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Abstract—We recently developed a surface integral equation
method where the electric field and its normal derivative are
chosen as the boundary unknowns. After reviewing this formu-
lation, we present preliminary numerical calculations that show
good agreement with the known results. These calculations are
encouraging and invite the further development of the numerical
solution.

I. INTRODUCTION

We have recently formulated a frequency domain surface
integral equation method [1] that is applicable to penetrable
closed surface scatterers. The method has several unique
applications and advantages over the standard Stratton–Chu
formulation as discussed in [1]. In our formulation, we choose
the electric field (E-field) and its normal derivative as the
boundary unknowns. This choice leads to 12 scalar unknowns
on the surface of the scatterer; for each homogeneous region
we have three scalar unknowns associated with the E-field and
three scalar unknowns associated with its normal derivative.
Similar to a typical surface integral equation formulation, our
formulation is also based on the Green’s theorem (Green’s
second identity). This formulation leads to six scalar equa-
tions, and thus it must be supplemented with six additional
constraints in order to have the same number of equations
as unknowns. Three of these constraints come from the well-
known continuity condition of the E-field across an interface
and the other three come from the recently derived continuity
condition for the normal derivative of the E-field [1]–[3].

In this paper, we numerically solve the above discussed
equations for spherical scatterers and compare the results to
the well-known Mie series solution. We also comment on the
choice of the basis functions in the Galerkin’s method and its
effects on numerical convergence.

II. FORMULATION REVIEW

Consider a scatterer with permittivity 2
ε and permeability 2

µ.
The space surrounding the scatterer is assumed to be lossless
with permittivity 1

ε and permeability 1
µ, i.e., {1ε, 1

µ} ∈ R. If
we apply the Green’s second identity to the scatterer and the
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surrounding space, then, after setting the observation point on
the surface of the scatterer, we obtain:
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where
inc

E is the incident E-field, −
∫

denotes the Cauchy principal
value integral, Σ denotes the surface of the scatterer, ∂

∂N
denotes the normal derivative, G is the free-space Green’s
function, and S̃ is the observation point on Σ. In (1), the
overset digit indicates if the quantity is associated with the
scatterer or the surrounding space, e.g.,

2

E is the E-field just
inside the scatterer. In the Gaussian unit system, the continuity
condition for the E-field across an interface can be written as
[1]:
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and the continuity condition for its normal derivative as [1]:
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where r
µ =

2
µ/

1
µ, r
ε =

2
ε/

1
ε, N is the unit-normal pointing out

of the scatterer, Sα is the surface covariant basis [4], and ∇α
is the contravariant surface derivative [4]. Notice that (2) is
written in the Einstein summation convention where the Greek
indices range from 1 to 2. Substituting (2) into (1b) and using
Gauss’s theorem in two dimensions yields [1]:
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Equation (3) and (1a) form a set of six scalar integral equations
with six scalar unknowns, namely,

1

E and ∂
∂N

1

E. This is the
set of the integral equations that we numerically solve in the
next section.

III. NUMERICAL CALCULATIONS

We discretize the spherical scatterer with flat triangular
elements and construct a basis for the E-field and its normal
derivative. We use piecewise constant basis functions for each
component associated with the triangle surfaces. Thus, the
number of unknowns is six times the number of the triangular
elements. Furthermore, we use Galerkin’s method to discretize
the equations. In other words, the test and basis functions
are identical. It is worth noting that the basis functions do
not enforce any continuity conditions for the E-field or its
normal derivative along the surface. Hence, it is clear that
we cannot obtain an optimal convergence rate. Moreover,
we anticipate that the sharp wedges may also cause some
difficulties. Finding a better set of basis functions is an
interesting question for future research.

The integral equation set given by (3) and (1a) contains
strongly singular integrals. The gradient of the Green’s func-
tion has the strongest singularity and we decompose it into
the normal and surface derivative parts. With the help of
integration by parts, the latter one reduces to an integral over a
triangle surface and a closed integral over the triangle’s edges.
We evaluate these integrals using the standard singularity
extraction technique [5] in which the singular part is calculated
analytically and the remaining part is calculated numerically.

To assess the method, we compare the radar cross section
(RCS) of a sphere in free-space meshed by 940 flat triangular
patches with the Mie series solution. Fig. 1 shows the RCS
of a dielectric sphere with

1

kρ = 1, 2
ε = 4, and 2

µ = 1, where
ρ is the radius of the sphere and Fig. 2 shows the RCS of
a lossy sphere with

1

kρ = 4, 2
ε = −2 + i, and 2

µ = 1. From
the figures, we see that our solution agrees well with the Mie
series solution in both the dielectric case and the lossy case.
More specifically, the L2-norm relative error of the far-field
‖E‖2 integrated over a solid angle is 4.832× 10−3 for Fig. 1
and 9.360× 10−3 for Fig. 2.

IV. CONCLUSIONS

We numerically tested a recently formulated surface integral
equation method where the electric field and its normal deriva-
tive are chosen as the boundary unknowns. The preliminary
results presented here are in agreement with the Mie series
solution for both dielectric and lossy spheres. Furthermore,
the method seems to be viable for numerical computations
and may be further improved if we employ basis functions
that enforce the continuity conditions.
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Fig. 1. (Color online) Comparison of the dielectric sphere’s RCS as a function
of the scattering angle θ computed via the surface integral equation (SIE)
method with the Mie series solution.

0 30 60 90 120 150 180

 [deg]

-15

-10

-5

0

5

10

15

20

R
C

S
 [
d
B

]

SIE (E-plane)

SIE (H-plane)

Mie (E-plane)

Mie (H-plane)

Fig. 2. (Color online) Comparison of the lossy sphere’s RCS as a function
of the scattering angle θ computed via the surface integral equation (SIE)
method with the Mie series solution.
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