
	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 		 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

Computer Science in	 2018 

Editors: 	J. 	Voas,	R. 	Kuhn, C. Paulsen,	and 	K.	Schaffer 

We surveyed six of our profession’s best senior computer science educators: 

MICHAEL:	 Michael Lewis (College of William and Mary)	 rmlewi@wm.edu 

KEITH: Keith Miller (U.	 of Missouri – St. Louis) millerkei@umsl.edu 

SHIUHPYNG: Shiuhpyng Shieh (National Chao Tung U.)	 ssp@cw.nctu.edu.tw 

PHIL: Phillip A Laplante (Penn State U.)	 plaplante@psu.edu 

JON: Jon George Rokne (U.	 of Calgary)	 rokne@ucalgary.ca 

JEFF: Jeff	 Offutt (George Mason U.)	 offutt@gmu.edu 

We felt their opinions would be useful to IT Pro’s readership to address 3 questions: 

1. What are today’s core classes in computer science education and are they generally uniform in 
most universities and colleges? How do they compare with those in the early days	 in 
computer science education (1970s and 1980s)? 

MICHAEL: Looking	 around at various programs, I was a bit surprised to see the extent to which 
vestiges of the old core classes are still around: discrete math; data structures	 and algorithms; 
programming languages; computer organization	 or computer architecture; some sort of 
software development course. There is	 also a fairly ubiquitous	 math requirement of something 
like 	2-3	 semesters of calculus plus linear algebra. 

It’s a 	bit 	surprising 	how 	static 	the 	core 	of 	the 	curriculum 	seems 	to 	be, 	given 	how 	much 	computer 
science has	 changed over the years. 

Of course, the content of the core CS classes has changed in varying degrees, and the electives 
are	 far more	 varied and numerous than what we had in the past. Indeed, many of the topics of 
electives today did not exist in the	 1970s and 1980s. 

JON: There has not been a	 general agreement on what exactly is the core of computer science 
neither today nor in	 the past. However, one	 can probably say that today’s core	 classes in 
computer science are generally	 focused on procedural programming, data structures	 and 
algorithm analysis supported by courses in mathematics and statistics and that in the	 early days 
of computer science (1970’s 	and 	1980’s) 	there 	was a 	greater 	emphasis 	on 	lower 	level 

mailto:offutt@gmu.edu
mailto:rokne@ucalgary.ca
mailto:plaplante@psu.edu
mailto:millerkei@umsl.edu
mailto:rmlewi@wm.edu


	 	 	 	 	 	 	 	
	 	 		

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 			

	 	 	
	 	 	 	 	 	 	

programming and	 courses dealing with	 computer hardware and	 fewer courses on	 data 
structures	 and software engineering. 

SHIUHPYNG: Today’s core classes include programming (e.g. algorithm, programming language, 
and data structure), mathematic (e.g. linear algebra and discrete mathematics), and system 
design (e.g. computer architectures and operating system). Although the objectives of the core 
classes remain the same, the content varies significantly in comparison with that in the 1970s 
and 1980s. It includes many new techniques we take for granted today, e.g., multi-tasking, just-
in-time compilation, networking, and artificial intelligence. Moreover, the core classes need to 
cover new requirements. 

KEITH: One way to answer this question is to reference the ACM/IEEE-CS Computer Science 
Curricula 2013 (https://www.acm.org/education/CS2013-final-report.pdf). It	 is not	 the only 
approach to computing curriculum available	 on the	 world stage	 (for example, the	 European 
Union is working on the Bologna Process, including computing). But CSC2013 approaches 
curriculum not on the basis of	 “classes,” but	 on the basis of	 “hours.” An hour	 is meant	 to be the 
amount of material covered in an hour of “lecture,” although the	 CSC2013	 document takes 
pains to	 not endorse lecture as the preferred	 method	 of pedagogy. 

With that introduction, 	please 	look 	at 	Figure 	1, 	which 	summarizes 	both 	CSC2013 	and 	two 
previous curriculum guidelines from the same group. 

https://www.acm.org/education/CS2013-final-report.pdf


	

	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
		 	 	 	 	 	 	 	

	

Figure	 1. Tier 1	 (required) and Tier 2	 (roughly, recommended) are	 the	 “core	 hours” in 
CSC2013. 

Although	 they aren’t defined	 as such, it	 seems clear	 that	 several classes familiar	 to most	 CS 
graduates can be	 identified by	 locating	 large	 numbers of hours in the	 table: algorithms (row AL), 
computer architecture (row AR), discrete structures	 (DS), programming languages	 (PL), and 
software development 	(SDF) 	and 	software 	engineering 	(SE) 	stand 	out 	to 	me.	Personally, 	I	agree 
that	 these 6 areas, covered by some collection of	 courses, would be fundamental for	 any BS in 
Computer Science. I wouldn’t think they would	 be sufficient, but certainly would	 be a base upon	 
which to build. 

We can go back to 1968 to compare early computer science curricula to the 2013 
recommendations. An ACM task force in 1968 (William F. Atchison, Samuel D. Conte, John W. 
Hamblen, Thomas E. Hull, Thomas A. Keenan, William B. Kehl, Edward J. McCluskey, Silvio O. 
Navarro, Werner C. Rheinboldt, Earl J. Schweppe, William Viavant, and David M. Young, Jr.. 
1968. Curriculum 68: Recommendations for academic programs in computer science: a	 report of 
the ACM curriculum committee on computer	 science. Commun. ACM 11, 3 (March 1968), 151-
197.) recommends eight courses in the	 core	 curriculum, shown here: 

Introduction 	to 	Computing 



	 	

	

	 	

	 	

	 	

	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
		 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 			

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

 	 	 	 	 	 	 		
 	 	 	 	 	
 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 		 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	

Computers and	 Programming 

Introduction 	to 	Discrete 	Structures 

Numerical Calculus 

Data Structures 

Programming Languages 

Computer Organization 

Systems Programming 

We see strong similarities with the 2013 document, but several noteworthy differences. 
Calculus, though	 discussed	 in	 the 2013 document, is not explicitly mentioned	 in	 the 2013 core, 
though discrete structures are. Software	 engineering appears in 2013, but is not explicit in 1968. 
Perhaps most striking is how many hours in 2013	 are	 given over to topics not explicitly covered 
in 	the 	1968 	core, 	including 	social	issues 	and 	practice, 	parallel	and 	distributed 	computing, 	and 
intelligent 	systems.	In 	the 	decades 	between 	1968 	and 	2013 it 	isn’t 	surprising 	that 	new 	topics 
gained importance; perhaps it is surprising	 how similar many	 of the	 emphases are. 

PHIL: I	have 	been 	teaching in 	computer 	science 	and 	software 	engineering programs since the 
mid-1980s. Over the	 years, I	have 	seen 	curricular 	changes 	to 	make 	room 	for 	breadth 	courses 
unrelated	 to	 Computer Science, and	 to	 make the programs more accessible to	 those who	 are 
not strong in	 mathematics. I believe that these changes come at the expense of a deeper 
understanding of computation. 

ABET (the Accreditation	 board	 for Engineering and	 Technology) accredits CS programs through	 
guidelines provided by	 the	 CSAB (Computer Science	 Accrediting	 Board) – a	 joint effort of IEEE	 
and ACM. The	 current guidelines say that	 a CS curriculum must	 have 

• “Coverage of the fundamentals of algorithms, data structures, software design, 
concepts	 of programming languages	 and computer organization and architecture. 

• An	 exposure to	 a variety of programming languages and	 systems. 
• Proficiency in	 at least one higher-level	language.	 
• One year of science and mathematics” 

Most CS programs comply with these guidelines with little variation. 

Notice that the ABET recommendations omit operating systems, compiler theory, automata 
theory, database theory and	 more – courses	 that were traditionally	 taught in most CS programs	 
through at	 least	 the late 90s and which remove the “magic” from how computers and software 
applications really work. ACM/IEEE	 2016	 curricular recommendations 
(http://www.acm.org/education/curricula-recommendations)	 provide for	 more depth beyond 
that	 ABET criteria, but	 I am not	 sure how widely adopted these are. 

http://www.acm.org/education/curricula-recommendations)	


	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	

 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	
	 	 	 		 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 		 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

JEFF: ABET accredits most CS programs in	 the US, and as a result, the requirements, at least in 
North America, tend to be fairly uniform. Students from the 1980s (like me) still recognize many 
of the year one through	 three courses. Courses like introductory CS, introductory programming, 
data structures, computer organization and assembly, operating	 systems, computability, and 
algorithms are	 still standard. At the	 higher level, we	 see	 newer topics like	 security, web and 
mobile app development, game development, and big data analysis alongside standbys like 
database, graphics, networks, and	 AI. I just looked	 at the requirements at my university (George 
Mason) and the coursework we had in 1980 would come very close to satisfying current 
requirements. I find that	 surprising. 

2. Is 	the 	following 	statement 	true: “the	 brightest computer science	 graduates are	 often	 heavily 
self-taught	 due to their passion for this area?” How often do you experience cases where the 
students	 know more than their	 professors? 

KEITH: In my experience, that statement is true, although I don’t think it is always the brightest 
students who are heavily self-taught. I think it is often the most passionate students who are 
heavily self-taught. And this self-teaching is often in specific areas, and mostly concrete areas. 
Students may know quite a bit about how to program particular machines or systems, even 
though their understanding of algorithms in general (for example) may not be particularly 
sophisticated. I don’t think I can quantify how often this happens to me, but surely in a class of 
25 undergraduates it happens several times in a semester that at least one student knows at 
least some detail about a particular system or programming language that I don’t know (or 
remember). 

MICHAEL:	I	agree 	that 	the 	brightest 	CS 	students 	generally 	learn a lot	 on their	 own or	 by working 
with equally bright students. These students have an active extra-curriculum of personal 
programming projects, hackathons, programming contests, and	 various jobs and	 internships. 
The extra-curriculum plays	 a critical role in	 the development of CS students. 

In 	my 	experience 	it’s 	pretty 	common 	for 	students 	to 	know 	more 	about 	particular 	software 	tools 
or frameworks than	 their professors do. Students frequently return	 from internships with	 all 
manner of knowledge such as web programming	 frameworks they learned over the	 summer. 
Also, in	 their personal software projects they end	 up	 doing things that faculty might not typically 
do	 (e.g., hacking Bluetooth	 drivers on	 cellphones). 

On the other hand, CS faculty know more about the science part of computer science than	 do	 
students, so we’re probably worth keeping around. 

PHIL: My experience is that the best young computer scientists have a solid undergraduate 
education but supplemented with lots of hands on experience	 obtained through some 
combination of internships, part-time jobs and self-study. There are so many open source 
projects to	 work on, free tools, and	 low cost small platforms, such	 as Arduino	 and	 Raspberry Pi, 
to play with that	 there is no excuse for	 young computer	 scientists	 to not have lots	 of hand on 
experience	 by the	 time	 the	 graduate	 -- the best	 students take advantage of	 these opportunities. 



	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

As for students knowing more than	 their professors – in 	one 	area 	or 	another, 	my 	students 	know 
more than me all the time. I can’t be expert in every	 programming language, every	 development 
environment, application domain or every piece	 of hardware. I constantly learn from my 
students. 

SHIUHPYNG: In computer security discipline, both attackers and ethical hackers are often self-
taught. More and more self-learning resources are now available on the Internet. The 
knowledge and implementation skill in computer science can be easily digitalized and 
distributed online, and therefore the passion can motivate the students to polish their skills 
through self-learning. As computer science domain knowledge expands and grow rapidly, it may 
be a challenge for professors to keep up with the fast growing areas and in particular to cover 
the cross-disciplinary hands-on experience. As an example, Zuckerberg, the Facebook founder, 
took one year to build up an intelligent house which can follow speech commands, control 
switches, and even tell a joke. Many cross-disciplinary know-hows are involved in this case. 
However, in my personal opinion, the academic way of thinking and problem solving still be the 
key to the success of new technologies. 

JON: It is 	certainly 	true in 	that 	some 	of 	the 	very 	bright 	computer 	science	 students are	 heavily 
self-taught. However, their	 knowledge base tends to have gaps that	 need to be filled in through 
more formal education processes. This was exemplified by one of our very successful 
undergraduate students who	 was challenged	 in	 his graduate work elsewhere by the advanced	 
theoretical computer	 science courses expected of	 a graduate student. This talented student	 had 
avoided most theoretical courses offered in his undergraduate	 studies. It is not difficult for a	 
bright computer science student to know more	 than a	 professor if knowledge	 is measured by 
detailed	 knowledge of specific software or hardware products. For a deep	 understanding of 
computer science professors	 are seldom challenged by	 the students. 

JEFF: I’ve 	only 	seen 2 	or 3 	students in 	my 	30 	year 	career 	who 	are 	primarily 	self-taught	 to be 
software engineers. Many are self-taught	 to be programmers, but	 most	 were bad programmers. 
Certainly not engineers. And	 many students have very high	 self-efficacy, believing	 that they 
already know everything	 because	 they’ve	 written a	 few Android apps. I see	 a	 few seniors 
surpass	 their good teachers, and always	 find that exhilarating. Unfortunately, I see more 
students	 surpass	 teachers	 because their teachers	 do not know much. 

3. IEEE’s 	Computer 	Society 	has developed a	 Body	 of Knowledge (BOK) and an examination to be 
tested against	 the BOK to be licensed as a software engineer. Do you see any impact	 from this 
now or in	 the	 future? 

JEFF: Not personally. The last time I looked at the BoK it struck me as out of touch	 with	 modern	 
software engineering. It looked like something that may have been appropriate in 1995, not 
2017. That’s just my opinion of course. 

JON: It is 	difficult 	to 	assess 	the 	impact 	of 	the 	Body 	of 	Knowledge in a 	computer 	science 
department since is	 specifically	 aimed at software engineering (incidentally	 a term coined by	 F. 
L. Bauer). Computer science, as we think	 of it, encompasses software engineering, but includes 



	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	

	 	
	 	 	 	

	 	
	 	 	 	 	 	 	

	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		

	 	
	 	 	 	 	 	 	 	 	 	 		 	 	 	

	 	 	 	 	
		 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

other disciplines too. Splitting off new departments of software engineering from computer	 
science would mean less	 interaction cross	 disciplinary research in the overall computer science 
area. 

MICHAEL: I	have 	not 	seen 	any 	impact 	of 	this, 	even 	though 	my 	state 	(Virginia) 	was 	one 	of 	those 
that	 first	 asked for	 a licensure system. 

It 	is interesting 	how 	many 	of 	the 	core 	topics in 	the 	IEEE 	software 	engineering 	Body 	of 
Knowledge	 are	 those	 core	 CS	 courses discussed in the	 first question, e.g., discrete	 math; data	 
structures	 and algorithms; software development; computer architecture. This	 supports the 
view that the CS curriculum really	 has an identifiable core. 

SHIUHPYNG: The BOK contains necessary knowledge in a summarized form. It will be very 
helpful to new graduates. In this case, the license may be a good way of ensuring the 
fundamental knowledge of developers. 

PHIL: I	led 	the 	effort 	to 	create 	the 	professional	engineer 	(PE) 	licensing 	exam 	for 	software 
engineers in the	 US, so I can answer this question from a	 unique	 perspective. First, for several 
reasons a different	 body of	 knowledge, similar 	to 	SWEBOK, 	had 	to 	be 	created 	for 	the 	licensing 
exam. We	 put a	 tremendous amount of effort in surveying	 hundreds of professionals, creating	 
the body of	 knowledge, and writing (and maintaining)	 the exam. The reasoning and process 
behind	 the exam are described	 in	 Phillip	 A. Laplante, Beth	 Kalinowski, Mitchell Thornton, "A	 
Principles and Practices Exam Specification to Support Software	 Engineering Licensure	 in the	 
United States of America," Software Quality Professional, vol. 15, no. 1, January, 2013, pp. 4-15. 

Unfortunately, since its introduction in 2013 there have been few exam takers (less than 100). 
There are several reasons for this. First, (with some exceptions) deans, department chairs and 
faculty seem generally uninterested in promoting the exam. Secondly state departments of 
engineering have not been uniformly requiring software PEs for public works that contain 
software. Without this requirements, there is little demand for licensed software engineers. 
Finally, the path to licensure is difficult because candidates must pass the Fundamentals of 
Engineering exam. This examination is very broad based and expects the candidate to be 
knowledgeable in areas that most engineers would study, but not most software engineers. 

KEITH: The issue of licensing software engineers has a long and contentious history. The issue of 
whether software engineers should, or will, be licensed has certainly not been settled, despite 
decades of hard work by several organizations. For example, see (Laplante, Phillip A. "Licensing 
professional software engineers: seize the opportunity." Communications of the ACM 57.7 
(2014): 38-40.) For a contrary view in the popular press, see (Bogost, Ian. "Programmers: stop 
calling yourselves engineers." The Atlantic (2015)). 

Because of the lack of consensus among professional organizations, I don’t think that licensing 
will be important in the next few	 years. It may gain momentum if there are many spectacular 
disasters. Meanwhile, the BOK may improve our understanding of the principles important to	 
our profession, and	 may have a more immediate and	 direct effect on	 curricula and	 practice. 


