20) yields

‖H1S0(t)‖ �

√√√√ d∑
j=1

∥∥H (k)
j S0(0)

∥∥2
. (A30)

Substituting (A30) into (A19) yields∣∣∣∣ d

dt
〈Sε, S0〉

∣∣∣∣ � ε‖Sε(0)‖ ×
√√√√ d∑

j=1

∥∥H (k)
j S0(0)

∥∥2
. (A31)

By definition,

‖Sε(t) − S0(t)‖2 = 〈Sε(t) − S0(t), Sε(t) − S0(t)〉
= 〈Sε(t), Sε(t)〉 + 〈S0(t), S0(t)〉

− 2Re〈Sε, S0〉. (A32)

The “Hamiltonians” H0 and H1 are Hermitian so
〈Sε(t), Sε(t)〉 and 〈S0(t), S0(t)〉 are time independent for
any ε ∈ R. Thus,

d

dt
‖Sε(t) − S0(t)‖2 = −2 Re

d

dt
〈Sε, S0〉. (A33)

Thus, by (A31)∣∣∣∣ d

dt
‖Sε(t) − S0(t)‖2

∣∣∣∣ � 2ε‖Sε(0)‖ ×
√√√√ d∑

j=1

∥∥H (k)
j S0(0)

∥∥2
.

(A34)
By the triangle inequality,

‖Sε(t) − S0(t)‖2

= ‖Sε(0) − S0(0)‖2 +
∫ t

0
dτ

d

dτ
‖Sε(τ) − S0(τ)‖2

� ‖Sε(0) − S0(0)‖2 +
∫ t

0
dτ

∣∣∣∣ d

dτ
‖Sε(τ) − S0(τ)‖2

∣∣∣∣.
(A35)

The initial conditions have Sε(0) = S0(0) and, therefore,

‖Sε(t) − S0(t)‖2 �
∫ t

0
dτ

∣∣∣∣ d

dτ
‖Sε(τ) − S0(τ)‖2

∣∣∣∣. (A36)

Applying (A34) to (A36) yields

‖Sε(t) − S0(t)‖2 � 2tε‖Sε(0)‖ ×
√√√√ d∑

j=1

∥∥H (k)
j S0(0)

∥∥2
.

(A37)
Recalling the definition of Sλ [Eq. (A3)],

‖Sε(t) − S0(t)‖2 = ‖φε(t) − φ0(t)‖2 + ‖ �ψε(t) − �ψ0(t)‖2.

(A38)
Thus, (A36) implies the bound

‖φε(t) − φ0(t)‖2 � 2tε‖Sε(0)‖ ×
√√√√ d∑

j=1

∥∥H (k)
j S0(0)

∥∥2
.

(A39)
By (A23), (A3), and (A13), (A39) becomes

‖φε(t) − φ0(t)‖2

� 2tε

√√√√√
⎛⎝‖φ(0)‖2 +

d∑
j=1

‖ψj (0)‖2

⎞⎠

×

√√√√√
⎡⎣ d∑

j=1

⎛⎝∥∥∥∥∥ ∂

∂xk
j

φ(0)

∥∥∥∥∥
2

+
d∑

l=1

∥∥∥∥∥ ∂k

∂xk
j

ψl (0)

∥∥∥∥∥
2
⎞⎠⎤⎦.

(A40)

�

012323-18

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

Theorem 4 gives a very nice quantitative upper bound on
discretization errors in terms of directly accessible properties
of the initial conditions. Furthermore, Theorem 1 shows that
the quantity �ψ (0) has magnitude not too much larger than
the chosen initial velocity φ̇(0). However, Theorem 4 applies
only under the specific condition that the error term of inter-
est is expressible as a positive coefficient times the sum of
(2k)th derivatives. Not all discretized Laplacians satisfy this.
However, it is possible to engineer high-order Laplacians such
that this is the case. This problem reduces to engineering a
high-order discretized one-dimensional derivatives such that
the leading error term is a positive coefficient times an even
derivative. The Laplacian in d dimensions can then be com-
posed as the sum of these discretized derivatives along each
of the coordinate axes.

We illustrate this by giving an explicit discretized Lapla-
cian in one dimension with error of order a4, which satisfies
this condition and then computing a corresponding incidence
matrix factorization. By Taylor expansion, one can verify that

− 9

2
f (x) + 17

6
[f (x + a) + f (x − a)] − 41

60
[f (x + 2a)

+ f (x − 2a)] + 1

10
[f (x + 3a) + f (x − 3a)]

= a2 d2f

dx2
(x) + 4

45
a6 d6f

dx6
(x) + O(a8). (A41)

On a one-dimensional lattice with periodic boundary condi-
tions we can write this Laplacian as

L(4) = a01 + a1(S + S−1) + a2(S2 + S−2) + a3(S3 + S−3),

where S is the cyclic shift operator and

a0 = −9/2, a1 = 17/6, a2 = −41/60, a3 = 1/10.

Next, we verify that this can be factorized as

L(4) = −BT B (A42)

with sparse B. To this end, we introduce the ansatz

B = b01 + b1S + b2S
2 + b3S

3. (A43)

The requirement (A42) then determines a system of quadratic
equations constraining b0, b1, b2, b3. One solution to this sys-
tem of equations is (up to six digits of precision)

b0 = 1.278 11, b1 = −1.634 46,

b2 = 0.434 589, b3 = −0.078 240 6,

as one can verify.

APPENDIX B: ANALYTICAL Q

We begin by giving the mesh spacing as a function of the
number of vertices |V | = n for our one-dimensional lattice

a(n) = 1

n + 1
. (B1)

As discussed in Sec. VIII, in order to get Q we need to
work with the three different mesh spacings a1, a2, and a3,
where the relation between them can be established working

with the following total number of vertices:

a1(4n + 3) = 1

4(n + 1)
,

a2(2n + 1) = 1

2(n + 1)
, (B2)

a3(n) = 1

n + 1
,

respectively. Moving forward, we get three discrete functions
that describe the standing wave:

φa
j = cos(ωat) sin

(
π

4(n + 1)
j

)
,

φ2a
j = cos(ω2at) sin

(
π

2(n + 1)
j

)
, (B3)

φ4a
j = cos(ω4at) sin

(
π

n + 1
j

)
,

where ω is the frequency of the wave,

ωa = 8(n + 1) sin

(
π

8(n + 1)

)
,

ω2a = 4(n + 1) sin

(
π

4(n + 1)

)
, (B4)

ω4a = 2(n + 1) sin

(
π

2(n + 1)

)
.

From the Q-factor definition we know that we need to com-
pute two differences �4a − �2a and �2a − �a . However,
these points should be computed at the same distance, which
means �4a

j − �2a
2j , and �2a

2j − �a
4j . Let us proceed with the

following computation:

�4a
j − �2a

2j = [cos(ω4at) − cos(ω2at)] sin

(
π

n + 1
j

)
.

But, we are interested in the continuum limit of this expres-
sion, with means a → 0 or n → ∞. Thus, from now the
idea is to work with approximate values. Starting with the
frequency,

ω4a � π − δ4a, ω2a � π − δ2a,

where

δ4a = − π3

24(n + 1)2

and

δ2a = − π3

96(n + 1)2 .

Now, we can use the following trigonometric property:

cos[(π − δ4a)t] − cos[(π − δ2a)t] = −2 sin(ω̄t) sin(δt),

with

ω̄ = π − δ4a − δ2a

2
, δ = δ4a − δ2a

2
.

012323-19

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

But, for large n we get the following approximations:

sin(ω̄t) � sin(πt),

sin(δt) � − 3π3

192n2
.

However, our real interest is in computing the norm
‖�4a − �2a‖2 in the continuum limit,

‖�4a − �2a‖2

= lim
n→∞

√√√√1

n

n∑
j=1

(
�4a

j − �2a
2j

)2

= lim
n→∞

√√√√1

n

n∑
j=1

4 sin2 (πt)

(
3π3

192n2

)2

sin

(
π

n + 1
j

)
,

where we can make use of the expression

lim
n→∞

1

n

n∑
j=0

sin2

(
πj

n

)
=
∫ 1

0
dx sin2 (πx) = 1

2
.

Therefore,

‖�4a − �2a‖2 =
√

2 sin(πt)

(
3π3

192n2

)
.

Similarly, for ‖�2a − �a‖2 we get

‖�2a − �a‖2 = lim
n→∞

√√√√1

n

n∑
j=1

(
�2a

2j − �a
4j

)2
= 1

4

√
2 sin(πt)

(
3π3

192n2

)
.

Thus, combining these two results in the Q-factor expression
we establish

Q(t)
a→0

= 4,

that agrees with the value for e2 in the Richardson expansion
and with our numerical result.

The same steps can be done for the second-order Laplacian
to see Q(t) = 16 in the continuum limit. However, the correct
wave frequency for this case is

ω = (n + 1)

√
5

2
− 8

3
cos

(
π

n + 1

)
+ 1

6
cos

(
2π

n + 1

)
.

APPENDIX C: NUMERICAL VALUES
FOR HIGHER-ORDER OPERATORS

In this Appendix we provide tables of numerical values
for the entries of higher-order approximations of derivative
operators, specifically the first derivative and the Laplacian.
We also include a table of values for factorizing higher-order
Laplacians, and we discuss how to deal with factorizing
stencil-based Laplacians in more than one dimension. We use
kth order to indicate that at lattice spacing a, the leading error
term in the discrete derivative is of order ak .

1. First derivative

Following is a table of numerical values aj used for
higher-order approximations of the first-order derivative. For
a 1D space with periodic boundary conditions, the radius-N
approximation is

∑N
j=−N ajS

j where S represents a cyclic
permutation of the vertices, i.e., Si,j = δi,j+1 mod M for M >

2N + 1:

Operator ∂/∂x

(radius N) (order k) Entries a−N to aN

1 2 −1/2, 0,1/2
2 4 1/12, −2/3, 0, 2/3, −1/12
3 6 −1/60, 3/20, −3/4, 0, 3/4, −3/20, 1/60
4 8 1/280, −4/105, 1/5, −4/5, 0, 4/5,

−1/5, 4/105, −1/280
5 10 −1/1260, 5/504, −5/84, 5/21, −5/6, 0, 5/6,

−5/21, 5/84, −5/504, 1/1260

2. 1D Laplacians

If we take the second derivative of the Lagrange inter-
polation formula (truncated at the N th order), we arrive at
Eq. (45). Using this expression, we can find the coefficients
aj which let us write the Laplacian under periodic boundary
conditions as L =∑N

j=−N ajS
j . Since the Laplacian is sym-

metric, aj = a−j . In the table following we give the values for
aj for the first five orders of truncation:

Operator ∂2/∂x2

(radius N)(order k) a0 to aN

1 2 −2,1
2 4 −5/2,4/3,−1/12
3 6 −49/18,3/2,−3/20,1/90
4 8 −205/72,8/5,−1/5,8/315,−1/560
5 10 −5269/1800,5/3,−5/21,5/126,−5/1008,1/3150

In order to implement our algorithm using any of the above
Laplacians, we need to know its incidence matrix factoriza-
tion. A simple procedure for doing this is the following:

(1) Generate the coefficients of the Laplacian operator
using the Lagrange interpolation formula.

(2) With these coefficients, write the Laplacian for a
1D grid with periodic boundary conditions in the form∑N

j=−N ajS
j . Note aj = a−j since Laplacians are symmetric.

(3) Build an ansatz for the incidence matrix of the form
B =∑N

j=1 bj (I − Sj).
(4) Calculate BB†.
(5) Solve BB† =∑N

j=−N ajS
j for the values bj .

We choose the ansatz B =∑N
j=1 bj (I − Sj) instead of

one like
∑N

j=1 cjS
j so that BB† automatically has zero sum

rows and columns like a Laplacian under periodic boundary
conditions. The table following gives values for bj , which lead
to various higher-order Laplacians:

012323-20

QUANTUM ALGORITHM FOR SIMULATING THE WAVE … PHYSICAL REVIEW A 99, 012323 (2019)

Radius N b1 to bN

1 1
2 1.1547, −(0.5774 ± 0.5)
3 1.2192, −0.1247, 0.0101

0.1247, −1.2192, 1.1046
4 −0.0465, 1.1508, −1.2284, 0.1076

1.2540, −0.1552, 0.0209, −0.0016
0.0209, −0.1552, 1.2540, −1.1181
1.2284, −1.1508, 0.0465, −0.0166

5 −0.0041, 0.0306, −0.1762, 1.2756, −1.1262
1.2756, −0.1762, 0.0306,−0.0041,0.0003
0.0289, 1.0626, −1.3223, 0.2195, −0.0131
0.2195, −1.3223, 1.0626, 0.02891, 0.0243

3. 2D Laplacians

If we restrict to decomposing Laplacians into the form
Ltot = Lx + Ly (treating the total Laplacian operator as the
sum of the Laplacians in the x and y directions), then we

can factor them simply by concatenating incidence matrices,
as described in Sec. VII D. These Laplacians are a restricted
case since they approximate the second derivative at ver-
tex (x, y) using only the values of the function at vertices
in the set {(x, y + r)|r ∈ {−k,−k + 1 . . . k − 1, k}} ∪ {(x +
r, y)|r ∈ {−k,−k + 1 . . . k − 1, k}} [i.e., using vertices lying
on a +−sign shaped subset of the vertices at distance �r from
(x, y)].

Another well-known way to approximate Laplacians in
multiple dimensions is to use stencils such as the one in Fig. 7.
These have the disadvantage that their incidence matrices
are not simply the concatenation of incidence matrices for
Laplacians in the x and y directions; however, our procedure
for calculating incidence matrix factorizations in this case
can generalize. Using stencils has the advantage that they
approximate the Laplacian at (x, y) using all points within
some distance r of (x, y) and not just those within distance r

in the x of y direction.
We show how to factor the Laplacian corresponding to the

stencil in Fig. 7 which has error of order a2. The formula is

1

a2

{
− 2

15
[φ(x, y + 2a) + φ(x, y − 2a) + φ(x + 2a, y) + φ(x − 2a, y)] − 1

10
[φ(x + a, y + a) + φ(x − a, y + a)

+φ(x + a, y − a) + φ(x − a, y − a)] + 26

15
[φ(x + a, y) + φ(x − a, y) + φ(x, y + a) + φ(x, y − a)] − 6φ(x, y)

}
= ∇2φ(x, y) − a2

20
(∇2)2 + O(a6), (C1)

as one can verify by Taylor expansion. Previously, we assumed we worked in a large one-dimensional space with periodic
boundary conditions; in this case, we assume we are working on a large 2D space with periodic boundaries which can be treated
as a torus discretized using a square grid. The Laplacian matrix can then be expressed as

L = −6I + 26
15 (S ⊗ I + S† ⊗ I + I ⊗ S + I ⊗ S†) − 1

10 (S ⊗ S + S ⊗ S† + S† ⊗ S + S† ⊗ S†)

− 2
15 [S2 ⊗ I + (S†)2 ⊗ I + I ⊗ S2 + I ⊗ (S†)2]. (C2)

Our ansatz for the incidence matrix is

B =
⎡⎣|j |+|k|�N∑

j,k

bj,k (I − Sj ⊗ Sk)

∣∣∣∣∣∣
N∑

j=−N

cj (I − Sj ⊗ I)

⎤⎦,

where [A|B] denotes the horizontal concatenation of matrices A and B. By construction, this ansatz has zero-sum rows.
In terms of hypergraphs, this incidence matrix has hyperedges connecting vertices at distance at most 2N from each other, so

the stencil they produce will have diameter at most 4N . In fact, there are two types of hyperedges present. Those encoded in the
left block of the incidence matrix (the part where the coefficients bj,k appear) are hyperedges which span all N neighbors of their
center vertices; those encoded in the right block span all N neighbors of their center vertex which have the same y coordinate.

The stencil in Fig. 7 has diameter 4, and to factor it it suffices to set N = 1. Doing so we find 16 solutions for the coefficients
bj,k and cj , one of which is

b0,1 = 1
46

[
1
5 (−

√
345 − 15) + 3

]
, b1,0 = 1

30 (−
√

345 − 15),

b−1,0 = 1
30 (−

√
345 − 15) + 1, b0,−1 = 1

46

[
1
5 (−

√
345 − 15) + 3

]
, (C3)

c1 = 1
138 (−2

√
1794 − 69), c−1 = 1

138 (−2
√

1794 − 69) + 1.

One might expect to find solutions with cj = 0 for all j ; however, they do not exist. This reveals the importance of choosing
the right ansatz for an incidence matrix factorization. For example, when factoring a 3D Laplacian built from a stencil with
diameter 4N , one might try the ansatz

B ′ =
⎡⎣|j |+|k|+|l|�N∑

j,k,l

bj,k,l (I − Sj ⊗ Sk ⊗ Sl)

∣∣∣∣∣∣
N∑

j=−N

cj (I − Sj ⊗ I ⊗ I)

⎤⎦
012323-21

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

and not find solutions, while the ansatz

B ′′ =
⎡⎣|j |+|k|+|l|�N∑

j,k,l

bj,k,l (I − Sj ⊗ Sk ⊗ Sl)

∣∣∣∣∣∣
N∑

j=−N

cj (I − Sj ⊗ I ⊗ I)

∣∣∣∣∣∣
N∑

j=−N

dj (I − I ⊗ Sj ⊗ I)

⎤⎦
might have solutions.

[1] D. W. Berry, High-order quantum algorithm for solving linear
differential equations, J. Phys. A: Math. Theor. 47, 105301
(2014).

[2] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang,
Quantum algorithm for linear differential equations with expo-
nentially improved dependence on precision, Commun. Math.
Phys. 356, 1057 (2017).

[3] S. K. Leyton and T. J. Osborne, A quantum algorithm to solve
nonlinear differential equations, arXiv:0812.4423 [quant-ph].

[4] Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and S. Kais, Quan-
tum algorithm and circuit design solving the Poisson equation,
New J. Phys. 15, 013021 (2013).

[5] S. Sinha and P. Russer, Quantum computing algorithm for
electromagnetic field simulation, Quantum Inf. Proc. 9, 385
(2010).

[6] B. David Clader, B. C. Jacobs, and C. R. Sprouse, Precon-
ditioned Quantum Linear System Algorithm, Phys. Rev. Lett.
110, 250504 (2013).

[7] A. Montanaro and S. Pallister, Quantum algorithms and the
finite element method, Phys. Rev. A 93, 032324 (2016).

[8] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[9] A. M. Childs, R. Kothari, and R. D. Somma, Quantum linear
systems algorithm with exponentially improved dependence on
precision, SIAM J. Comput. 46, 1920 (2017).

[10] D. W. Berry, A. M. Childs, and R. Kothari, Hamiltonian
simulation with nearly optimal dependence on all parame-
ters, in Proceedings of the 56th Annual Symposium on Foun-
dations of Computer Science (IEEE, Piscataway, NJ, 2015),
pp. 792–809.

[11] L. K. Grover, Synthesis of Quantum Superpositions by Quan-
tum Computation, Phys. Rev. Lett. 85, 1334 (2000).

[12] C. Zalka, Efficient simulation of quantum systems by quantum
computers, Proc. R. Soc. London A 454, 313 (1998).

[13] L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
arXiv:quant-ph/0208112.

[14] J. R. Dormand and P. J. Prince, A family of embedded Runge-
Kutta formulas, J. Comput. Appl. Math. 6, 19 (1980).

[15] P. D. Lax and R. D. R. Ichtmyer, Survey of the stability of linear
finite difference equations, Commun. Pure Appl. Math. 9, 267
(1956).

[16] D. T. Colbert and W. H. Miller, A novel discrete variable
representation for quantum mechanical reactive scattering via
the S-matrix Kohn method, J. Chem. Phys. 96, 1982 (1992).

[17] M. W. Choptuik, Lectures for VII Mexican School on Grav-
itation and Mathematical Physics; Relativistic Astrophysics
and Numerical Relativity; Numerical Analysis for Numerical
Relativists, University of British Columbia, 2009, http://laplace.
physics.ubc.ca/People/matt/Teaching/06Mexico/mexico06.pdf.

[18] R. J. LeVeque, Finite Difference Methods for Ordinary and Par-
tial Differential Equations (Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2007).

[19] L. E. Payne and H. F. Weinberger, An optimal Poincaré in-
equality for convex domains, Arch. Rational Mech. Anal. 5, 286
(1960).

[20] B. Andrews and J. Clutterbuck, Proof of the fundamental gap
conjecture, J. Am. Math. Soc. 24, 899 (2011).

[21] A. Ambainis, Variable time amplitude amplification and faster
quantum algorithm for solving systems of linear equations, in
Proceedings of the 29th Symposium on Theoretical Aspects of
Computer Science (STACS) (2012), pp. 636–647.

[22] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Effi-
cient quantum algorithms for simulating sparse Hamiltonians,
Commun. Math. Phys. 270, 359 (2007).

012323-22

