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Abstract
The generation and control of neutron orbital angularmomentum (OAM) states and spin correlated
OAM (spin-orbit) states provides a powerful probe ofmaterials with unique penetrating abilities and
magnetic sensitivity.We describe techniques to prepare and characterize neutron spin-orbit states,
and provide a quantitative comparison to knownprocedures. The proposed detectionmethod directly
measures the correlations of spin state and transversemomentum, and overcomes themajor
challenges associatedwith neutrons, which are lowflux and small spatial coherence length. Our
preparation techniques, utilizing special geometries ofmagneticfields, are based on coherent
averaging and spatial controlmethods borrowed fromnuclearmagnetic resonance. The described
proceduresmay be extended to other probes such as electrons and electromagnetic waves.

1. Introduction

In addition to possessing spin angularmomentum, beams of light [1], electrons [2–4], and neutrons [5, 6] can
carry orbital angularmomentum (OAM) parallel to their propagation axis. There have beenmany recent
developments in preparation and detection ofOAMwaves [7, 8], and they have found numerous applications in
microscopy, encoding andmultiplexing of communications, quantum information processing, and the
manipulation ofmatter [9–14].

In addition, it is possible to create ‘spin-orbit’ states inwhich the spin and orbital angularmomentum are
correlated. For light, the correlation is betweenOAMand the polarization degree of freedom (DOF) [15, 16],
while for electrons and neutrons it is betweenOAMand the spinDOF [17, 18]. Optical spin-orbit beams have
demonstrated a number of applications in high resolution optical imaging, high-bandwidth communication,
opticalmetrology, and quantum cryptography [19–22].

In this paperwe developmethods of producing neutron spin-orbit states using special geometries of
magnetic fields. Hencewe offer additionalmethods to tackle the challenges with neutronOAM [23]. Our
techniques are based on coherent averaging and spatial controlmethods borrowed fromnuclearmagnetic
resonance [24–27].We then quantify and compare the practicalmethods for preparation and detection of
neutron spin-orbit states. Lastly, we propose amethod to characterize neutron spin-orbit states bymeasuring
correlations between the spin direction and themomentumprojected to a specific axis. This detection technique
may be used to overcome themain challenges associatedwith lowflux and the small spatial coherence of
neutron beams.
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2.OAMpreparationwith a spiral phase plate (SPP)

Adirect way of generatingOAMwaves is to pass aGaussian beam through an azimuthally varying potential
gradient such as that of a SPP [28]. Herewe examine a scenario inwhich a coherent neutronwavepacket is
traveling on axis with the SPP. It is convenient to consider a neutron traveling along the ẑ directionwith
momentum ÿkz andwith equal transverse spatial coherence lengths ( x ys s s= º ^, where k1 2x y x y, ,s = D( )
andΔ kx,y are the spreads of thewavepacket’s transverse wavevectors). The transverse eigenstates can then be
conveniently expressed in cylindrical coordinates (ρ,f, z) as:

n s s, , e e , 1n
2 i

2

2 x xñ = ñf- x
ℓ∣ ( ) ∣ ( )ℓ ℓ ℓ∣ ∣ ∣ ∣

where  is a normalization constant, ξ=ρ/σ⊥ is the rescaled radial coordinate, nä{0, 1, 2...} is the radial
quantumnumber, 0, 1, 2 ...Î  ℓ { } is the azimuthal quantumnumber indicative ofOAM, n

2 x( )ℓ∣ ∣ are the
associated Laguerre polynomials, and s ,Î  { }describes the spin state. Applying theOAMoperator

L iz = -
f
¶
¶

ˆ to equation (1) verifies that this wavepacket carries anOAMofℓÿ parallel to its propagation axis.

An SPP provides an azimuthal potential gradient which inducesOAMrelative to the SPP axis. The thickness
profile of an SPP is given by h h h 20 sf f p= +( ) ( ), where h0 is the base thickness and hs is the thickness of the
step. In neutron optics [29], a wavepacket propagating on axis through an SPP acquires a spatially dependent
phase Nb h qc 0a f l f a f= - = +( ) ( ) , where Nbc is the coherent scattering length density of the SPP
material,λ is the neutron de Broglie wavelength, q Nb h 2c sl p= - ( ) is known as the topological charge or the
winding number of the SPP [30], and Nb h0 c 0a l= - is the phase shift associatedwith the base thickness. The
effect of the SPP on the neutronwavefront can be expressed as an operator:

U e e . 2i iq
SPP

0= a fˆ ( )

For example, consider an incoming neutronwavepacket with a definite value ofOAM:

n s, , . 3in in inY ñ = ñℓ∣ ∣ ( )

When that wavepacket passes through an SPPwith an integer value of topological charge q, its OAM is increased
by qÿ [18]:

U C n q s, , . 4
n

n qSPP SPP in
0

, ininåY ñ = Y ñ = + ñ
=

¥

+ ℓ∣ ˆ ∣ ∣ ( )ℓ

The coefficients Cn q, in+ℓ are explicitly derived in [18]. Thus an SPPmay be used to vary the azimuthal quantum
number.

In the next sectionwewill describemethods to prepare states where the neutronOAM is correlatedwith a
particular spin state. These techniqueswill therefore require the use ofmagnetic fields andmagneticmaterials.

3.Methods of generating spin-orbit states

3.1.Method 1:magnetic SPP
Neutrons are spin−1/2 particles, and therefore the spin provides a two-level DOF. A ‘spin-orbit’ state is one in
which spin andOAMare correlated. In this paperwe specifically consider states where the two spin eigenstates
are correlatedwith differentOAM states:

n n
1

2
, , e , , , 5i

SOY ñ = ñ + ñb
   ℓ ℓ∣ (∣ ∣ ) ( )

where ¹ ℓ ℓ , andβ is an arbitrary phase. This statemay be prepared by taking an incoming beam in a coherent
superposition of spin up and spin down states (for convenience we shall choose the ẑ axis to be the spin
quantization axis and that n 0in in= =ℓ ):

1

2
0, 0 , 6z zinY ñ = ñ  ñ +  ñ∣ ∣ (∣ ∣ ) ( )

and passing it through an SPPmade out of amagneticmaterial.When such an SPP ismagnetized along the spin
quantization axis, its operator can be expressed as

U e , 7i Nb h Nb h
mSPP

zc m= l f l f s+ˆ ( )[ ( ) ( ) ˆ ]

where bc (bm) is the neutron coherent (magnetic) scattering length of thematerial [29], and zŝ is the Pauli spin
operator. The coherent scattering length ismaterial dependant and typical isotopes values vary from−5 to 10 fm
[31]. Themagnetic scattering length arises formagneticmaterials, and it is directly related to themean
magnetization of thematerial. For suchmaterials themagnetic scattering length is on the order of the coherent
scattering length.
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Consider an SPPwhich is fabricated from amaterial whose nuclear andmagnetic scattering lengths are
equal, bc=bm. Then the phase acquired by one spin state would be N b b h 0c ma f l f= - - =( ) ( ) ( ) and
that of the other N b b h qc ma f l f b f= - + = +( ) ( ) ( ) , where now q Nb hc sl p= - and Nb h2 c 0b l= - .
Using thismagnetic SPP, spin-orbit statesmay be generated in the formof:

U

C n q
1

2
0, 0, e , , . 8

q

z
i
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n q z

mSPP mSPP in

0
,å
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=

¥
∣ ˆ ∣

(∣ ∣ ) ( )

Various alloys can be engineered to have b bc m~ , for instance a 50:50 Fe:Co alloy posses b bc m-( )
b b 0.047c m+ = -( ) . Suchmaterials are routinely used for neutron optics [32, 33]. For example, widely used
neutron polarizers are composed of suchmaterials, whereby incident neutronswith one spin state experience a
high potential and are reflected, while the incident neutronswith the opposite spin state experience a near-zero
penitential and pass through.

The action of a q=−1magnetic SPP is shown infigure 1(a). For a convenient comparisonwith other
methods of producing spin-orbit states wewill setβ=π/2 in equation (8). q

mSPPY ñ∣ possessesmaximal single
particle entanglement between the spinDOF and theOAMDOF as there is an equal superposition of , z ñℓ∣ and

, z ñℓ∣ [18].

3.2.Method 2: quadrupolemagneticfield
Spin-orbit states can also be preparedwith a quadrupolemagnetic field, as described in [18]. In this case the
OAM is induced via a Pancharatnam–Berry geometrical phase [35, 36]. The spin-orbit state is achieved by
propagating a neutronwavepacket that is spin polarized along the ẑ-direction,

Figure 1. Fourmethods of producing neutron spin-orbit states. The phase and intensity profiles of the output states, post-selected on
the spin state correlated to theOAM, are shown on the right. (a)An incoming neutronwavepacket in a coherent superposition of the
two spin eigenstates passes through amagnetic SPPwhich ismade out of amaterial with equalmagnetic and nuclear scattering
lengths, thereby inducing an azimuthally varying phase for only one spin state. (b)A spin-polarized neutronwavepacket passes
through a quadrupolemagneticfieldwhich induces the spin-orbit state [18]. After transversing the quadrupole field, the intensity
profile of the spin state correlated to theOAMhas a ring shape. (c)A sequence of quadrupoles with appropriate length and orientation
acts as a BB1 pulsewhich increases the radii at which the spin andOAMaremaximally entangled. (d) In analogy to the LOVprism
pairs capable of generating lattices of optical spin-orbit states [34], a sequence ofmagnetic prisms can be used to approximate the
quadrupole operator and produce a lattice of neutron spin-orbit states.
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0, 0, , 9zinY ñ =  ñ∣ ∣ ( )

through a quadrupolemagnetic field B K xx yy= - +


( ˆ ˆ), whereK is themagnitude of the quadrupolemagnetic
field gradient. TheHamiltonian of a neutron inside amagnetic field can bewritten as H B 2ns g=

 
ˆ · , where

s

ˆ is the vector of Paulimatrices , ,x y zs s s( ˆ ˆ ˆ ), and γn is the neutron gyromagnetic ratio [37]. The time that a
neutron traveling along the ẑ axis spends inside themagnetic field is τ=d/vz, where d is the length of the
quadrupolemagnet and vz is the neutron velocity. By definingOAMraising and lowering operators l e i= f


ˆ

and spin operators i 2x ys s s= ˆ ( ˆ ˆ ) ,the quadrupole operator can be expressed as

U

l l

e

cos
2

i sin
2

, 10

i
Q c

cos sin

c c

x y2 c



r

pr
r

pr
r

s s

=

= + +

f s f s- - +

+ + - -

pr
r

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ( )

(ˆ ˆ ˆ ˆ ) ( )

[ ( ) ˆ ( ) ˆ ]

wherewe have re-parametrized the quadrupole operator using the characteristic radial distance ρc at which the
spin undergoes aπ rotation after passing through the quadrupole,
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The state after the quadrupole can be expanded in the basis functions of equation (1) as
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where the coefficientsCn,ℓ,s are explicitly derived in [18]. There it was also shown that tomaximize the single
particle entanglement between the spin andOAM the quadrupolemagnet should be of such strength and length
as to produce a spin flip over 1.82 times the coherence length of thewavepacket, that is 1.82cr s= ^.

The action of the quadrupolemagnet is shown infigure 1(b). It can be observed that the intensity profile of
the spin state which is correlated to theOAM is now a ring shape.

3.3.Method 3: BB1 sequence
After a neutronwavepacket passes through a quadrupolemagneticfield, themaximally entangled spin-orbit
state, given by q

mSPP
1Y ñ=-∣ (see equation (8)), occurs for 2cr r= . However, the range ofmaximal entanglement

can be increased by using a sequential chain of appropriately oriented quadrupolemagnets.Wewill see that this
results in the ability to increase thewidth of the ideal ring filter without significantly affecting the amount of
spin-orbit entanglement, boosting post-selection performance. To begin, notice that the situationwith a single
quadrupolemagnet resembles a standard over/under-rotation pulse error in spin physics [27]: with afixed
azimuthal coordinatef, as the radial coordinate deviates from the ideal value 2cr r= , the spin undergoes a

rotation about the f̂ axis with a rotation angle greater or less thanπ/2. The amount of such over/under-rotation
isfixed for a given value of ρ.

Figure 2.Overlap, as a function of the radial coordinate ρ, between themaximally entangled spin-orbit state q
mSPP

1Y ñ=-∣ and output states
produced by the followingmethods: (red) the BB1 sequence, ;BB1Y ñ∣ (black) the quadrupole, ;QY ñ∣ (blue) theN=2 sets of LOVprism
pairs, ;N

LOV
2Y ñ=∣ (purple) theN=1 sets of LOVprismpairs, N

LOV
1Y ñ=∣ . In each of these cases, 1.82cr s= ^. Each lattice cell of

N
LOV

1Y ñ=∣
is shown to be a good approximation of QY ñ∣ , and the approximation is improved by reapplying the LOVoperator. It is also shown that
the BB1Y ñ∣ has a larger range of radii than QY ñ∣ forwhich the spin andOAMaremaximally entangled.
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To increase robustness to these errors we consider the broad-band1 (BB1) composite pulse [38]which can be
implemented by sequential quadrupoles with different strengths and orientations. This particular composite
sequence is considered because of its robust performancewhile using only four quadrupolemagnets. It is
important to note that applying the quadrupole operator repeatedlyN times does not take the orbital quantum
numbers outside theℓ=0,±1 values. That is, U U NN

Q c in Q c inr rY ñ = Y ñ[ ˆ ( )] ∣ ˆ ( )∣/ , where the quadrupole

operatorUQ crˆ ( )was defined in equation (10). However, the standardmagnetic quadrupole can be rotated by an
angle δ about the ẑ axis. In this case its interaction is described by themodified operator,

U, e ei i
Q c Q c

z z2 2 r d r= s s- d dˆ ( ) ˆ ( )ˆ ˆ , and the BB1 sequence results in the output state
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where cos 1 81
1d = -- ( ) and 32 1d d= . These angles were tuned to eliminate 1st and 2nd order over/under-

rotation errors [38].
To quantitatively compare BB1Y ñ∣ with QY ñ∣ we can look at their overlapwith themaximally entangled spin

orbit state q
mSPP

1Y ñ=-∣ of equation (8). The overlap between two states 1Y ñ∣ and 2Y ñ∣ is given by 1 2áY Y ñ∣ ∣ ∣, and it is a
measure of the closeness of two quantum states, with a value of unity for identical states. Figure 2 shows

q
mSPP

1
BB1áY Y ñ=-∣ ∣ ∣and q

mSPP
1

QáY Y ñ=-∣ ∣ ∣as a function of radius. It is clear that BB1Y ñ∣ has a larger range of radii for which
the spin andOAMaremaximally entangled. This can also be observed in the intensity profile of z BB1á Y ñ∣ that is
plotted infigure 1(c), where the inner dark region is smaller than that offigure 1(b).

3.4. Spin-orbit stateswith higher orderOAM
The quadrupolemagnetic fieldmethod described above takes a spin-polarized input state with 0= = ℓ ℓ and
outputs a spin-orbit statewith 0=ℓ and 1= ℓ .We now consider situationswhere the spin-orbit
correlations involve higher orderOAMvalues.With spin-orbit states generated via themagnetic SPP, this is a
trivialmatter of using a q 1>∣ ∣ . For quadrupolemagnetic fields the following sequence of j pulsesmay be used:
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where z z ñá∣ ∣ is the projection operator for a spin-down state. The j=0 case corresponds to the spin-orbit
state produced via a quadrupolemagnetic field as described in equation (12). For j>1, both z ñ∣ and z ñ∣ are
correlated to higher orderOAMvalues, and the intensity profiles of z

j
Qá Y ñ∣ and z

j
Qá Y ñ∣ are both ring shapes.

4. Intrinsic and extrinsicOAM

Heretofore, we have discussed neutronwavepackets for which the propagation axis coincides with the SPP or
quadrupole axis. In this case, the SPP/quadrupole axis defines theOAMquantization axis.However, neutron
beams are typically an incoherent superposition of neutronwavepackets, where the neutron beamdiameter is
between 10−1 and 10−4m, and the transverse coherence length of the neutronwavepackets,σ⊥, is of the order of
10−5

–10−9m [39–41].
In studies of optical OAMadistinction ismade between ‘extrinsicOAM’ and ‘intrinsic OAM’ [42, 43]. One

can extend this distinction to the case of neutron beams. ExtrinsicOAM is the orbital angularmomentum
centered about the SPP/quadrupole axis and it is given by the cross product of wavepacket’s position and its total
linearmomentum; intrinsicOAM, usually associatedwith helical wavefronts, is the orbital angularmomentum
represented byℓ. The intrinsicOAMdoes not depend upon the position of the axis, provided that the axis is
parallel to the propagation axis [44]. This is depicted onfigure 3(a)which shows that a helical wavefront is
induced only for thewavepacket whose propagation axis coincides with the SPP axis.

Consider a neutronwavepacket with n 0in in= =ℓ andwhich is centered on ,0 0r f( ):

1
e . 15o

2

2
0
2 2 0 cos 0

2 2

ps
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^

-
r r rr f f

s

+ - -

^∣ ( )
( )
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After passing through an SPPwhich is centered at ρ=0, the expectation value ofOAMabout the SPP axis is:
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d d

. 16

z
0 0

2

o SPP

SPP o 

ò òr f r

f
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¶
¶

Y ñ =

p¥

⎛
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⎞
⎠⎟

ˆ ∣ ˆ

ˆ ∣ ( )

†

Therefore all wavepackets in the output beam acquire awell definedmeanOAMrelative to the SPP axis. The
width of theOAMdistribution in this case is directly proportional to themomentum spread of the incoming
wavepackets, 1/σ⊥. Suchwavepackets are diffracted in the transverse direction, such that the induced external
OAMrelative to the SPP axis is independent of their location:

L r p k q, 17z 0 r= ´ = =^
 

( )

where k q 0r=^ is induced by the SPP (in figure 3(a) the diffraction direction is depicted with black arrows).
On the other hand, as shown infigure 3(b), the intrinsic OAMof a neutronwavepacket quickly vanishes as

the thewavepacket’s propagation axis is displaced from the center of the SPP. The intrinsicOAMof the output
beamhas aGaussian dependence to the displacement from the center of the SPP [45].

It is also possible to prepare a neutron lattice of spin-orbit states as described in the next section. In this case
there is an array ofOAMquantization axes and in each lattice cell there is awell definedOAM.However, the
OAMof the total beam approaches zero asmore lattice cells are included [46].

5. Lattices of spin-orbit states

Formaterial studies there is a need formethods to generate lattices of neutron spin-orbit states where the lattice
constants arematched to the characteristic length scales of topological and chiralmaterials.We showhow this
may be achieved via a sequence ofmagnetic field gradients.

A lattice of optical spin-orbit states can be produced using sets of specially arranged birefringent prismpairs
denoted as ‘LOVprismpairs’. This procedure was demonstrated for the polarizationDOFof electromagnetic
waves in [34]. Here, we consider the spinDOFofmatter-waves.

Figure 3. (a)As the coherence length of the neutronwavepackets ismuch smaller than the beamdiameter, wemay differentiate
between ‘extrinsicOAM’ calculatedw.r.t. the SPP axis as the cross product of wavepacket’s position and its total linearmomentum,
and ‘intrinsicOAM’which is associatedwith helical wavefronts [42, 43]. The black arrows on top of thewavepackets indicate the
direction of the induced diffraction due to the SPP. (b)The probabilities of the n 0, 1= andℓ=0, 1 states when a neutron
wavepacket with noOAM nin=ℓin=0 passes through an SPPwith q=1. The probabilities are calculatedw.r.t. the neutron’s
propagation axis and they are plotted as a function of the rescaled distance from the center of the SPP, ρ0/σ⊥, where ρ0 is the distance
between the SPP axis and thewavepacket’s propagation axis, andσ⊥ is the transverse coherence length of thewavepacket.
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Themethod to produce lattices of spin-orbit states ismotivated by applying the Suzuki–Trotter expansion to
equation (10):

e lim e e . 18i x y

N

i x i y Nx y N x N y2 c 2 c 2 c=s s s s-

¥

-p
r

p
r

p
r( ) ( )( ˆ ˆ ) ˆ ˆ

Wecan see thatN set of perpendicular linearmagnetic gradients approximates the quadrupole operator.
Choosing that the operators be independent ofN, we define the linearmagnetic gradient operator as

U e , 19i x y
,

cos sin cos sinx y
g m

2 c g g m m=f f
f f s f s f- + +p

rˆ ( )[ ][ˆ ˆ ]

wherefg (fm) indicates the gradient (magnetic field) direction in the x–y plane. For spin−1/2 particles one
way to approximate themagnetic linear gradient operators is withmagnetic prisms as shown in figure 1(d).
These arematter-wave analogous of the LOV prism pairs introduced in [34]. The general LOV operator can
be expressed as:

U U U , 20
N N

LOV , ,g m g 2 m 2
= f f f f p pˆ ( ˆ ˆ ) ( )

and the corresponding beamswith lattices of spin-orbit states are given by:

U U . 21N N
LOV , , ing m g 2 m 2

Y ñ = Y ñf f f f p p∣ ( ˆ ˆ ) ∣ ( )

This process is shown infigure 1(d) for U U,0 ,
2

2 2p p p( ˆ ˆ ) and zinY ñ =  ñ∣ ∣ , where the output beam is a lattice of
spin-orbit states with 0=ℓ and 1= -ℓ . The orientations of the gradient operators give us the possibility of

producing lattices of spin-orbit states with positive and negative values ofOAM. For example, U U0,0 ,
2

2 2
p p( ˆ ˆ )

applied to an incoming state of zinY ñ =  ñ∣ ∣ produces an output beamwith a lattice of spin orbit states with
0=ℓ and 1=ℓ . Note that this particular gradient sequence approximates the action of amonopolemagnetic

field geometry. Furthermore, we can obtain lattices of spin-orbit states with higher orderOAMvalues by

substituting the LOVoperator,U
N

LOV
ˆ , in place of the quadrupole operators,UQ crˆ ( ), in equation (14).

Due to the periodic nature of the linear gradient operators, the spin-orbit states in these beams form a two-
dimensional arraywith a lattice constant of

a
v

B

2

tan
, 22z

n

p
g q

=
∣ ∣ ( )

( )

where B∣ ∣ is themagnitude of themagnetic field and θ is the inclination angle of the LOVprism pairs. In
figure 1(d) the phase and intensity profiles of the polarization state which is correlatedwith theOAM illustrate
the lattice structure. The number of well defined intensity rings in a lattice cell is equal toN/2, whereN is the
number of LOVprismpairs. Therefore,N provides control over themean radial quantumnumber n in the
lattice cells [34].

6. Polarization geometries of spin-orbit states

Following the nomenclature of polarization correlatedOAMstates [47, 48], we classify neutron spin-orbit states
according to their spin orientation profile. There are four categories of spin-orbit states with radially
independent spin orientations as shown in figures 4(a)–(d). They are:

(a) ‘cylindrically polarized states’where the spin orientation is given by P cos sinb r b f= +


( ) ˆ ( ) ˆ , whereβ is an
arbitrary phase;

(b) ‘azimuthally polarized states’which are a subset of cylindrically polarized states where P ;f= 
 ˆ

(c) ‘radially polarized states’which are a subset of cylindrically polarized states where P r ;= 


ˆ and

(d) ‘hybrid polarization states’where P rsin 2 cos 2f b f b f= + + +


( ) ˆ ( ) ˆ , whereβ is an arbitrary phase.

The simplestmethod to generate any of those four states is to pass an appropriate input state into the
magnetic SPP of q=±1, as the four categories arise when 1D = - =  ℓ ℓ ℓ . The optical spin-orbit states
with analogous polarization orientation geometries are not characterized byΔℓ=±1. This difference comes
from the fact that on the Poincarésphere that describes optical polarization, any two antipodal points refer to
orthogonal polarization directions; while on the Bloch sphere that describes the spin-1/2 state, any two
antipodal points refer to anti-parallel spin directions.

We consider a spin-orbit state for which one orbital quantumnumber is zero and the other±1.When
0=ℓ the hybrid polarized states offigure 4(d) possess 0, 1= = - ℓ ℓ{ }, and the cylindrically polarized states

possess 0, 1= = ℓ ℓ{ }. All of the states with given , ℓ ℓ{ }differ by a phase on the spinDOF. This phase can be
directly varied by an externalmagnetic field along the spin quantization axis,Bz. For 0=ℓ the hybrid polarized
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states possess 1, 0= = ℓ ℓ{ }while the cylindrically polarized states possess 1, 0= - = ℓ ℓ{ }. Hence aπ
spin rotation around ŝ̂ can be used to transform a statewith hybrid polarization geometry into a state with
cylindrical polarization geometry (and vice versa), but not to changeDℓ.

The preparation techniques shown infigure 1 can also produce spin-orbit states with radially dependent spin
orientations. Themain three categories are shown infigure 4: (e) quadrupole spin-orbit state; and two
skyrmion-like states: (f) hedgehog and (g) spiral. The described rules for radially independent spin-orbit states
also apply to these radially dependent spin-orbit states. The quadrupole spin-orbit state is described by
equation (12), while a lattice of any of these three categories of states can be obtained via an appropriate LOV
prismpair combination.

7. Characterization of spin-orbit states

Generally speaking, determining a neutron beam’sOAM is relatively difficult due to the lowflux and small
spatial coherence length. One possiblemethod is to prepare theOAMbeam in one armof an interferometer,
whichwill yield an output beam that is a coherent superposition of theOAMbeamand a reference beam
carrying noOAM [5]. The 2D intensity profile of the output beamwill possess a helical structurewhose order of
rotational symmetry quantifies the inducedOAM. In principle, it would also be possible to verify theOAMof a
neutron beamby transferring theOAM from the beam to an absorbing object or particle, whichwould then
rotate around theOAMaxis as a result. This would be analogous to the optical experiments [11–13], though the
available lowneutron fluxesmake this experiment unpractical.

The spin-orbit states describedby equation (5) are characterized by twoparameters of interest:D = - ℓ ℓ ℓ
and the phase factorβ.Herewedescribe two robust and relatively simplemethods to determine those parameters.
However, it is important to keep inmind thatβwill be varied by thebackgroundquantizationmagneticfieldBz.

7.1.Mapping the 2D intensity profile after spinmixing
The twopaths of aMach–Zehnder interferometer are isomorphic to a two-level quantum system such as the
spin 1 2- DOF. Therefore after amixing in the spinDOF, the spin dependent 2D intensity profiles will possess

Figure 4.The spin orientation (red arrows) of the spin-orbit states with a coupling between 0=ℓ and 1= ℓ , where the ẑ axis
points out of the page. In analogy to optical OAM terminology, wemay classify four categories of spin-orbit states with radially
independent spin orientations: (a) ‘cylindrically polarized states’where the spin orientation is given by P rcos sinb b f= +


( ) ˆ ( ) ˆ ,

whereβ is an arbitrary phase; (b) ‘azimuthally polarized states’which are a subset of cylindrically polarized states where P ;f= 
 ˆ

(c) ‘radially polarized states’which are a subset of cylindrically polarized states where P r;= 


ˆ and (d) ‘hybrid polarization states’
where P rsin 2 cos 2f b f b f= + + +


( ) ˆ ( ) ˆ , whereβ is an arbitrary phase.Note that all of the states with a certain , ℓ ℓ{ }differ by a

phase on the spinDOF. The preparation techniques shown in figure 1 can also produce spin-orbit states with radially dependent spin
orientations. Themain three categories are: (e) quadrupole spin-orbit states as described by equation (12); (f)hedgehog skyrmion
states; and (g) spiral skyrmion states. An array of any of these three states can be obtained via the appropriate LOVprismpair
combination.

8

New J. Phys. 20 (2018) 103012 D Sarenac et al



a helical structure which quantifies the inducedOAM. For simplicity consider the spin-orbit state q
mSPPY ñ∣

(equation (4)). The two-dimensional intensity, post-selected on a particular spin direction sñ∣ , is given by

I x y s, . 23q
mSPP

2= á Y ñ( ) ∣ ∣ ∣ ( )

Without spinmixing, i.e. post-selecting on z ñ∣ or z ñ∣ , the resulting 2D intensity profile is aGaussian in both
cases, which does not reveal anyOAMstructure.

To determine the inducedOAMon the z ñ∣ component wewould need to post-select on a perpendicular
spin direction. The 2D intensity profiles projected onto x ñ∣ , given by x

q
mSPP

2á Y ñ∣ ∣ ∣ , are shown infigure 5(a)) for
magnetic SPPswith q=1, 2, 3. These are identical to the expected profiles obtained via the interferometric
measurement described above.

Figure 5.The two parameters of spin-orbit states,β andD = - ℓ ℓ ℓ (see equation (5)), can be characterized by post-selecting on a
perpendicular spin direction and obtaining: (a) the 2D intensity profile or (b) the 2Dmomentumdistribution. The first two columns
are for the state after amagnetic SPPwith q=1, the third column is for the state after amagnetic SPPwith q=2, and the last column
is for the state after amagnetic SPPwith q=3. The order of rotational symmetry of the 2D intensity andmomentumprofiles is equal
to qD =ℓ∣ ∣ ∣ ∣ (aswe set 0=ℓ for convenience). Applying a spin rotation along zŝ before the spinmixing effectively rotates the
resulting 2Dprofiles. The direction of rotation determines the sign of q, and the initial azimuthal offset determines β at the detector.

Figure 6.When post-selecting onto a perpendicular spin eigenbasis of a spin-orbit state theOAMmanifests itself as an asymmetry in
the 2Dmomentumdistribution (seefigure 5). (a)Proposed experiment tomap out the 2Dmomentumdistribution of a neutron spin-
orbit state bymeasuring themomentumprojections via a Bragg crystal. This allows for analysis of the beam’sOAMcomponents by
mapping out themomentumdistribution. (b)Wemay assemble themomentumprojections at eachω obtained by rotating the Bragg
crystal around the crystal plane direction. The 2Dmomentumdistribution is obtained from the projection curves via the inverse
Radon transform. In the examples depictedwe perform the inverse Radon transformon 36 equally spaced slices of 0 , 175w Î  [ ] and
reconstruct the 2Dmomentumdistribution.

9

New J. Phys. 20 (2018) 103012 D Sarenac et al



The order of rotational symmetry of the 2D intensity profiles is equal to qD = - = ℓ ℓ ℓ∣ ∣ ∣ ∣ ∣ ∣. Applying a
spin rotation along zŝ before the spinmixing effectively rotates the resulting 2D intensity profile. The direction
of rotation determines the sign of q. The initial azimuthal offset determines β at the detector.

7.2.Mapping the 2Dmomentumdistribution after spinmixing
Anothermethod to characterize spin-orbit states is tomeasure their 2Dmomentumdistribution. The 2D
momentumdistribution, post-selected on a particular spin direction sñ∣ , is given by

P k k s, , 24x y
q
mSPP

2= á Y ñ( ) ∣ { ∣ }∣ ( )

where {} is the Fourier transform. If we apply spin filters along the spin eigenbasis of q
mSPPY ñ∣ , i.e. along z ñ∣ or

z ñ∣ , then the 2Dmomentumdistribution of z
q
mSPPá Y ñ∣ would be aGaussian profile indicative of the prepared

incoming state carrying noOAM, and that of z
q
mSPPá Y ñ∣ would be a ring shape.However, the ring-shaped

momentumdistribution does not uniquely define anOAMbeam; for example, it is possible to have a radially
diverging beamwhich has a ring-shaped 2Dmomentumdistribution.

If we post-select on a perpendicular spin axis then the spin–orbit coupling breaks the symmetry of the 2D
momentumdistribution profile as shown infigure 5(b). Therefore we propose amethod to characterize the spin
orbit states bymapping out their 2Dmomentumdistribution after spin filtering along a perpendicular spin axis.

In thismethod as well, the order of rotational symmetry of the 2Dmomentumprofiles is equal to D =ℓ∣ ∣
q- = ℓ ℓ∣ ∣ ∣ ∣. Applying a spin rotation along zŝ before the spinmixing effectively rotates the resulting 2D

momentumprofile. The direction of rotation determines the sign of q. The initial azimuthal offset determinesβ
at the detector.

Allowing a state to propagate into the farfield, where the intensity profile is indicative of themomentum
distribution profile, is not practical with the small neutron diffraction angles induced by theOAM.Amore
practicalmethod is to use a diffracting crystal and obtainmomentumprojection curveswhich can then be used
to reconstruct the 2Dmomentumdistribution. A proposed experiment is shown infigure 6(a). A spin-orbit state
is prepared by passing a coherent superposition of the two spin eigenstates through amagnetic SPP. The spin is
then projected onto a perpendicular spin direction using a spin filter. A rotatable Bragg crystal enables a
measurement of themomentumprojected to the crystal plane direction. The two rotation anglesω and ζ
effectively allowus to obtain the projections of the 2Dmomentumdistribution along an arbitrary angle in the
transverse plane, as shown infigure 6(b). A standard problemofmedical imaging, obtaining the ‘backprojection
image’ (2Dmomentumdistribution) via the ‘sinogram’ (projection curves) is achievedwith the inverse Radon
transform [49]. Figure 6(b) shows the reconstructed image obtained via 36 equally spaced projections. Note that
because of the azimuthal symmetry of the spin-orbit state, rotating the spinfilter offigure 6(a) by an angleω and
fixing the Bragg crystal orientation produces the same outcome as shown in figure 6(b).

These procedures work similarly if the spin-orbit state is created via anymethod depicted infigure 1. Note
that other than themagnetic SPP, the othermethods produce radial diffraction in addition to the azimuthal
diffraction.However this does not change the described azimuthal asymmetry used to characterize the spin-
orbit states. In fact, the asymmetry becomes evenmore pronounced. Thereforewe proposed that an initial
experiment be donewith LOVprismpairs tomaximize the use of the incoming beamflux and circumvent
problemswith small coherence lengths.

8. Conclusion

Wehave introduced and quantified newmethods of preparing neutron spin-orbit states. This is a step towards
general programming of the spin and quantumphase of neutronwavefronts, which addresses the fundamental
limitations of neutron scattering and imaging techniques. For example, recent interest in complex topological
and quantummaterials [50, 51] suggests a need for a tool with unique penetrating abilities andmagnetic
sensitivity. Analysis ofmaterial properties could be performed using a neutron spin-orbit lattice where the lattice
constants arematched to the characteristic length scales ofmaterials. Themethods described here allow for the
direct control of spin-orbit state parameters within a neutron beam.Wehave also proposed amethod to
characterize neutron spin-orbit states which overcomes themain challenges associatedwith lowneutron flux
and the neutron’s small spatial coherence length.
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