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Abstract—Smart manufacturing is an emerging paradigm for
the next generation of manufacturing systems. One key to the
success of smart manufacturing is the ability to use production
data for defining predictive and descriptive models and their
analyses. However, the development and refinement of such
models is a labor- and knowledge-intensive activity that involves
acquiring data, selecting and refining an analytical method and
validating results. This paper presents an analytical framework
that facilitates these activities by allowing ad-hoc analyses to
be rapidly specified and performed. The proposed framework
uses a domain-specific language to allow manufacturing experts
to specify analysis models in familiar terms and includes code
generators that automatically generate the lower-level artifacts
needed for performing the analysis. We describe the use of our
framework with an example problem.

I. INTRODUCTION

Smart manufacturing systems (SMS) is an emerging
paradigm for the next generation of manufacturing systems.
Its goal is to enable data-driven decision making throughout
manufacturing. SMS holds the potential to improve many as-
pects of manufacturing. For example, using real-time feedback
about part quality, a SMS may adjust process parameters to
optimize throughput.

Important to success in smart manufacturing is the ability
to learn from data. Data informs control decisions in SMSs
through two pathways yielding predictive models: where phe-
nomena are not well-understood, data analytics (e.g. machine
learning) can be applied; and where phenomena are under-
stood, conventional analytical methods (e.g finite element
analysis, operations research) are typically more effective.

Regardless of the pathway, the resultant computational
model produced can be used either directly to infer control
signals or ”off-line” in trade studies and numerical optimiza-
tions. In both the machine learning and analytical pathways,
the development and refinement of predictive models is both
a labor- and knowledge-intensive activity involving the tasks
of acquiring and conditioning data, selecting and refining an
analytical method (e.g. experimental, physics-based etc.), and
validating results. These tasks could be facilitated by a system
that integrates access and visualization of production data with
analytical capabilities. This paper describes the design and
implementation of such a system.

There are several challenges to designing and building this
type of framework. First, data may be produced in a variety of
different formats, yet flexible tools to examine and organize
the data for analysis are needed. Second, one must provide

access to multiple analysis algorithms. Third, the framework
should allow users to combine both process concerns and
operations concerns in the analysis. Fourth, the framework
should facilitate continual refinement of the analytical model.
Finally, the framework must present the analysis results in
a way that allows insights and actionable conclusions to be
drawn.

This paper presents an analytical framework to support
decision making in smart manufacturing settings. The paper
focuses on the aspects of the framework that allow ad-hoc
analyses to be specified and performed rapidly. The framework
supports input data in the MTConnect standard[1], an industry
standard for describing data produced by machine tools. It
stores data using InfluxDB[2] 1, a time-series database built for
real-time analytics applications. The framework also integrates
various Python libraries like 1) OpenMDAO[3], which pro-
vides analysis algorithms, 2) SimPy[4] for developing discrete
event simulation models of manufacturing processes, 3) scikit-
learn[5] for developing data-driven models of manufacturing
processes and 4) Bokeh[6] for visualizing analysis results.
The Grafana[7] visualization engine is used to visualize the
data logged in InfluxDB. Underpinning the framework is
a domain-specific modeling language that allows users to
express complex analyses using an intuitive, extensible, mod-
eling language.

The rest of this paper is structured as follows. Section
II gives brief background information on MTConnect and
model-based software engineering. Section III describes the
application of the proposed framework to a motivating ex-
ample. Section IV gives the design and implementation of
the framework. Related work is presented in Section V and
Section VI concludes the discussion.

II. BACKGROUND

Attempts to create the network of “things” in a manu-
facturing setting date back to the 1970s. These attempts,
however, were largely unsuccessful because of 1) immature
communication infrastructure, 2) lack of facilities for large
data storage, and 3) limitations on computing power. Today,
these impediments no longer exist and we are observing a
fusion of manufacturing systems and Cyber-Physical Systems

1References to proprietary products are included in this paper solely to
identify the tools actually used in the industrial applications. The identification
does not imply any recommendation or endorsement by NIST as to the actual
suitability of the product for the purpose.



(CPS) which has given rise to the field of Cyber Manufacturing
[8]. “Industrial Internet-of-Things” (IIoT) have given rise to
an explosion of data in manufacturing, providing new op-
portunities to improve process quality, make predictions, and
perform fault-diagnosis and prognosis. We are in the midst of
a major overhaul of the manufacturing landscape where more
and more cyber-space is getting connected. In this new world,
communication standards play a very important role.

MTConnect is one such communication standard. It is
aimed at making data from Computer Numerical Control
(CNC) machines machine-readable and more accessible. The
development of standards like MTConnect have paved the
way towards cross-platform analytical applications and sensor
fusion. Although empirical techniques for data acquisition can
be used for most of the analytics applications, the integration
of Cyber-Physical Systems with modern manufacturing tech-
niques provides more efficient means to acquire data [9], [10].
Communication standards like MTConnect and OPC-UA [11]
enable near real-time streaming of factory data, which can be
effectively used for the analysis of manufacturing processes.

Model-Based System Engineering (MBSE) is an effective
approach for developing CPS applications as the transition
from document-based to model-based methodologies contin-
ues [12]. This is especially the case as systems and pro-
cesses grow more complex and require the integration and
composition of multiple heterogeneous models [13]. Domain-
specific modeling is a part of MBSE that deals with modeling
environments to provide abstractions that cater to specific
engineering disciplines. The framework described in this paper
uses a Domain-Specific Modeling Language (DSML) to help
small- and medium-scale manufacturers leverage the MBSE
paradigm for performing manufacturing analysis.

III. MOTIVATING EXAMPLE

The motivating example used to explain the framework is
a machining process running on a MTConnect-enabled CNC
workcenter. 20 units of a milled aluminum part were produced
using end milling and face milling at various feeds and
speeds. Each iteration of the process produced an MTConnect
dataset. This aggregate data is used to produce a predictive
model of the process using standard regression techniques.
The regression model predicts the time required to produce a
part for the aggregated value of spindle speed while producing
a part.

The MTConnect data produced during the milling process
under study contains the values of various process parameters
such as spindle speed and line feeds during the production
of the part. In addition to these process parameters, the
MTConnect data contains information about the state of the
CNC machine during production. Using these data streams,
statistical analyses like linear regression can be performed to
determine relationships such as that between values of process
parameters and changes in the state of the machining tool.
Such statistical models help to approximate the relationship
between the process parameters and process performance

Fig. 1. Overview of the framework

metrics, where obtaining the accurate analytical relationship
between the two is not possible.

This example describes how the framework can be used to
develop a regression-based model. To simplify the explanation
and demonstration of the framework, only one explanatory
variable is used in the regression model, spindle speed. The
model is trained over the acquired MTConnect data using
linear regression, but other regression algorithms such as
polynomial regression or Gaussian Process regression may
also be used. The input feature for the learning algorithm is the
integrated value of spindle speed over the process duration for
a given part, and the output is the time required for producing
the part.

Figure 1 gives a high-level view of the entire workflow. The
manufacturing process under question can be considered as a
“black-box” that produces the raw data. This data is saved in
a data acquisition module, which is integrated with a domain-
specific modeling environment. The modeling environment is
used to create domain-specific models of the process. After the
models have been developed, they can be used to run different
analyses within the same environment. Visualization of both
the input data as well as the analysis results provide the user
with valuable insights about the nature of the process.

There is a vast body of literature on predictive, diagnos-
tic, and descriptive analysis of manufacturing processes. In
discrete-part manufacturing, surface finish and dimensional
accuracy are key to part quality. Studies predicting surface
roughness have used factorial design-of-experiment in turn-
ing processes [14], regression and neural-network based ap-
proaches [15], and empirical models developed from the data
[16] and using genetic algorithm approaches with Response
Surface Methodology (RSM) [17]. Predictive analysis of pro-
cess efficiency include the prediction of energy consumption
(i.e. sustainability analysis) by developing empirical models
using data [18] and prediction of tool wear using neural
networks [19]. Studies estimating process properties such as
manufacturing cycle time have been done using data-mining
approaches on stored data in the semiconductor manufacturing
domain [20]. Predictive analysis of the energy consumption



of the process has been done by leveraging modern data-
acquisition standards, where the energy consumed by the
machining tool while producing a part is predicted using
statistical techniques [21].

The typical workflow of the approaches listed above is to
(1) gather the data from the process, (2) develop a data-driven
model or an analytical model, and (3) use the model and
acquired data to perform various analyses in order to gain
insights about the system. The difficulty with this workflow
is that it requires expertise in data acquisition techniques,
efficient data-storage techniques, and advanced programming
skills to implement and/or use the modeling platforms and
data-visualization techniques. The work in this paper addresses
this need and provides an implementation of integrated tools,
stepping towards the goal of being able to rapidly prototype
ad-hoc analyses.

The analytical (i.e. equation-based) models as well as data-
driven models of a production process can be used for vari-
ous analyses like optimization, Design-of-Experiment (DoE),
Discrete Event Systems (DES) simulations, among others.
The proposed framework uses Multi-Disciplinary Analysis
and Optimization (MDAO) methodology for specifying op-
timization and DoE analyses and DES simulations to provide
long-term predictions of the system under study. Also, the
framework uses regression techniques to approximate process
models. In the next section, various capabilities and individual
components of the proposed framework are showcased.

IV. FRAMEWORK

In this section, we discuss the analytical framework in detail.
The framework is an integrated environment for (1) acquiring
process data, (2) developing models of the process using the
acquired data, and (3) using the developed models to perform
analyses. This integrated environment is built using WebGME
[22], a web-based modeling platform, which provides the
means to integrate all the software components needed to
accomplish the tasks mentioned above. The integrated en-
vironment can be divided logically into three pieces: (1) a
domain-specific language, (2) an engine for code generation
and execution, and (3) platforms for data acquisition and
visualization. Figure 2 shows these software components in
detail and the interfaces among them, which is an extension
of our previous work [23]. Bold arrows in the figure signify the
flow of data and artifacts between the individual components,
and regular-weight arrows signify the dependencies.

A. The Domain-Specific Modeling Language

Domain-Specific Modeling Languages (DSMLs) are mod-
eling languages tailored for a particular domain. In contrast,
modeling languages like UML [24] are general-purpose. The
main benefit in using a DSML is that it can provide con-
cepts that are already familiar to domain experts, and can
thus decrease the barrier to entry for the users who are
knowledgeable in manufacturing but less experienced with
data analysis. Additionally, a DSML provides the ability to
compose models, to formally verify model compositions by

enforcing constraints on the interfaces, and to improve the
overall usability of the models beyond with the help of code-
synthesis [25].

Developing a DSML with WebGME begins with the defi-
nition of a meta-model, which expresses the concepts in the
language as well as the relationships between those concepts.
Figure 3a shows a simplified version of the meta-model for our
“MOdel Composition and Analysis” (MOCA) DSML. MOCA
is primarily developed for modeling optimization and DoE
scenarios. The figure roughly translates to following set of
rules:

• A Library can contain one or more Component(s).
• A Component can have one or more Port(s), which

act as the interfaces between multiple instances of
Components. A Component can also contain instances
of other Components.

• A DataConnection can be used to connect a Port with
another Port, Objective or a DesignV ariable.

• A Port can either be an input port or output port
depending upon the value of its “Direction” attribute.

• The Component has a text attribute, “OutputFunction”,
that represents the explicit relation between the input and
output Ports contained by it.

• The Problem is the entity that represents an optimization
problem or a DoE problem, depending upon the value of
its “Type” attribute.

• The Problem can contain DesignV ariables, an
Objective and one or multiple instances of Components
(which one intends to optimize or analyze).

• The DesignV ariable and Objective can be connected
to the contained Component(s) via the interface provided
by Ports contained in them.

• The DesignV ariable has “Upper” and “Lower” at-
tributes that signify the upper and lower bounds of the
value that it can take in a Problem’s context.

In other words, the Library can contain one or more Compo-
nents which can be reused, by creating Problem instances with
different DesignVariables and Objectives. These Components
can be composed to form assemblies of Components and the
analysis such as Optimization or DoE can be specified over
them using Problems.

Problems and Components provide a separation-of-concerns
to the modeler between defining the model and using the
model. Component specifies the business logic that determines
how the model will behave.. Problem specifies how the under-
lying model, which is specified by an enclosed Component or
an assembly of Components, will be used for the analysis.
Problem captures information about the values to be assigned
to the Ports of a Component (or an assembly of Components)
during the optimization or DoE analysis.

1) Model definition: The behavior of a manufacturing
process is captured by a Component. For example, a user
can create a Component named “TurningProcess” with input
Ports “SpindleSpeed” and “FeedRate” and an output Port
“ProductionTime”. This Component itself contains the explicit
mathematical relationship between its inputs and outputs,



Fig. 2. Detailed architecture of the framework

saved as an attribute “OutputFunction”. The mathematical
relationship is stored in the form of a Python function. The
function takes process parameters as inputs and returns the
calculated production time. Since the Components can be
composed, a complex, analytical relation can be divided into
several Components.

In case where the user does not have such a mathematical
relationship, a data-driven approach can be used to deduce
it using regression analyses. For this, the modeling language
contains a concept called DataDrivenComponent. It can
have Ports similar to a Component, but it contains an addi-
tional modeling concept called LearningAlgorithm which
is used with data to learn the relationship between its inputs
and outputs. The LearningAlgorithm specifies the type of
regression analysis to be used, and also saves the learned
models, so that they can be later used for analysis purposes,
much like the aforementioned Components. The regression
algorithms are provided by Scikit-Learn, a machine-learning
library in Python.

2) Analysis specification: Once the user has the model of
the manufacturing process (derived either by data-driven tech-
niques or defined explicitly), it can be used for various kinds of
analyses by instantiating it within a Problem. A Problem can
be set up in a way that it represents an Optimization analysis or
a DoE analysis. In both the cases, A Problem specifies which
Port(s) of the underlying enclosed Component are treated as
design variables for that analysis scenario, by connecting them
to DesignVariable(s). DesignVariables also provide the range
in which the Ports are assigned values during the iterations
of the optimizer or DoE driver routine. The optimization and
DoE routines are part of OpenMDAO, which is an open-
source, component-based library written in Python for MDAO

analyses.
In the example discussed above, the user may use a Problem

(named “TurningProcessOpt” in the diagram) to specify an
optimization scenario of the “TurningProcess”. Users can
do this by associating “SpindleSpeed” and/or “FeedRate”
inputs with DesignVariable(s) and “ProductionTime” output
with Objective to be minimized. Figure 3b illustrates this by
showing the hierarchy of these modeling entities along with
their attributes.

MOCA modeling language also provides a modeling con-
cepts for specifying Discrete Event Simulation models. These
models can be used in predictive analyses to forecast the
overall throughput of the process, and are parameterized over
cycle time of the manufacturing process, mean time between
failures (MTBF), among others. The modeling language pro-
vides the modeling concepts Process and Buffer that can
be interconnected to model a production line. The code that
is generated by these models uses SimPy, a Python library for
modeling discrete-event simulation systems.

B. Code Generation and Execution

The actual analysis is performed by converting MOCA
models into executable code. The web-based nature and client-
server architecture of the WebGME tool entails that the
generated code can 1) reside on the server-side where the
WebGME tool is running as a service, or 2) on the client-side
where the browser acts as a front-end using which the user
interacts with the framework. Code generation is performed
as follows - First, the code generator traverses the domain-
specific model(s) and then populates the pre-defined code
templates. The result is a fully executable Python codebase
that uses the aforementioned libraries.



(a) Metamodel (b) Optimization of Turning Process Model
Fig. 3. A simplified version of MOCA metamodel and an example of a turning process model conforming to it

A Jupyter notebook is a web-based tool to publish readable
and executable documents [26]. The generated Python code
can be executed by using these Jupyter-notebook documents,
which are also generated. As mentioned earlier, the user
generates the Python code and can choose to either save it
on the server or client side. Jupyter notebook being based on
the client-server architecture, can leverage this to facilitate the
user by providing the execution environment.

If the generated code is saved on the server, the user uses an
instance of Jupyter notebook running on the WebGME server,
and this notebook can be accessed through the WebGME
client. In this case, the user does not need to have a Python
environment on their side. On the other hand, if the user
chooses to save the generated Python code on the client side,
all the generated artifacts (executable code along with the
Jupyter notebooks) can be downloaded and executed there.
In this case, the user needs to have the Python environment
and the necessary libraries installed locally.

Automated code-generation is a vital feature of the frame-
work, since it makes the models computable. Also, the use-
fulness of the DSML is increased significantly if it not only
represents the real-world entities in a domain-specific way,
but also allows the user to interact with the representations
without having to deal with their specific implementations.
For example, the code generation abstracts the implementation
details about how the optimization problems use the MDAO
tools, as well as how the data is represented in communication
standards like MTConnect. This makes the framework more
approachable from an end-user point-of-view.

C. Data Acquisition and Visualization

1) Data Acquisition: One of the major strengths of this
framework is its ability to integrate near real-time data-streams
with the development and use of the process models. Data
acquisition consists of two phases: (1) querying an MTConnect
agent to acquire the data, and (2) storing that acquired data in a
database. Once the data is in the database, the model-training

and/or model-execution processes can query the database to
obtain the data they need.

To specify how data is acquired, users create an instance of
the Database modeling concepts, which captures the informa-
tion about the URL of the MTConnect agent (which provides
the stream of CNC data) and the path to the database. When an
instance is created, a worker thread is spawned on the server,
which queries the MTConnect agent and logs the MTConnect
data in the database. The database used is InfluxDB, which
is one of the most popular databases for storing high-volume,
time-series data.

2) Visualization: Visualizations provide insights into un-
derlying physical phenomena. The visualization techniques
used in the framework can be applied to both results of the
analyses and raw MTConnect data stored in the database.
For visualizing the results of the DoE and DES analyses, the
generated code for the models uses a plotting library named
Bokeh which can render scatter plots and surface plots in the
Jupyter notebook environment. The code for visualizing the
analyses is generated along with the code for models, which
removes the burden of interacting with the plotting libraries
from the user. The user can also visualize the raw MTConnect
data using Grafana, which is a web-based tool for visualizing
the contents of an InfluxDB instance.

Interactive visualization provides additional exploratory ca-
pabilities. The Jupyter notebook provides means to interact
with plots, which allows the user to selectively plot subsets
of the results generated by the DoE analyses. Similarly,
Grafana provides interfaces to execute SQL-like queries on
the database, which fetches and plots the user-selected data.
It also provides built-in mathematical operators like SUM and
INTEGRAL, which can be used to perform data aggregation.

V. RELATED WORK

The field of manufacturing process analysis, despite being
well-studied, lacks a strong emphasis on generalizing analysis
methods. There have been efforts to design and implement an



infrastructure that can facilitate both researchers and industry
practitioners alike by allowing them to apply ad-hoc analy-
ses to manufacturing systems. Tolio et al. describe such an
integrated framework for the analysis and design of manufac-
turing systems [27]. Their virtual factory concept emphasizes
the harmonization of heterogeneous information through a
common data model, shared data storage and middleware to
mediate the use of analytical tools. Relative to that work, we
focus on efficiently assembling resources and tools to address
unforeseen problems in processes and operations.

Data-driven models are the new frontiers of predictive
modeling in manufacturing. Previous studies have shown
that real-time predictive analysis using MTConnect can im-
prove processes. Using MTConnect and statistical techniques,
Bengtsson et. al. determine the parameters to populate discrete
event simulation (DES) models, which are used to analyze the
underlying manufacturing process [28]. Similar research has
been done in sustainable manufacturing, where Shao et. al.
use DES models [29] and Park & Law et. al use regression
models [30], both of which are populated using MTConnect
data. These examples show the benefits of MTConnect-like
standards for data acquisition in the data-driven modeling
paradigm. The work presented in this paper is complementary
to the research mentioned above in analyzing manufacturing
processes, by providing the tools to expedite the process of
developing the predictive models.

VI. CONCLUSIONS

This paper presents an analytical framework for smart
manufacturing which allows users to perform ad-hoc analyses.
Users do this by creating domain-specific models that are used
to specify input sources, analysis algorithms, and visualiza-
tions. Code generation transforms these domain-specific mod-
els into the appropriate lower-level artifacts, such as Python
code. The generated code can then be used by regression
algorithms, optimizers and a visualizer. The framework helps
manufacturing experts concentrate on analyses rather than low-
level implementation details and tool integration. We believe
that frameworks such as ours are key enablers of the smart
manufacturing vision.
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J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.,” in ELPUB, pp. 87–90, 2016.

[27] T. Tolio, M. Sacco, W. Terkaj, and M. Urgo, “Virtual factory: An
integrated framework for manufacturing systems design and analysis,”
Procedia CIRP, vol. 7, pp. 25–30, 2013.

[28] N. Bengtsson, J. Michaloski, F. Proctor, G. Shao, and S. Venkatesh,
“Towards data driven sustainable machining combining mtconnect pro-
duction data and discrete event simulation,” in Proceedings of the



Proceedings of ASME 2010 International Manufacturing Science and
Engineering Conference, 2010.

[29] G. Shao, S.-J. Shin, and S. Jain, “Data analytics using simulation for
smart manufacturing,” in Proceedings of the 2014 Winter Simulation
Conference, pp. 2192–2203, IEEE Press, 2014.

[30] J. Park, K. H. Law, R. Bhinge, N. Biswas, A. Srinivasan, D. A. Dornfeld,
M. Helu, and S. Rachuri, “A generalized data-driven energy prediction
model with uncertainty for a milling machine tool using gaussian
process,” in ASME 2015 International Manufacturing Science and
Engineering Conference, pp. V002T05A010–V002T05A010, American
Society of Mechanical Engineers, 2015.


	Introduction
	Background
	Motivating example
	Framework
	The Domain-Specific Modeling Language
	Model definition
	Analysis specification

	Code Generation and Execution
	Data Acquisition and Visualization
	Data Acquisition
	Visualization


	Related work
	Conclusions
	References

