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Abstract: Just as yeast, flour, water, and salt are to bread, algorithms, data structures, operating 
systems, database design, compiler design, and programming languages were computer science 
(CS) education’s core ingredients in past years. Then, universities led the computer technology 
revolution by producing the inventors for Yahoo, Google, Facebook, and others. The overarching 
question that we pose in this roundtable is: Is university computer science education leading 
technology forward or are commercial technology demands leaving university computer science 
programs “in the dust”? [J. Voas and P. Laplante, “Is Software Engineering Driving Software?”  
IEEE Software, November, 2016.] 

There are two ways to think about this issue: is commercial technology forcing computer science 
curriculums to adapt, or are curriculums so rigid that they ignore various trends? The trend 
toward massive quantities of false information appears to be a new norm. Computer science 
graduates were once prized for their ability to generate accurate, actionable information. In a 
time where misinformation and disinformation run rampant, where do today’s core CS 
educational ingredients fit in? 

Are we producing computer science graduates who understand the core principles that fuel 
technologies such as IoT, cloud, blockchain, mobile apps, data analytics, big data, etc., and 
phenomena such as “fake news”? And even further, do computer science faculty understand 
the complexities of the security and privacy challenges associated with these trends? Or rather 
are our educators still teaching the same computer science 101 classes they were teaching 40 
years ago with little refresh? 

We surveyed six of our profession’s best senior computer science educators: 

MICHAEL: Michael Lewis (College of William and Mary) rmlewi@wm.edu  

KEITH: Keith Miller (U. of Missouri – St. Louis) millerkei@umsl.edu 

SHIUHPYNG: Shiuhpyng Shieh (National Chao Tung U.) ssp@cw.nctu.edu.tw 

PHIL: Phillip A Laplante (Penn State U.) plaplante@psu.edu 

JON: Jon George Rokne (U. of Calgary) rokne@ucalgary.ca 

JEFF: Jeff Offutt (George Mason U.) offutt@gmu.edu 

 

We felt their opinions on this virtual roundtable topic would be useful to Computer’s readership 
to address 9 questions: 
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1. Can computer science education play a role with daily occurrences of misinformation or 
disinformation provided to the public? Are computer science curriculums adapting at the 
speed of change that the technology and media sectors experience? 

SHIUHPYNG: Misinformation can be distributed in any form of media, and the Internet is the 
cheapest and fastest way to spread them out. The misleading information can be controlled by 
in-depth analysis using natural language processing or rule-based filtering. With these 
techniques, some inappropriate contents for children have been blocked or removed by 
Facebook and Google to provide a healthy environment.  However, computer science has been 
expanding too quickly for the curriculums.  

JON: The daily occurrence of misinformation and disinformation experienced today is to a large 
extent a social problem made possible by the introduction of electronic communications over 
the Internet, a computer science artifact. 

Since the proliferation of questionable information is a social phenomenon, it is not a problem 
that can be solved by computer science alone. Nonetheless, computer science as a field may, 
through the use artificial intelligence techniques, be able to provide some relief from the 
proliferation of false information by flagging incorrect information. Robustness was the main 
consideration when electronic communications systems that evolved into the Internet were 
designed. Hence, we now have a communications network where there is only limited control 
over the originator of a statement (no matter how egregious) to be accountable for its veracity. 

MICHAEL: CS education does not have a specific role dealing with daily occurrences of 
misinformation beyond being part of a college curriculum that should instill its students with a 
healthy skepticism and the understanding that what they are hearing at any particular moment 
is likely not the whole truth. 

Proposals for a role for computer science in dealing with misinformation and disinformation are 
alarming.  Attempts to algorithmically police the Internet and purge it of objectionable content 
would likely become an enforcement of the biases and tastes of those doing the policing. CS 
curricula are not changing as fast as the technology and media sectors.  Structurally it would be 
difficult for them to do so.   

KEITH: I think computer science education CAN play a role in sensitizing students to their 
professional responsibilities with respect to information, misinformation, and disinformation. I 
also think computer science education SHOULD play such a role. However, I am not particularly 
confident that computer science education IS doing a great job of this at the moment. But when 
we examine the curricula, we do see some progress in including more professional ethics and 
social issues.  

PHIL: I think CS education can play a role in making the public aware of privacy and security 
vulnerabilities and in diffusing misinformation, and I think, for the most part they are doing that.  
I think the greatest area of disinformation is in AI where we often hear in the mainstream press 
about self-aware computers and robots rebelling against their masters and taking over the 



world, etc. I have heard even knowledgeable CS graduates spread this fear. I think the removal 
of certain topics from the core curriculum may have created a class of computer science 
graduates who are excellent tool users but don’t fully understand what is happening under the 
covers. This lack of understanding in turn, leads to a fundamental ignorance of certain realities – 
what AI really is, security awareness and so on, leading to propagation of this disinformation.  

JEFF: Bear in mind that people have been creating disinformation for thousands of years. 
American style racism is a great example. It convinced poor white people that black people 
wanted to escape slavery to take their jobs. That misinformation campaign took half a century 
to disseminate, but networks and social media allow incorrect information to propagate to more 
people faster. So computer science has to accept some responsibility for enabling the massive 
spread of incorrect information. But it’s not a software problem and I doubt if it has a software 
solution. 

Maybe the solution is to teach critical thinking and analytical skills. How do you and I know 
which information is valid and which is false?  Are we, as CS educators, adapting? Not so well. CS 
education is very conservative, and currently our biggest problem is keeping up with the surge 
of new students that has been ballooning our enrollments for the last five years.  

2. Computer science and mathematics have played an important role in security, privacy, 
secrecy, and surveillance, through techniques such as encryption and obfuscation. Is this 
healthy or do they feed suspicion when society has much mistrust of media and anything they 
read, even when transparency is claimed?  

MICHAEL: I believe people recognize that the main problem in security, privacy, etc., is with 
humans, and is not inherent to computer science and mathematics.  The tech sector is not yet 
viewed with the sort of suspicion sometimes aimed, say, at the chemical industry or big 
agriculture.  Nor are the tech sectors’ products viewed with suspicion---imagine how people 
react to smart watches as opposed to pesticides. This is a bit surprising given the numerous 
massive privacy and security breaches that have been in the news.  What magnitude of disaster 
would it take to turn people against algorithms and computers? 

KEITH: My general sense is that most people think of us as “geeks,” a cross between technicians 
and high priests of technology. However, events such as the Volkswagen diesel cheat 
(Oldenkamp, Rik, Rosalie van Zelm, and Mark AJ Huijbregts. "Valuing the human health damage 
caused by the fraud of Volkswagen." Environmental Pollution 212 (2016): 121-127.) may make 
the public more suspicious of the people behind the machines. 

JEFF: I loved the book 1984 when I read it in the mid-1970s, but it terrified me. Go ask 100 
young, educated, Chinese people how well the “great firewall” works and whether they use a 
VPN. I guarantee that every single one will say “what’s a VPN?” because they know if they admit 
to using it, then they will have an unpleasant conversation with the local security forces. But 
they know what VPNs are, they use VPNs, and they view the great Chinese firewall as a porous 
fishing net. The dystopian society described in 1984 is not possible because the tools the 
politicians use to keep us uninformed are the same tools we can use to learn more than our 
parents ever imagined. 



SHIUHPYNG: People do not trust beyond their understanding.  System security cannot rely on 
opaque design. For instance, the cryptosystem used in the 2G system was found vulnerable 
after its design was disclosed. To cope, the design of a durable security mechanism should be 
transparent and fight against various attacks. However, security experts should take the 
responsibility to raise security awareness and educate the public. 

PHIL: I think when discussions about security, privacy, etc. are not grounded in mathematical 
theory then they are not very meaningful. But when discussions contain the requisite 
mathematical theory, then this may create mistrust in those who do not understand the theory 
or who dismiss it out of hand, especially if the theory refutes their position. But theory can be 
used both to inform and as a weapon. By that I mean one can sometimes massage assumptions 
to make the theory bear out a certain result; then you unduly claim victory because you have 
theory on your side. 

JON: Security, privacy, secrecy and surveillance are topics that overlap. These terms are also not 
precisely defined. In computer science and mathematics contexts they tend to be discussed as 
separate topics. 

Wikipedia offers: 

“Security is the degree of resistance to, or protection from, harm. It applies to any vulnerable 
and/or valuable asset, such as a person, dwelling, community, item, nation, or organization.” 

In this definition, resistance and protection from harm can often be accomplished using 
electronic protection devices and communications (connections to security companies). 
However, communications technologies have enabled widespread installation of surveillance 
equipment connected to data collection. For privacy and security, the use of encryption and 
obfuscation for computer communications has become a necessity. Communications that 
cannot be trusted creates a society where everything is suspect. Claims of transparency are met 
with the same suspicion.  

In the past, publication in an official medium such as a newspaper was generally held to be 
correct. Publication of false information had negative consequences for originator and the 
publisher.  These consequences generally do not exist for on-line media. Sadly, the generalized 
mistrust of electronic media carries over to traditional respected media. Gone are the days of “If 
you see it in The Sun it’s so” (New York Sun, September 1897). 

3. Sophisticated algorithms can generate “fake” paper submissions that get accepted to 
conferences. At the same time, news organizations have begun using AI systems to generate 
articles on routine topics such as sports scores. Together, these developments would suggest 
that more advanced algorithms can also generate ‘believable’ false information. Is this 
premise true? And if so, do you know if it is in use? 

KEITH: Clearly, many supposedly “advanced” algorithms are already generating false 
information, some of it notoriously obnoxious. For example, see (Caliskan, Aylin, Joanna J. 
Bryson, and Arvind Narayanan. "Semantics derived automatically from language corpora contain 
human-like biases." Science 356.6334 (2017): 183-186.)  A 2016 paper described several bad 



acting social bots: (Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro 
Flammini. 2016. The rise of social bots. Commun. ACM 59, 7 (June 2016), 96-104.) 

SHIUHPYNG: Although current AI techniques can generate much believable information, the 
fake information is still detectable by experts or people with high awareness. However, with the 
rapid evolution of AI, machines are likely to have ability to deceive humanity in the future.  

PHIL: The fake papers that have notoriously been accepted to conferences were clearly 
nonsense upon even a cursory review. These papers were accepted because no review was 
done by the conference organizers.  I think in a few years we will reach a point where a 
sophisticated program could generate a research paper which could pass a cursory review. But, I 
think we are a long way off whereby a research paper could be generated that could only be 
proven to be fake by a careful, expert review. 

JON: The refereeing process is inexact and dependent on subjective evaluations of papers. 
Excellent papers and results are sometimes rejected and sometimes substandard work is 
accepted. If a paper generated by a sophisticated computer program is refereed in a 
substandard refereeing process, it may well be accepted by some publication. 

JEFF: I believe that if the reviewers, conference program chairs, and journal editors apply due 
diligence and critical thinking, they should be able to identify fake papers. However, there is a 
movement towards anonymizing the authors of paper submissions. While this has some very 
positive benefits, it just struck me that it could make identifying fake papers more difficult. 

I’m personally more worried about plagiarism, guest authors, ghost authors, and made-up data. 
I think this is far more likely. We have tools that detect plagiarism by comparing submitted 
papers with thousands of published papers. If an algorithm can generate a fake paper, couldn’t 
another algorithm differentiate human-written papers from computer-written papers? 

MICHAEL: Humans can generate believable false information, so it’s not clear what is to be 
gained by automation, unless one wants to rewrite history on a grand scale. The more 
pernicious influence of algorithms lies in web search engines.  The web has made us lazier and 
we’re inclined to accept as authoritative the first two or three hits returned in a web search.   

The other big impact of computers on believable false information is that they can disseminate 
it to self-selected audiences who are already inclined to believe it. 

 

4. Have 3rd party components affected how software architecture and design is taught? Since 3rd 
party components are black boxes, there are usually assumptions that do not hold true. Are 
composability and interoperability taught as core principles in computer science education? 
Or are they considered topics belonging more to systems engineering and not computer 
science? 

JON: Third party components and programs are used in most computer science courses, at 
minimum to compute examples. One rough test for third party software is to compute a few 



examples for which solutions are known. Failure to compute reasonable solutions to these 
examples would indicate that the software was not robust. 

Composability and interoperability are generally not taught as separate subjects. When taught 
separately they are usually part of a systems engineering curriculum. 

SHIUHPYNG: For cost consideration, developers usually do not examine the 3rd party software 
components.  OpenSSL, a commonly used library for securing communication, was found 
vulnerable.  The Heartbleed bug in OpenSSL affected thousands of products. As we can see, the 
cost of security problems can be unaffordable. The composability and interoperability issues 
have been covered more or less in computer science courses such as computer security and 
software engineering. 

PHIL: I don’t see anything specific in CS curricula about third party (black box) components. But 
when the core discrete math topics are taught, these can be used to teach the theory of 
interoperability, composability, testability and so on. 

The availability of industrial strength open source software changed the way I taught almost 20 
years ago. For example, in testing courses you can test real software from open source 
repositories. Open source software should be used for “dissection” to study software 
architectural and design patterns, and for studying ilities such as usability, maintainability, 
understandability, to name a few. 

MICHAEL: Composability and interoperability are at the very least implicit in how we teach 
students to design and program.  Whether they are enunciated explicitly is another matter---I 
suspect many computer science faculty lack formal training in software engineering and system 
architecting.   

KEITH: I think many good programs teach their students to be careful about their assumptions 
when using software as a black box. And furthermore, good programs encourage students to 
document their own assumptions and limitations when writing software used by others. I think 
that the availability of software packages (for example, for graphics and for web page 
formatting) has changed how software development is practiced and taught. We may not 
emphasize interoperability as much as we should, but we do cover it. 

5. The demands for employee candidates with hands-on experience grows. Some more senior 
computer science faculty have had little hands-on experience for decades.  Has the role of 
graduate students as instructors impacted computer science education in any way?  

PHIL: The best football coaches often haven’t played at a high level (college or professional) in 
many years. But that doesn’t matter, there is so much to be learned from the knowledge of the 
coach. I haven’t written industrial-strength software in more than 25 years. But I can still teach 
my students from my past experience, from what I have learned since, and in relating the 
research literature to the real world.  Still, there is tremendous value in fresh, real-world 
experience, and every time I can, I seek to get that through my consulting and sabbaticals.  



KEITH: It is important that many senior computer science faculty haven’t programmed anything 
for decades. It isn’t necessarily crippling when teaching some of the curriculum, but it does 
erode students’ confidence if a professor clearly doesn’t know what he or she is talking about. 
Having graduate students as instructors may help that situation, but the graduate student may 
not have other intellectual tools important for teaching.  The same is true for adjuncts who have 
recent experience: they may have insights that can be particularly useful for students, but they 
also may need some coaching to be effective teachers. 

SHIUHPYNG: It is important to balance the roles of theory and practice. Many software and 
network security problems arise due to inappropriate implementation rather than theoretical 
issues.  Teaching assistants usually have more hands-on experience about system cracking, bug 
patching, and vulnerability discovery. These ethical hackers bring vivid materials into classes.  In 
this case, graduate students as the instructors or teaching assistants will play a critical role in 
instructing software development and leading the lab work.   

MICHAEL: I tend to think that graduate students as instructors are not that different from 
faculty.  Departmental practice and the structure of courses tend to dictate what goes on in the 
classroom, particularly in the lower-level classes that graduate students tend to teach. 

JON: The role of graduate students as instructors does not impact computer science education 
to a large extent assuming the students are capable instructors. Graduate students work with 
their professors and their conversations form ongoing tutorials. Teaching is the practice of 
learning and when graduate students instruct the carry forwards the wisdom of their 
supervisors. 

There are several well-known factors inhibiting so-called real-world experiences for computer 
science students. For example: the rate of change coupled with the rapidity of redundance and 
the fact that the change is driven by ever-changing needs. To respond to this requirement many 
universities have put programs in place in that provide internship experiences for students.  

It is difficult to provide hand-on experience within academia since computer science faculties 
may not have much experience of the world outside academia. Supervising internship students 
mitigates this problem to some extent. 

JEFF: It is unfortunately true that many CS faculty have little or no experience or understanding 
for how software development actually works. This is reflected in the lack of teamwork in 
courses, overly heavy emphasis on theory over practice, and a one-and-done emphasis on 
grading instead of a learn-and-revise emphasis on learning. 

Most graduate teaching assistants are PhD students who primarily focus on their research. 
Teaching is viewed as unfortunate grunt-work necessary to pay the bills. I don’t see many GTAs 
encouraging more hands-on experience for their students. 

Our undergraduate concentration in software engineering at George Mason requires students 
to have an internship at a software company. In addition, we strongly encourage our students to 
get involved with open-source projects to get demonstrable hands-on experience.  



We also are increasingly using undergraduate teaching assistants to apply peer instruction to 
improve student learning. Among other benefits, our UTAs often encourage their younger 
colleagues to get hands-on experience. Thus, I find that our undergraduate peer instructors 
encourage more hands-on experience than faculty or graduate students. 

6. In past years, issues such as memory allocation and using as few bytes as possible were 
important parts of computer science education. Then, “twiddling bits” was a necessity. But 
today, with access to clouds, and seemingly infinite memory and storage, bytes might be 
rarely mentioned. Do you think today’s computer science students understand such 
foundations given that today time and space appear infinite?  Or, does the sudden 
proliferation of tiny IoT devices suggest a new focus on managing scarce computing 
resources? What computing limitations do students believe in today, if any? 

MICHAEL: In my experience, today’s CS students have a much more difficult time understanding 
the need for resource management than in the past.  This is odd, too, since they have vastly 
greater personal experience with software and systems behaving badly. 

Perhaps, in time, experience with programming the Internet of Things will change their 
perspective. 

The power of modern processors and the availability of large amounts of memory and storage 
definitely is the main reason students are not mindful of resource management.  The use of 
kinder, gentler languages such as Python in our introductory programming courses also 
abstracts away concerns about bits and bytes.  We’ve noticed in recent years that computer 
organization is the core course most difficult for students to “get”. 

Cellphones are also changing students’ abstraction of computers.   

My colleagues and I have noticed that a surprising number of beginning students do not have a 
firm understanding of files and how storage is organized, and how data is written to disk.  We 
attribute this to the fact that their most frequently used computing device, a cellphone, hides 
file structure and app data from the user. 

PHIL: My experience is that most CS graduates are not exposed to these kinds of problems. But, 
yes with the increase of tiny and low power devices in small embedded environments and in the 
Internet of Things, the problems associated with the very little memory and simple processors 
are relevant again. In some cases, researchers and practitioners seem to be rediscovering old 
solutions.  For example, much of the work on “low-power software engineering” is simply a 
return to the compiler optimizations we worked on 30 years ago. And “new” solutions in 
operating systems that can operate on a small footprint look like the real-time kernels I built to 
run in a 64K memory space for the Space Shuttle 30 years ago. So, many of the lessons we 
learned back then are becoming relevant again. 

SHIUHPYNG: Nowadays, the significant amount of computer resources lower the barrier of 
programming, and consequently the memory and storage are no longer the main concerns for 
many program developers. However, computing tweak techniques are still very important in 
some specific, new applications, e.g., IoT, big data, cloud computing, and GPU-acceleration. IoT 



evolves from embedded systems and wireless sensor networks where resource management 
remains a critical issue and will not fade away. The modern computing architecture is a layered 
structure in which some layers manage hardware resources; some implement functions; some 
focus on user experience.  Programming in each layer needs to deal with different limitations.  

JON: I do not believe that students are so naïve as to believe that resources are available 
without limit.  Students understand that real life problems still require consideration of speed 
and memory usage since real problems often deal with large volumes of data that require 
significant computing power. They are fully cognizant of limitations that will occur in their 
professional capacities when required to solve real world problems. 

The sudden proliferation of IoT devices creates a number of problems, not the least of which are 
security and privacy. In the general case where the IoT devices do not have any degree of local 
intelligence, there will be a significant new demand on computing resources and the managing 
of these will definitely require new and innovative solutions. 

KEITH: I find it hard to generalize. The many students interested in programming in the small 
(for example, using Rasberry Pi’s or smart phones) are often acutely aware of size limitations. 
But most undergraduates are far less aware of such concerns, especially when professors tend 
to give the students relatively small projects. So it depends on what systems and projects the 
student has worked on by the time they get to me. If you pushed me, I’d say that students today 
are less likely to think about memory than students were in the 1980s, but students today learn 
quick when they bump into limits. 

JEFF: I’m not sure if bit twiddling is very relevant today. Frankly, I have some issues with modern 
undergraduate CS education. Why do we educate thousands of students in Computer Science 
when most become Software Engineers? My daughter took two years of Physics and Math to 
become a Civil Engineer, and the rest of her courses were engineering. 

Don’t get me wrong. Bit twiddling is probably important knowledge for computer scientists. But 
the world needs orders of magnitude more software engineers, database engineers, network 
engineers, security engineers, and robotics engineers than it needs computer scientists. Why do 
so many students drop out of computer science? I believe one reason is that they really want to 
learn how to engineer mobile apps, not twiddle bits; they want to learn how to organize data 
with XML, not automata theory; they want to solve problems, not design elegant algorithms. I 
believe we are on the cusp of a revolution in how we educate students. Some of my colleagues 
fear that CS will lose, but math didn’t lose when it spawned the natural sciences, and physics 
didn’t lose when it spawned engineering. Let mathematicians be mathematicians, let scientists 
be scientists, and let software engineers be software engineers.  

 

7. Outside of some specialized fields, such as aerospace, software development in industry has 
given a priority to product novelty and time-to-market, rather than reliability and safety. Yet 
the inclusion of software in nearly every product, down to kitchen faucets, suggests the 
potential for major societal risks without better software. Are students being prepared for 
developing high assurance software and systems? 



SHIUHPYNG: Apparently, students are not well prepared for this. This is mainly due to the fact 
that high assurance stands for high cost. Most commercial products do not need to meet the 
requirement of high assurance; time to the market instead often has the priority.   Poor 
software quality is a direct result of expense consideration. However, poor-quality software 
draws attackers’ attention. The cost for fixing vulnerabilities is often higher than expected. 
Complete and comprehensive testing is necessary for developing high assurance software and 
systems. 

KEITH: I don’t think that most undergraduate students are well prepared for working on high 
assurance systems. There is not, in my opinion, enough emphasis on testing or quality 
assurance. There is also, again in my humble opinion, not enough emphasis on professional 
responsibility and accountability. 

JEFF: Although testing is not the only topic that will help develop high quality software, it is a 
reasonable measure of how universities value reliability and quality in software. Most CS 
departments don’t even offer an undergraduate testing course. Almost no CS degrees require a 
software testing course. Testing is usually taught as a two-week topic in a general software 
engineering overview course.  

A time-to-market priority is sometimes the right business priority, although it’s probably the 
best priority less often than managers think. How much testing is needed in a particular project 
depends on the software and is actually quite difficult to assess. Although we have some 
excellent studies that show the cost of debugging and fixing failures after deployment is 
significantly more than the cost before deployment (Research Triangle Institute (RTI), “The 
Economic Impacts of Inadequate Infrastructure for Software Testing,” NIST Technical Report 
7007.011, Gregory Tassey, editor, May 2002.), it varies quite a bit.  Most universities don’t teach 
this kind of software economics analysis. 

MICHAEL: There needs to be a much greater emphasis placed on software quality in the 
undergraduate curriculum.  When I think of some of the students I have known, the thought of a 
computer-controlled throttle in my car is terrifying. 

It’s partly the nature of the beast.  Students are frequently struggling just to get something that 
works.  Projects are often of a nature so that students don’t have to live with and correct the 
consequences of bugs or poor design.  Also, the emphasis on high assurance software needs to 
be made throughout the curriculum, so that students don’t pick up bad habits, but faculty are 
not always aware of what is considered best practice in software development.   

PHIL: I think every science and engineering program should have some kind of systems thinking 
course in the curriculum that addresses these kinds of problems. If not, then those programs are 
doing their students and society a disservice.  

Most complex and even non-complex systems are or can be wirelessly connected, creating 
unforeseen interactions of non-critical systems with critical systems. And we already discussed 
the need for a mathematical understanding of system composability, interoperability, testability 
and so on. There are privacy risks as well, and these should be taught in every engineering and 
science program.  



JON: This is an important question that raises concerns for governments, universities, commerce 
and individuals. Computer science education focuses on efficient algorithms and 
implementations and generally does not provide courses on reliability and safety. Part of the 
reason for this is that there is much to be taught and learned when taking up fundamental 
computer science concepts and programming techniques. Nowadays the proliferation of new 
products with embedded computing capabilities in addition to the trend towards connecting 
legacy devices to the network there is definitely a need to include curriculum materials that 
emphasizes reliability and high assurance software. The question arises as to what can be 
omitted in the classical computer science curriculum and who will be able to teach the new 
curriculum since few graduate programs are researching questions relating to reliability and 
safety.  

8. Is it time for the establishment of departments of software engineering, separate from 
computer science, to accommodate industrial needs for software engineers?  Some 
universities have already begun this process.  Do you see it accelerating?  

JEFF: YES YES YES! To me it’s inevitable. Computer science is fissioning into computing fields 
such as software engineering, information systems, security, etc. I don’t think the structure of 
computing has fully emerged yet, but I am 100% certain that in 50 years, CS (and math) will be 
at the core of several related but distinct computing fields, exactly as physics (and math) is 
currently at the core of several related but distinct engineering fields. 

KEITH: I think it is accelerating, and I think it is a good development. This is not a new idea. Way 
back in 1999, David Parnas wrote a well-cited paper called "Software engineering programs are 
not computer science programs." (Parnas, David Lorge.  IEEE software 16.6 (1999): 19-30.)   

SHIUHPYNG: Software engineering is considered one of the core disciplines in computer 
science.  As computer science grows quickly, many new areas evolve in recent years.  If the 
software industry keeps its current fast-growing trend, it won’t be a surprise to see many 
software engineering departments established to meet the market demand.    

PHIL: I think it is time, but I do not know of many universities that have taken or are taking this 
step. I don’t think it is going to happen at a fast pace because there would be lots of internal, 
university politics that get in the way, as well as the challenges involved in creating a new 
department. This is where I’d like to see some big corporations step up and fund such 
departments. 

MICHAEL: I’m not convinced a separate department of software engineering is required for 
pedagogical reasons.  The IEEE software engineering Body of Knowledge, for instance, looks like 
a CS degree with elective that reflect a specialization in software engineering. 

The trend to having separate departments of software engineering is much more common 
outside the US.  In the US, the more common practice seems to be for CS departments to offer 
undergraduate and MS degrees or concentrations in software engineering.  

JON: There many departments of computer science and software engineering with a great 
variety of names. “Electrical and Computer Engineering”, “Electrical, Computer and Software 



Engineering”, “Software Engineering”, “Computer Science” are some of the more common 
names. What I see is new variations of department names and expertise rather than many 
departments named “Software Engineering”. 

 

9. Past computer science departments prided themselves on teaching more theory (e.g., 
Shannon’s information theory) than practice. Is this still true?  

JON: I do not think this it possible for this to still be true.  Most computer science departments 
now aim to teach a reasonable mix of courses that have foundational content (theoretical 
knowledge) combined with courses that have current relevance containing applied techniques 
and programming tools.  

PHIL: I think that less theory is taught now then 20 years ago. I do lament the absence of basic 
AI courses, automata theory, risk analysis and decision making from most CS curricula. These 
types of courses help CS graduates really understand how computing can (and cannot) improve 
the human situation. And it’s when students learn theory that they can push back against ill-
informed accusations blaming computers and software for system failures (when it is more 
often, the human element, bad policy, hardware or the environment). 

JEFF: Seriously, why do people study computer science to become software engineers? Do 
students study physics to become civil engineers? No, they study lots of physics and math for 
two years, and spend most of the next two years studying engineering. 

What does the software industry and the society at large need? We need people very 
knowledgeable of the theory in computer science, just like we need truly knowledgeable 
physicists. But we need orders of magnitude more civil, mechanical, geotechnical, and 
aerospace engineers who have a general knowledge of theory but a deep knowledge of how to 
apply physics (and math) to create usable, safe, maintainable, reliable, and secure buildings, 
factories, cars, and airplanes. The same is true for software: We need orders of magnitude more 
software engineers who have a general knowledge of CS theory but a deep knowledge of how to 
apply CS (and math) to create usable, safe, maintainable, reliable, and secure software 
applications (Jeff Offutt, “Putting the Engineering into Software Engineering Education,” IEEE 
Software, Jan-Feb 2013, 30(1):96-100.). 

MICHAEL: I’d allow that CS departments still do place a premium on theory in their curricula, 
particularly graduate research departments.  A cynic might say it’s because teaching theory 
means you don’t have to revise your lecture notes very often (if ever). 

But theory helps us differentiate computer science from programming.   There are many 
excellent programmers and computer professionals without formal training in computer 
science.  But the theoretical component of the CS curriculum helps train students to think 
abstractly when trying to solve practical problems, which is why we value it so much. 



Theory also constitutes the eternal verities in CS, the fixed stars in a field that is otherwise 
constantly changing.  What I learned about algorithmic complexity is still pretty useful; what I 
learned about APL, not so much. 

KEITH: I think that emphasis is institution and professor specific. I think some programs work 
hard to make sure that their graduates know at least a modicum of theory. I think other 
programs do not.  I would speculate that most undergraduate programs (especially those not 
connected tightly to a mathematics department, or without graduate programs) now emphasize 
practice more and theory less.   

ACM and IEEE-CS have long differentiated computer science from other types of curricula, 
including Computer Engineering, Information Systems, Information Technology, and Software 
Engineering. Each of these sub-disciplines will have its own set of theories, and its own amount 
of emphasis on those theories and on practice. 

SHIUHPYNG: Theory and practice are equally important. Theory has higher influence if it can be 
used in practice.  Similarly, techniques in practice can be more powerful if it is based on 
theoretical analysis.  Although some techniques are very useful in dealing with real problems in 
practice, theory is still the key to advancing technologies.  

 

Summary 

We thank the panelists for their candid comments. Their opinions were diverse and welcomed.  

As readers can see, although technology has evolved significantly over the last 40 years, the 
question still exists as to whether computer science curricula have kept up with the changes. 
Panelists agreed that some trends are more widely recognized by educational institutions than 
others, such as the growing need for more experienced practitioners. However, opinions varied 
on the need for separate departments of software engineering, or teaching methods in areas 
such as reliability, use of 3rd-party components, security, and privacy.  

Clearly, to produce professionals who are prepared for the ever-changing “real” world, 
educational institutions need to strategically address ever-changing information technology 
trends. This is a new age of computer science education – no going back.  


