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Abstract— In this work we exploit the underlying dynamics
of a turning process captured in force measurements for online
flank wear estimation. We transform the sensor signals into
feature vectors using recurrence quantification analysis and
then estimate flank wear using a gradient boosted regression
model. The data is collected by conducting two sets of turning
experiments. The first set of data, which has 168 records, is used
for training the machine learning model. The second set of data,
which has 95 records, is used for testing the performance of
the flank wear estimation method. The results indicate that the
proposed method gives accurate flank wear estimates. The root
mean square of the flank wear estimation for the test data is
9.87× 10−5 mm.
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I. INTRODUCTION

Flank wear is a friction related degradation that occurs
on the surface of a cutting tool due to the relative motion
between the tool and the workpiece. Flank wear increases
with time and when the wear progresses beyond a threshold,
the tool is either replaced or reworked to ensure optimum
performance. Flank wear effects the finishing quality of
the workpiece. In the current practice the machine operator
replaces the cutting tool before it reaches the end of life
or manually examines the tool condition offline by stop-
page of the cutting process. In contrast, the sensor-assisted
tool monitoring methods examine the tool quality without
stopping the turning process. Flank wear estimation involves
estimating the width of flank wear by indirect measurements
from sensors to assess the state of the system. Online
flank wear estimation is one of the main required tasks in
automating turning processes. Adequate research efforts have
been devoted to develop effective online tool monitoring sys-
tems. Most approaches can be classified under physics-based
models (analytical models) or machine learning models.
Analytical models focus on the underlying laws of physics
such as diffusion, adhesion, and abrasion that govern the
tool wear in a cutting process. Early, important advancement
in analytical models are documented in publications by
Koren and Lenz [1], Koren [2] , and Usui et al.[3]. On
the other hand machine learning methods use direct and
indirect measurements of the process state to extract features
and build models and then predict a response variable using
the model. Historically, multilayer neural networks, adaptive
resonance theory networks, and Kohonen’s feature maps are
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most widely used machine learning models to address tool
wear monitoring problems. The application of multilayer
neural networks for tool wear monitoring was investigated by
Rangwala and Dornfeld [4], Emel [5], Elanayar et al. [6], and
Chryssolouris et al. [7]. Burke [8] studied the performance of
adaptive resonance networks for identification of flank wear
states (fresh or worn). Kamarthi et al. [9] investigated the
application of Kohonen’s feature maps for classification of
flank wear levels in turning process. In recent years prolif-
eration of data centric approaches, and advent of Internet
of Things (IOT) and superior data processing capabilities
have enabled wide scale implementation of machine learning
models for tool wear monitoring. Appendix A describes the
abbreviations used in this paper.

II. METHOD

An overview of the tool wear estimation method is shown
in Figure 1. The force measurements are collected along
three directions. Phase synchronization is used to ascertain
if the force measurements have captured the dynamics of
the process. Once confirmed, one of the force measurements
is converted into a recurrence plot (RP). From the RP, fea-
tures are extracted using recurrence quantification analysis
(RQA). The features are used as an input to a gradient
boosted regression (GBR) model to estimate tool wear. In
the following sections we will discuss in detail the tool wear
estimation methodology.

A. Sensor Data Selection

Most of the methods for tool wear estimation described
in literature use cutting force, temperature, vibration, or
acoustic emission (AE) measurements, or some combination
of these measurements. Force and vibration signals can
be measured in three machine-tool coordinate directions:
cutting, feed, and radial. Since machining forces in all three
coordinate directions are likely to be sensitive to tool wear,
though to a varying degree, forces in all three directions are
measured in this work. Figure 2 shows the three forces that
are generated during a turning operation. Vibration signals in
feed direction are more sensitive to flank wear than vibration
signals in radial and cutting directions. Studies[10], [11]
indicate that vibration in radial and cutting directions exhibit
similar characteristics with progressing flank wear. In this
work we use force measurements as the input data for flank
wear estimation.

In order to determine if the force measurements along all
the three machine-tool directions represent the state of the
turning process, we use the phase synchronization method.



Fig. 1. Overview of the flank wear estimation method

Fig. 2. Force measurements for turning operation

B. Phase-Synchronization of Sensor Signals and Recurrence
plot

A dynamical system like a turning process can be rep-
resented in the phase space. The points in the phase space
represent the states of the system using Takens algorithm
[12], the state of a system at time instance i can be specified
by m embedded dimensions and τ time delays. The dynam-
ics of a time series can be reconstructed in the phase space
−→x (i):

−→x (i) = (xi, xi+2τ , ...xi+(m−1)τ ) (1)

Studies indicate that often m = 1 and τ = 1 are sufficient
to represent the underlying dynamics of the system.

Once a pair of signals (time series) are converted into
phase vectors, we use a phase synchronization method to
study the underlying dynamics of sensor signals. A set of sig-
nals are considered phase synchronized when the difference
among their respective phases is bounded [13], the proba-
bility P (s) that the system returns to the ε-neighborhood of

a former point −→xi on the trajectory after s time interval is
computed as [13]:

P (s) =

∑N−s
i=1 Θ(ε− ‖−→x i −−→x i+s‖)

N − s
, (2)

where s = 1, 2, ...K ≤ N − 1, N is is the number of
measured points −→x i; ε is a closeness threshold distance; Θ
is the Heaviside function; ‖.‖ is a suitable norm in the phase
space under consideration. In this work K = 100 since the
time delay does not exceed 100 time steps.

The correlation between P1(s) and P2(s) for s =
1, 2, ...,K ≤ N − 1 reflects the phase synchronization
between the two signals originating from either the same
or different systems. It is possible to detect phase synchro-
nization by using the coincidence of the positions of the
maxima for the two signals. In this work, the correlation
of probability of recurrence (CPR), which is a correlation
coefficient, is used as a criterion to quantify the phase
synchronization. The CPR is defined as follows [13]:

CPR =

∑K
s=1(P1(s)− P̄1)(P2(s)− P̄2)√∑K

t=1(P1(t)− P̄1)2
∑K
t=1(P2(t)− P̄2)2

(3)

where P̄1 and P̄2 are the mean of P1(s) and P2(s) respec-
tively (s = 1, 2, . . . ,K). If the two signals are synchronized,
the CPR is close to positive or negative one; and if they are
not synchronized, the CPR is close to zero.

We compute CPR values between each pair of the three
force signals. If the three force signals represent the same
dynamical process, then the CPR values should be close to
1. In that case we can proceed to use any one of the force
measurements for flank wear estimation. We use the time
series of one of the force measurements and convert it into
a RP to visualize recurrence in phase space. A recurrence
plot represents all recurrences in the form of a binary matrix
R, where Ri,j = 1 if the state xj is in the neighborhood of
xi in phase space, otherwise Ri,j = 0. Ri,j is computed as
follows:

Ri,j(ε) = Θ(ε− (‖−→x i −−→x j‖)), i, j = 1, ..., n (4)

where −→x i, −→x j ∈ <m are points in the phase space. Once
the recurrence plot is obtained, relevant features are extracted
using Recurrence Quantification Analysis (RQA).

C. Feature Extraction using RQA

Zbilut and Webber [14] introduced RQA for measuring
quantitative information hidden in a RP. RQA performs
nonlinear data analysis to quantify the number of occurrences
and the duration of recurrence of a dynamical system rep-
resented by its state space vector. It is actually a measure
of information complexity. The main advantage of RQA is
that it can provide useful information even for nonlinear
and multivariate data. Marwan et al. [15] introduced new
measures of complexity to quantify RPs by looking at the
small-scale structures such as dots and lines. RPs mostly
contains single dots and lines which are vertical/horizontal



or parallel to the mean diagonal referred to as line of identity
(LOI). Since a RP matrix is symmetric, horizontal, and ver-
tical lines correspond to each other (the upper right triangle
of RP is equal to the lower left triangle of RP); only vertical
lines are considered for RQA. The lines capture a typical
behavior of the phase space trajectory. While the diagonal
lines represent some segments of the phase space trajectory
which run parallel for a period of time, the vertical lines
represent some segments which remain in the same phase
space region for some time duration. The RQA measures are
computed based on the recurrence point density, and diagonal
and vertical line structures in a RP. The RQA measures were
defined by Zbilut and Webber [14] and Marwan et al. [15]
and are summarized here for reference:

1) Recurrence rate (RR): RR is the density of recurrence
points in a RP. This coincides with the correlation sum. It is
the estimator of the correlation integral, which is the mean
probability that the states at two different times are close. It
is computed as:

RR =
1

N2

N∑
i,j=1

Ri,j (5)

where Ri,j is an element of the RP and N is the number of
points on the phase space trajectory.

2) Determinism (DET): DET is the fraction of recur-
rence points forming diagonal lines. Diagonal lines represent
epochs of similar time evolution of states of the process. DET
is computed as:

DET =

∑N
l=lmin

lP (l)∑N
i,j Ri,j

(6)

where P (l) is the histogram of the length l of the diagonal
lines, lmin is the minimum acceptable diagonal line length,
and N is the number of points on the phase space trajectory.

3) Laminarity (LAM): LAM is the percentage of recur-
rence points forming vertical lines. Vertical lines indicate
intermittency, which is the alternation of phases of apparently
periodic and chaotic dynamics. Laminarity is computed as:

LAM =

∑N
v=vmin

vp(v)∑N
v=1 vp(v)

(7)

where p(v) is the histogram of the lengths v of the vertical
lines, vminis the minimum acceptable vertical line length,
and N is the number of points on the phase space trajectory.

4) Mean diagonal line length (L): L is the mean pre-
diction time or the inverse of the divergence of the system
(K2-entropy). Mean of the diagonal line lengths is computed
as follows:

L =

∑N
l=lmin

lp(l)∑N
l=lmin

p(l)
(8)

where p(l) is the histogram of the length l of the diagonal
lines, lmin is the minimum acceptable diagonal line length,
and N is the number of points on the phase space trajectory.

5) Trapping Time (TT): TT measures the mean time that
the system is trapped in a particular state with very slow
change. Trapping time is computed as follows:

TT =

∑N
v=vmin

vp(v)∑N
v=vmin

p(v)
(9)

6) Longest diagonal line (Lmax): Lmax is the length of
the longest diagonal line:

Lmax = max{li|i = 1, 2, . . . , Nl} (10)

where Nl is number of diagonal lines in the recurrence plot.
7) Longest vertical line (Vmax): Vmax is the length of the

longest vertical line:

Vmax = max{vi|i = 1, 2, . . . , Nv} (11)

where vl is number of vertical lines in the RP.
8) Entropy (ENTR): ENTR is the Shannon entropy of

the probability distribution of the diagonal lengths. The
entropy of the line distribution measures the complexity of
the recurrence structure:

ENTR = −
N∑

l=lmin

p(l) ln(p(l)) (12)

where p(l) is the histogram of the length l of the diagonal
lines, lmin is the minimum acceptable diagonal line length,
and N is the number of points on the phase space trajectory.

The aforementioned RQA measures are used as input
features to build the machine learning model.

III. IMPLEMENTATION OF PROPOSED METHOD

The method shown in Figure 1 is applied to flank wear
estimation in a turning process. An extensive set of turning
process experiments were conducted to collect data. The
details of the workpiece, cutting inserts, sensors, and instru-
mentation are discussed in the following subsections.

1) Workpiece and Cutting Tools: AISI 6150, a chromium-
vanadium steel alloy, is chosen as the workpiece material for
the experiments. The cutting stock is in the form of cylinders
of 914 mm long and 177 mm diameter. The hardness of
the workpiece at a radius of 82.55 mm is 425 Bhn and at
the center of the cylinder is 360 Bhn. The workpiece is
cut with uncoated carbide grade K68 (C2) inserts. K68 is
a tough Tungsten-Cobalt (WC-Co) unalloyed grade carbide.
The geometric specifications of the insert and the tool holder
are SPG-422 and KSBR-164C respectively.

2) Sensors and Instrumentation: Experiments are con-
ducted on a 20 HP LeBlond 1610 heavy duty lathe. A
three-axis Kistler Z3392/b piezo-electric force dynamometer
is used to measure machining forces in cutting, feed, and
radial directions. This dynamometer is located underneath
the tool post. Force signals are passed through an appropriate
set of amplifiers and data acquisition systems to collect the
digitized data.



3) Data Collection: Cutting is started with a fresh insert
edge. Every 60 seconds force measurements are sampled on-
line; then flank wear is measured off-line using a toolmaker’s
microscope. The data collection at 60 second intervals is
carried out until the cutting edge develops an average flank
width of at least 0.45 mm, at which point the cutting edge is
considered worn out. This limit is chosen according to the
criteria recommended by the ISO to define the effective tool
life for carbide tools (ISO 3685:1993) [16]. The experiments
have shown that an insert edge usually runs for about 10 to 14
minutes before it is considered worn out. The sampling rates
for digitization of sensor signals are determined by observing
the power spectra of those signals from the preliminary
experiments. Force signals are digitized with a sampling
frequency of 3 kHz. All the signals are sampled for a length
of 4096 points, but only the first 1024 points are considered
for computation and analysis purposes.

4) Experimental Design: In this work, two sets of exper-
iments, referred to as Set 1 and Set 2 are conducted. In all
the experiments the depth of cut is kept constant at 1.27
mm; only the cutting speed and feed are varied. Several
preliminary experiments were conducted to decide on the
range of operating conditions. It is observed that when the
cutting speeds are between 22.86 and 53.34 smpm, there is
no formation of build-up edge, no chatter, and no formation
of crater wear. Beyond 53.34 smpm, cutting tools start to
develop crater wear. When cutting speeds exceeded 83.82
smpm, the tool tip catastrophically begins to deform. Based
on these observations, the cutting speeds between 30.48
smpm and 67.06 smpm are used for experimentation.

The Set 1 experiments are conducted according to a full-
factorial design with three levels of speed (30.48, 39.62,
48.768 smpm) and five levels of feed (0.16256, 0.22352,
0.28448, 0.34544, 0.39116 mmpr). Accordingly, each one of
the 15 (= 3 × 5) tools is used at exactly one combination
of speed and feed. The Set 2 experiments are conducted
according to a full-factorial design with three levels of speed
(30.48, 39.62, 48.768 smpm) and three levels of feed (0.2235,
0.2845, 0.3454 mmpr). So, each one of the 9 (= 3×3) tools is
used at one combination of speed and feed. It should be noted
that the operating conditions used in Set 2 experiments are a
subset of the operating conditions used in Set 1 experiments.
The operating conditions in both Set 1 and Set 2 experiments
cause mostly flank wear on the cutting tools. Set 1 has 168
instances collected over 15 cutting tools and Set 2 has 95
instances collected over 9 cutting tools.

5) Machine Learning Model: We investigated Multilayer
Neural Network and Gradient Boosted Regression (GBR)
as a learning model for estimating flank wear. We found
that GBR outperformed multilayer neural networks in key
parameters concerned with computation time and estimation
error. Hence we used GBR as the machine learning model.
Set 1 (training set) is used for training a GBR model and
Set 2 is used for validation (test set). The results of the
implementation are discussed in the next section.

IV. RESULTS
Each of the 168 instances from Set 1 generated three force

measurements. The force signals were transformed from time
domain into phase domain using Equation (1) with m = 1
and τ = 1. Phase synchronization defined in Equation (2)
was applied to the transformed phase space vectors and
the CPR values were computed for pairs of force signal
components. We found that all the values of CPR were
close to 1 indicating that any of the three force signals
can effectively represent the system state. We use force in
main cutting direction in the present work. The cutting force
signals in phase space are converted to recurrence plots using
Equation (4). A set of features are computed from the RPs
using Equations (5-12). We end up with 168 feature vectors
that represent the input vectors for the machine learning
model. The aforementioned procedure was also followed for
the instances from Set 2 which yielded 95 feature vectors.
The root mean squared error (RMSE) of Set 2 (test data)
estimation is 0.0497 mm. Figure 3 shows the actual (target)
and predicted values of flank wear for all nine experiments.
Figure 4a shows the progression of actual and predicted flank
wear values for the first test tool and Figure 4b shows the
box plot of RMSE values for all nine test tools in Set 2.

Fig. 3. Actual vs. predicted values for all nine experiments in Set 2 (test
data)

Fig. 4. (a) Progression of actual and predicted flank wear values for the
first test tool in Set 2, (b) box plot of root mean squared error for all the
nine test tools in Set 2

V. CONCLUSIONS
The cutting force measurements in a turning process

contain information about gradually progressing flank wear.



This information can be successfully extracted and used
for online flank wear estimation. The proposed flank wear
estimation method provides accurate flank wear estimates
within the range of operating conditions that were used
during the training data generation. The average RMSE of
9 test tools is 0.0497 mm, which is about 11% deviation
from the average flank wear level (0.45 mm) for replacing a
cutting tool. This low estimation error makes the proposed
estimation method very attractive for real-world applications.
In future work we consider the option of using vibration
signals and combination of force and vibration signals to
further improve the estimation accuracy. In addition we will
investigate other machine learning algorithms and feature
representation of the measured signals in order to compare
the performance of RQA based features with other methods.

APPENDIX
A. AbbreviAbbreviations

• Bhn = Brinell hardness
• CPR = Correlation of probability of recurrence
• GBR = Gradient boosted regression
• mm = Millimeter
• mmpr = Millimeter per revolution
• RMSE = Root mean squared error
• RP = Recurrence plot
• RQA = Recurrence quantification analysis
• smpm = Surface meters per minute
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