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Abstract 

The Polymer Reference Interaction Site Model (PRISM) theory describes the equilibrium spatial-

correlations of liquid-like polymer systems including melts, blends, solutions, block copolymers, 

ionomers, liquid crystalline polymers, and nanocomposites. Using PRISM theory, one can 

calculate thermodynamic (second virial coefficients, Flory-Huggins 𝜒 interaction parameters, 

potentials of mean force) and structural (pair correlation functions, structure factors) data for these 

macromolecular materials. Here, we present a Python-based, open-source framework, pyPRISM, 

for conducting PRISM theory calculations.  This framework aims to simplify PRISM-based studies 

by providing a user-friendly scripting interface for setting up and numerically solving the PRISM 

equations. pyPRISM also provides data structures, functions, and classes that streamline PRISM 

calculations, allowing pyPRISM to be extended for use in other tasks, such as the coarse-graining 

of atomistic simulation force-fields or the modeling of experimental scattering data. The goal of 

this framework is to reduce the barrier to correctly and appropriately using PRISM theory and to 

provide a platform for rapid calculations of the structure and thermodynamics of polymeric fluids 

and nanocomposites.   
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I. Introduction  

The use of free and open-source software (FOSS) in the materials science fields allows researchers 

from across disciplines to pool their cumulative knowledge into computational tools that can be 

collectively constructed, vetted, and distributed. From ångström to micrometer length scales (and 

beyond) there have been countless examples of success using the FOSS approach for materials 

modeling, including in density functional theory (e.g., Quantum ESPRESSO1, ABINIT2), 

molecular dynamics (e.g., LAMMPS,3 Gromacs,4 NAMD,5 HOOMD-blue,6 DL_POLY,7 

OpenMD,8 OpenMM9), self-consistent field theory (e.g.,  PSCF10), and finite element modeling 

(e.g., OOF,11 MOOSE,12 FEniCS13). These codes allow specialists in the chemical, physical, and 

biological fields access to complex modeling and computational techniques without requiring the 

detailed programming background necessary to write a codebase from scratch. Furthermore, when 

these tools are openly and collaboratively developed, they often contain a greater diversity of 

features and techniques than would be available from a code developed by a single group. Beyond 

modeling itself, there have been many packages developed to assist in initiating, analyzing, and 

visualizing the results from the above-mentioned modeling tools (e.g., PACKMOL,14 Avogadro,15 

GPU RDF calculator,16 MDAnalysis,17 VMD,18 Ovito19). The success of these efforts in bringing 

complex modeling and analysis techniques to the broader materials science community motivates 

theoreticians and simulators to develop their computational materials research techniques into 

FOSS packages.  

The focus of this paper is one such computational technique, Polymer Reference Interaction 

Site Model (PRISM) theory. PRISM theory describes the liquid-like structural correlations in 

single and multi-component polymer melts, solutions, nanocomposites, and complex fluid 

systems. PRISM theory descends from the Reference Interaction Site Model (RISM), which is an 
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extension of the classical Ornstein-Zernike (OZ) liquid state theory.20, 21 While OZ theory is 

limited to describing atomic fluids, RISM theory was initially developed to study diatomic fluids 

such as nitrogen, oxygen, and bromine, and later extended to small molecules such as chloroform 

and acetonitrile.21-24 RISM (and PRISM) relate various intra- and inter- molecular correlation 

functions with so-called ‘closure’ relations, which connect these correlations to pairwise 

interaction potentials acting between components of the fluid. Together, the RISM/PRISM 

equations and closures form a set of coupled nonlinear integral equations that allow for structural 

correlation functions to be calculated. Despite its success for small molecules, RISM theory is not 

immediately applicable to polymer systems because the conformational flexibility of polymer 

chains results in a coupling between the intra- and inter- molecular correlations that makes solving 

the RISM equations intractable. Furthermore, RISM individually tracks the pair correlations of 

each site in a molecule, which quickly becomes computationally unfeasible for polymers of even 

modest chain lengths.  PRISM theory initially circumvented these limitations by focusing on dense 

homopolymer melts, where Flory’s conformational ideality could be naively invoked to effectively 

ignore the effect of  inter-molecular correlations on intra-molecular correlations and to pre-average 

correlations between identical site-type pairs.25, 26 Since that time, these ideality restrictions have 

been relaxed via the use of more realistic intra-molecular correlation functions27, 28 and techniques 

such as self-consistent PRISM.29-33 Using these approaches, PRISM theory has been validated for 

homopolymer melt systems by comparing predicted structure factors to experimentally derived 

structure factors from X-ray and neutron scattering.34-40 

Polymer blends have also been extensively studied via PRISM theory; this work includes the 

special case of isotopic blends.33, 41-65 While PRISM theory alone cannot predict the structure of 

macrophase separated blends, it has been used to understand the structure of the mixed phase and 
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the nature of the spinodal phase transition. Initially, PRISM was shown to incorrectly predict the 

molecular weight dependence of the blend critical temperature.66 This flaw was later remedied by 

either the introduction of molecular closures which more explicitly account for the connectivity 

between segments of a molecule than atomic closures52, 53, 57 or the use of thermodynamic 

perturbation theory which is valid when the attractive interactions that drive demixing do not 

significantly perturb local packing structure.42, 50, 67-69 For polymer blends, PRISM theory also 

predicts that the effective interaction parameter, 𝜒𝑒𝑓𝑓(𝑘), has a wavenumber dependence,49, 63, 65 

a concept which has been seen in some experiments41 but is debated elsewhere.70 In an analogous 

fashion to blended systems, PRISM theory has also been used to understand the melt structure and 

microphase separation behavior of random and block copolymer systems in the strongly 

fluctuating or clustering region of the globally homogeneous phase.55, 71-82  

PRISM has also greatly expanded our understanding of the structure and miscibility behavior 

of polymer nanocomposites71, 83-118 and polymer-colloid suspensions.116-130 For the latter, novel 

polymer physics-guided closures have been formulated and widely applied. For both these 

systems, it is of primary interest to understand the spatial structure and phase separation of the 

particle (filler or colloid) and how polymers statistically organize around the particle. From a 

structural perspective, PRISM theory predicts the spatial correlations of polymer-particle materials 

in real- and Fourier-space as pair correlations and structure factors, respectively. This information 

has been used to describe how the pair interactions in nanocomposites lead to matrix chains wetting 

and bridging particles in nanocomposites and, in turn, how these phenomena relate to particle 

dispersion.112-114 Additionally, PRISM theory predicts thermodynamic quantities such as the 

potentials of mean force, second-virial coefficients, and effective interaction parameters, each of 

which describe the interactions of these systems. By combining these analyses, PRISM provides a 
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complete description of the spatial arrangement and thermodynamics of nanocomposite and 

polymer-colloid systems.  

Polyelectrolytes are another important class of materials that have been studied via PRISM 

theory.29, 128, 131-150 Simulation methods are challenged to accurately and efficiently represent these 

systems due to the computational expense of evaluating the long-range electrostatic interactions. 

PRISM theory circumvents this limitation as the interaction potential need only be computed once 

at the beginning of the calculation, rather than at every timestep during a simulation. Using PRISM 

theory, structure factors and osmotic pressures have been predicted for rigid and flexible 

polyelectrolytes which agree with experiments and simulation.132 It is important to note that these 

successes have been limited to the case of polyelectrolytes in a good solvent, as there are numerical 

limitations to solving PRISM theory for the bad solvent case.132 

Beyond the studies listed above, PRISM theory has also been used to understand systems that 

involve more exotic architectures, chemistries, or geometries. Examples of new 

architectures/chemistries include star polymers,108, 109, 151-154 comb and sidechain polymers,83, 86, 

151, 155-161 dendrimers,151, 162, 163 ionomers, and ionic-liquids.164-166 While PRISM theory is typically 

used as a 1-dimensional, radially symmetric formalism, it has also been extended in a multi-

dimensional form so that the orientational structural anisotropy of liquid-crystals and the isotropic-

nematic or isotropic-discotic phase transition could be predicted.167-170 PRISM theory has been 

applied to understand the adsorption of polymers in slit-like pores and the segregation of physical 

blends near surfaces in an extended formalism called Wall-PRISM.51, 152, 171, 172 By coupling 

PRISM with other theories, it can extend beyond its basic definition as an equilibrium formalism 

for isotropic polymer liquids. For example, PRISM has been used with mode-coupling theory to 

predict the dynamics of polymer melts173 and with thermodynamic density functional theory to 
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study inhomogeneous, phase separated systems.174-177 These examples demonstrate that PRISM 

theory is highly flexible in describing a range of soft-matter systems and materials.  

In addition to making structural and thermodynamic predictions, PRISM has been applied as 

a coarse-graining engine to derive simplified force fields from the results of atomistic (or less 

coarse-grained) simulations.178-194 Broadly, this approach consists of using non-interacting “ghost” 

sites to track the global correlations of groups of atoms or sites on a molecule. These group 

correlations can then be combined with closure relations to derive effective, coarse-grained pair 

potentials that reproduce the thermodynamics and structure of the more detailed system. One 

example of this approach is called Integral Equation Coarse Graining (IECG).180, 181, 184-188 Despite 

some questions raised about the thermodynamic consistency of this method, recent work has 

served to support IECG’s accuracy when used correctly. References 178, 180-183, 185 present 

detailed discussions on this IECG method and the proof of its thermodynamic consistency. Overall, 

using PRISM to create coarse-grained representations of polymer systems represents a unique and 

powerful use of the theory beyond structural and thermodynamic predictions.  

Despite these past successes of PRISM theory, overall there are fewer PRISM-based studies 

compared to simulation techniques such as molecular dynamics or Monte Carlo. One explanation 

for the reduced number of studies is the lack of an open-source package for PRISM theory. This 

motivates our efforts described in this manuscript to introduce a user-friendly open-source package 

for PRISM theory. In this article, we present the theory and initial release implementation of 

PRISM as a FOSS package called pyPRISM. We first present the theoretical formalism for PRISM 

and its capabilities, then provide an introduction to our coding framework, which is designed to 

provide a simplified interface for using PRISM.195-198 The codebase is structured to make the 

addition of new closures, intra-molecular correlation functions, and interaction potentials as 
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simple as possible so that pyPRISM can be easily extended with new features and capabilities. 

While the initial release of pyPRISM focuses on providing a pathway for numerically solving the 

PRISM equations to produce structural and thermodynamic quantities, the framework is designed 

to be easily expanded to other applications such as modeling scattering data or coarse-graining 

detailed molecular simulations.  

In the following sections, we will describe PRISM theory in detail, present our implementation 

of PRISM in the pyPRISM package, and review several PRISM-based case studies. These case-

studies serve to demonstrate the various uses of PRISM theory to the reader and validate our 

codebase by comparison to published data. Beyond the GitHub repository which hosts the 

codebase,197 we have also created a companion tutorial196 that not only teaches users how to use 

pyPRISM but also how to reproduce all of the data shown in the Case Studies section. Finally, 

pyPRISM installation and usage instructions, as well as PRISM-related knowledgebase materials 

are presented on a dedicated documentation website.195  

 

II. Theoretical Background 

Here we provide the necessary details of PRISM theory to describe our implementation in 

pyPRISM. For further details and discussion on the applications of PRISM theory, please refer to 

References 67, 87, 93, 99, 132, 199, 200, which either review PRISM in general or within specific 

application domains. 

A. PRISM Equation 

PRISM theory describes the spatial correlations between spherical sites which represent either 

an atomic species or some collection of atoms in the molecule (e.g., a monomer or statistical 

segment of a polymer chain). By carrying out calculations with multiple site types, one can 
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represent homopolymers with chemically complex monomers, polymer blends, copolymers, 

nanocomposites, and colloidal solutions. All information about the chemistry and connectivity of 

these systems is encoded into the pair-interactions and intra-molecular correlation functions as 

will be discussed below.  

In general, for a material system that can be represented with n types of sites, the PRISM 

equation is written in Fourier space as 

 𝐻̂(𝑘) = Ω̂(𝑘)𝐶̂(𝑘)[Ω̂(𝑘) + 𝐻̂(𝑘)] (1) 

with 𝐻̂(𝑘) being an n x n matrix with all pair-wise total inter-molecular correlation functions (at 

a given wavenumber, k) as its elements, Ω̂(𝑘) being an n x n matrix of the intra-molecular 

correlation functions, and 𝐶̂(𝑘) being an n x n matrix of direct correlation functions between the 

sites in a fluid. For example, in a system with three types of sites (𝑛 = 3), labelled as A, B and C,  

𝐻̂(𝑘) is written as 

 

𝐻̂(𝑘) = [

𝜌𝐴𝐴
𝑝𝑎𝑖𝑟ℎ̂𝐴𝐴(𝑘) 𝜌𝐴𝐵

𝑝𝑎𝑖𝑟ℎ̂𝐴𝐵(𝑘) 𝜌𝐴𝐶
𝑝𝑎𝑖𝑟ℎ̂𝐴𝐶(𝑘)

𝜌𝐵𝐴
𝑝𝑎𝑖𝑟 ℎ̂𝐵𝐴(𝑘) 𝜌𝐵𝐵

𝑝𝑎𝑖𝑟 ℎ̂𝐵𝐵(𝑘) 𝜌𝐵𝐶
𝑝𝑎𝑖𝑟 ℎ̂𝐵𝐶(𝑘)

𝜌𝐶𝐴
𝑝𝑎𝑖𝑟 ℎ̂𝐶𝐴(𝑘) 𝜌𝐶𝐵

𝑝𝑎𝑖𝑟ℎ̂𝐶𝐵(𝑘) 𝜌𝐶𝐶
𝑝𝑎𝑖𝑟ℎ̂𝐶𝐶(𝑘)

] (2) 

in which 𝜌𝛼𝛽
𝑝𝑎𝑖𝑟 = 𝜌𝛼𝜌𝛽 , and 𝜌𝛼 , 𝜌𝛽   correspond to the site number densities of site types 𝛼 and 𝛽, 

respectively. Note that throughout this paper, a carat above a symbol (and/or the functional 

designation (k)) indicates that the corresponding function or matrix is in Fourier space. ℎ𝛼𝛽(𝑟) is 

related to the inter-molecular site-site pair correlation function (i.e., radial distribution function), 

𝑔𝛼𝛽(𝑟) by  

 ℎ𝛼𝛽(𝑟) = 𝑔𝛼𝛽(𝑟) −  1 (3) 

in which r is the distance between sites of type 𝛼 and 𝛽. Note that all spatial intra- and inter-

molecular correlation matrices are, by definition, symmetric with site type pairs, i.e., ℎ𝛼𝛽 = ℎ𝛽𝛼.  
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Ω̂(𝑘) represents the intra-molecular correlations and is analogous to the form factor from 

scattering theory. Ω̂(𝑘) for a three-component system is written as 

 

Ω̂(𝑘) = [

𝜌𝐴𝐴
𝑠𝑖𝑡𝑒𝜔̂𝐴𝐴(𝑘) 𝜌𝐴𝐵

𝑠𝑖𝑡𝑒𝜔̂𝐴𝐵(𝑘) 𝜌𝐴𝐶
𝑠𝑖𝑡𝑒𝜔̂𝐴𝐶(𝑘)

𝜌𝐵𝐴
𝑠𝑖𝑡𝑒𝜔̂𝐵𝐴(𝑘) 𝜌𝐵𝐵

𝑠𝑖𝑡𝑒𝜔̂𝐵𝐵(𝑘) 𝜌𝐵𝐶
𝑠𝑖𝑡𝑒𝜔̂𝐵𝐶(𝑘)

𝜌𝐶𝐴
𝑠𝑖𝑡𝑒𝜔̂𝐶𝐴(𝑘) 𝜌𝐶𝐵

𝑠𝑖𝑡𝑒𝜔̂𝐶𝐵(𝑘) 𝜌𝐶𝐶
𝑠𝑖𝑡𝑒𝜔̂𝐶𝐶(𝑘)

] (4) 

where 𝜌𝛼𝛽
𝑠𝑖𝑡𝑒 = (𝜌𝛼 + 𝜌𝛽) if 𝛼 ≠ 𝛽 otherwise 𝜌𝛼𝛽

𝑠𝑖𝑡𝑒 = 𝜌𝛼. When solving the PRISM equations 

numerically, Ω̂(𝑘) is one of the inputs which describes the connectivity and structure of the 

molecules.  As will be described in detail in Section II.C, Ω̂(𝑘) is either specified using one of the 

many analytical expressions for various chemical and architectural systems (such as Gaussian or 

Freely-Jointed Chain) 67, 99, 132, 200  or obtained via molecular simulation.  

The direct correlation function, 𝐶̂(𝑘), describes inter-molecular correlations between sites 

when many-molecule (beyond pair) effects are removed.200 Unlike 𝐻̂ and 𝛺̂, 𝐶̂(𝑘) is not scaled by 

density, and in matrix form is given by  

 

𝐶̂(𝑘) = [

𝑐̂𝐴𝐴(𝑘) 𝑐̂𝐴𝐵(𝑘) 𝑐̂𝐴𝐶(𝑘)

𝑐̂𝐵𝐴(𝑘) 𝑐̂𝐵𝐵(𝑘) 𝑐̂𝐵𝐶(𝑘)

𝑐̂𝐶𝐴(𝑘) 𝑐̂𝐶𝐵(𝑘) 𝑐̂𝐶𝐶(𝑘)
] (5) 

where 𝑐𝛼𝛽 = 𝑐𝛽𝛼.  

As written, the above equations are general and correspond to any liquid-like system that can 

be described by three sites (i.e., atom types or coarse-grained beads). Variation of these equations 

for fewer or greater numbers of site types is achieved by simply modifying the size of the matrix 

variables. We note that this formalism pre-averages chain-end effects into the global correlations 

for a given site-type pair. For example, the correlations between sites in a homopolymer chain are 

identical regardless of whether the sites are in the center or on the end of the chain. While this is, 

in general, a necessary assumption to make the task of solving the PRISM equations tractable via 
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the reduction of the number of site types, one could introduce “end site types” for systems where 

explicit treatment of end-effects is important. 

B. Closures 

While the above equations specify the base PRISM formalism, we need additional equations 

called closures to numerically solve the PRISM equations for 𝐻̂ and 𝐶̂. Closures provide a 

mathematical relation between the direct correlation function 𝑐𝛼𝛽, the pairwise interaction 

potential 𝑈𝛼𝛽, and, often, the total correlation function ℎ𝛼𝛽. Since the closures include 𝑈𝛼𝛽, it is 

through these closures that the chemical details of the system are specified. Examples of so-called 

atomic closures include Percus-Yevick (PY), Hypernetted Chain (HNC), Mean-Spherical 

Approximation (MSA), Martynov-Sarkisov (MS), and Laria-Wu-Chandler (LWC).32, 53 There are 

also “reference” versions of these closures in which we separate the attractive and hard-core 

portions of the interaction potentials and include a direct-correlation function from a hard-sphere 

reference system.53  Finally, as mentioned in the introduction, there are molecular closures that 

include intra-molecular correlation functions, 𝜔̂(𝑘), to account for connectivity between sites and 

correct scaling issues for phase-separating systems such as blends and copolymers.53 

The first release of pyPRISM includes the three most commonly used closures from liquid state 

theory: MSA, PY and HNC. Respectively, the MSA, PY, and HNC closures are written in real 

space as: 

 𝑐𝛼𝛽(𝑟) = −𝛽 𝑈𝛼𝛽(𝑟) (6a) 

 𝑐𝛼𝛽(𝑟) = (1 − 𝑒𝛽𝑈𝛼𝛽(𝑟))(ℎ𝛼𝛽(𝑟) + 1) (6b) 

 𝑐𝛼𝛽(𝑟) = ℎ𝛼𝛽(𝑟) − ln(ℎ𝛼𝛽(𝑟) + 1) − 𝛽𝑈𝛼𝛽(𝑟) (6c) 

in which 𝛽 = 1/(𝑘𝐵𝑇), with 𝑘𝐵 as the Boltzmann constant and 𝑇 as the temperature. 

Unfortunately, the above closures are not useful as written when trying to solve the PRISM 
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equations numerically, because many liquid systems have hard-core interactions which cause 𝑈𝛼𝛽 

to diverge at low r, resulting in floating point overflow in a codebase. One way to get around this 

limitation is to rewrite the closures in terms of a new variable, 𝛾𝛼𝛽52 

 𝛾𝛼𝛽(𝑟) = ℎ𝛼𝛽(𝑟) − 𝑐𝛼𝛽(𝑟) (7) 

The various pairs of  𝛾𝛼𝛽  become components of Γ(𝑟), an n x n matrix for a system with n types 

of sites. For the three-site example used above, 

 

Γ(𝑟) = [

𝛾𝐴𝐴(𝑟) γ𝐴𝐵(𝑟) γ𝐴𝐶(𝑟)

γ𝐵𝐴(𝑟) γ𝐵𝐵(𝑟) γ𝐵𝐶(𝑟)

γ𝐶𝐴(𝑟) γ𝐶𝐵(𝑟) γ𝐶𝐶(𝑟)
] (8) 

Substituting 𝛾𝛼𝛽 , the PY expression becomes 

 𝑐𝛼𝛽(𝑟) = (𝑒−𝛽𝑈𝛼𝛽(𝑟) − 1)(𝛾𝛼𝛽(𝑟) + 1) (9) 

and the HNC 

 𝑐𝛼𝛽(𝑟) = e𝛾𝛼𝛽(𝑟)e−𝛽𝑈𝛼𝛽(𝑟) − 𝛾𝛼𝛽(𝑟) − 1 (10) 

Now, the exponential portions of these closures converge to zero for hard core potentials rather 

than diverging. An alternative strategy to rewriting the closures in terms of 𝛾𝛼𝛽  is to assume 

ℎ𝛼𝛽(𝑟) = −1 inside the hard core and to separately calculate 𝑐𝛼𝛽 inside and outside the core. This 

approach avoids the calculation of divergent potentials for overlapping sites while strictly 

enforcing the hard-core condition. pyPRISM currently supports both approaches for handling hard-

core potentials. We note that the MSA closure can only be used via the second strategy. While we 

expect that both approaches should yield the same result in general, users may find that there are 

situations in which one strategy or the other converges to the numerical solution of the PRISM 

equations more easily. 

Based on the assumptions and strategies used in their derivation, each of the above closures 

has strengths and weaknesses when applied to different types of systems. For example, for atomic 
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systems the HNC closure is derived from a well-defined free energy functional and reproduces 

results from the virial equation.201 In practice, the HNC closure has been shown to be more accurate 

than PY when there are Coulomb interactions and when there is large disparity in site diameters, 

𝑑𝛼, but it cannot be numerically solved for low-density systems.32, 114 Compared to the HNC, the 

PY closure generally provides more accurate predictions when the pairwise interactions are hard-

core and short-ranged, e.g. hard-sphere, weakly attractive Lennard-Jones, or Weeks-Chandler-

Andersen interactions.201 Finally, while the MSA closure is a rather crude approximation, it is 

superior to both PY and HNC when modeling square-well fluids.201  While somewhat outside the 

scope of this paper and the pyPRISM codebase, the MSA closure is also useful as its relative 

simplicity often allows for analytical solutions to the PRISM equation to be derived for model 

systems with small numbers of components.201  

Overall, the process of choosing the best closure for a system of interest is non-trivial, as there 

is no one closure that has superior predictive performance for all systems. pyPRISM makes it easy 

to swap out and test various closures so that the performance of a specific closure can be evaluated 

by direct comparison to each other and experiments/simulations. Moving forward, we plan to 

implement other closures, with a focus on molecular closures so that attractive blend and 

copolymer melt systems will be accessible to pyPRISM users. It is also our intention to work 

towards automating the process of closure selection based on the system inputs as this process is 

clearly one of the more challenging aspects of using PRISM theory. 

C. Intra-Molecular Correlation Function Ω̂(𝑘) 

As stated above, Ω̂(𝑘) describes the connectivity and structure within a single molecule via the 

intra-molecular pair correlations. These correlations are typically described in Fourier space where 

a non-zero value of 𝜔̂𝛼𝛽(𝑘) at a given 𝑘 corresponds to the degree of intra-molecular ordering 



14 
 

over the length scale 𝜆 = 2𝜋/𝑘. By definition, site-types that never exist within the same 

molecules have 𝜔̂𝛼𝛽(𝑘) = 0 and are considered to not have intra-molecular correlations over any 

length scale. For linear polymer chains composed of a single type of site, many expressions for 

𝜔̂𝛼𝛽(𝑘) exist. For example, a Gaussian chain is represented as 

 

𝜔̂𝛼𝛽(𝑘) =
1 − 𝑓2 −

2𝑓

𝑁
+

2𝑓𝑁+1

𝑁

(1 − 𝑓)2
 (11) 

where f is defined as 𝑓 = exp(−𝑘2𝜎2/6), N is the number of monomers in the Gaussian chain, 

and 𝜎 is the characteristic distance unit.28  Similarly, a freely-jointed chain (FJC) is also 

represented with Equation 11 above, but with f redefined as 𝑓 = sin(𝑘𝑙) /𝑘𝑙 , in which l is the 

bond length between sites along the chain.28 Attempts to introduce intra-molecular excluded 

volume into the FJC model have yielded the non-overlapping freely-jointed chain.28 For semi-

flexible polymers modeled as worm-like chains, 𝜔̂𝛼𝛽(𝑘) is calculated as a function of persistence 

length using a discrete Koyama distribution.27 Atomistic descriptions such as the ångström-scale 

Rotational-Isomeric-State (RIS) model have been employed for specific polymers. 33, 79, 80, 160, 202, 

203 As will be shown in Section IV, many of these 𝜔̂𝛼𝛽(𝑘) have similar long-range (low-𝑘) 

behavior but show large differences in the mid- and short- range correlations. For linear polymer 

chains, the choice of 𝜔̂𝛼𝛽(𝑘) depends on the level of detail needed at a given length scale and the 

specific features of a given polymer system, e.g., semi-flexibility.  

Analytical expressions for molecules other than linear polymer chains also exist in the 

literature. For molecules with only one site of a given type (e.g., a bare spherical nanoparticle), 

𝜔̂𝛼𝛽 (𝑘) = 1. Ring polymers can be represented via a slight modification to the expression for the 

linear Gaussian 𝜔̂𝛼𝛽(𝑘).28 For polymer-grafted particles, analytic expressions for the particle-graft 
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and graft-graft 𝜔̂𝛼𝛽(𝑘) have been derived for small numbers of grafted chains.101, 104-106 The 

scattering community has also contributed many 𝜔̂𝛼𝛽(𝑘) as form factors which are used to model 

the scattering of various systems, e.g. worm-like-micelles.40, 204-207  

In many cases, analytical expressions for 𝜔̂𝛼𝛽 (𝑘) for a system of interest simply do not exist 

in the literature. Rather than deriving a new analytical expression, one can simulate a molecule 

and calculate 𝜔̂𝛼𝛽(𝑘) using the Debye scattering relation202, 208  

 

𝜔̂𝛼𝛽(𝑘) = ⟨
1

𝑁𝑡𝑜𝑡𝑎𝑙
∑ ∑

sin(𝑘 𝑟𝑖𝑗)

𝑘 𝑟𝑖𝑗

𝑁𝜷

𝑗

𝑁𝛼

𝑖

⟩ (12) 

in which 𝑁𝛼 is the total number of sites of type 𝛼 in each molecule, 𝑁𝛽 is the total number of sites 

of type 𝛽 in each molecule, 𝑁𝑡𝑜𝑡𝑎𝑙 = (𝑁𝛼 + 𝑁𝛽) if 𝛼 ≠ 𝛽 otherwise 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝛼, 𝑟𝑖𝑗 is the 

distance between sites 𝑖 and 𝑗, and the angle brackets represent ensemble averaging over 

uncorrelated snapshots in a simulation trajectory. The Debye approach removes the need for a 

complicated analytical representation of 𝜔̂𝛼𝛽(𝑘) and instead allows its determination for any 

system that can be constructed and sampled in a simulation. The Debye approach is also a 

foundational part of the self-consistent PRISM method that will be discussed below in Section 

II.F.  

D. 1-D Fourier Transform 

Since the PRISM equations are spherically symmetric 1-D functions of 𝑘 or 𝑟, the appropriate 

transform is the continuous, 1-dimensional sine transform: 

 
𝑘 𝑓(𝑘) = 4𝜋 ∫ 𝑟 𝑓(𝑟) sin(𝑘𝑟) 𝑑𝑟 (13) 

in which 𝑓(𝑟) and 𝑓(𝑘) are generic 1-D spherically symmetric functions. This result can be 

derived by writing the standard 3-D Fourier transform in Cartesian coordinates, transforming to 
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spherical coordinates, and integrating out 𝜃 and 𝜙. To use a “Fast” (i.e. FFT) implementation of 

this continuous sine transform, we need to discretize it. First, we redefine our space variables in 

terms of discrete, integer indices: 

 𝑟 = (𝑖 + 1)Δ𝑟 

𝑘 = (𝑗 + 1)Δ𝑘 

Δ𝑘 =
𝜋

Δ𝑟(𝑁 + 1)
 

(14) 

(15) 

(16) 

where i and j are integers ranging from 0 to (N-1) and Δ𝑟 and Δ𝑘 represent the grid spacing in real 

and Fourier space, respectively. Using these definitions, the continuous sine transform can be 

rewritten as 

 (𝑗 + 1)Δ𝑘𝑓((𝑗 + 1)Δ𝑘)

= 4𝜋𝛥𝑟 ∑(𝑖 + 1)Δ𝑟𝑓((𝑖 + 1)Δ𝑟) sin (
𝜋

𝑁 + 1
(𝑖 + 1)(𝑗 + 1))

𝑁−1

𝑖=0

 

(17) 

Now defining 𝐹(𝑖) and 𝐹(𝑗) as the discretized forms of 𝑓(𝑟) and 𝑓(𝑘), we obtain a type-I discrete 

sine transform 

 𝐹̂𝑗  = (𝑗 + 1)Δ𝑘 𝑓((𝑗 + 1)Δ𝑘) = 𝑘 𝑓(𝑘) 

𝐹𝑖 = (𝑖 + 1)Δ𝑟 𝑓((𝑖 + 1)Δ𝑟) = 𝑟 𝑓(𝑟) 

𝐹̂𝑗 = 4𝜋𝛥𝑟 ∑ 𝐹𝑖 sin (
𝜋

𝑁 + 1
(𝑖 + 1)(𝑗 + 1))

𝑁−1

𝑖=0

 

(18) 

It is important to note that when using these equations, the result of the discrete sine transform (𝐹̂𝑗) 

must be divided by 𝑘 to obtain the Fourier-transformed function (𝑓(𝑘)).  
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E. Numerical Solution 

 

Figure 1: Flowchart of numerical solution methodology. The user defines the system by providing 

the site densities (𝜌𝛼), site diameters (d), inter-site interaction potentials (𝑈𝛼𝛽), intra-molecular 

correlation functions (𝜔̂𝛼𝛽), closures for all pairs of site types, and an initial guess for the Γ𝑖𝑛 

values. Using these inputs, the PRISM equations are solved for Γ𝑜𝑢𝑡 and the minimization 

functional Δ. An optimization routine such as Picard iteration or Newton-Krylov method is applied 

to minimize Δ to converge the PRISM equations and the resulting 𝐻̂ and 𝐶̂ represent valid 

solutions to the PRISM equations.  

In this section, we present the primary approach implemented in pyPRISM to solve the PRISM 

equations, which is also depicted in Figure 1. In this methodology, the equations are numerically 

solved as follows. First, all site densities (𝜌𝛼), site diameters (d), inter-site interaction potentials 

(𝑈𝛼𝛽), intra-molecular correlation functions (𝜔̂𝛼𝛽), and closures for all pairs of site types are 

specified as inputs. These parameters determine the structure and physical interactions of the 

molecules and are fixed throughout the process of numerically solving the PRISM equations. Next, 



18 
 

a guess provided for 𝛤𝑖𝑛(𝑟) is used to calculate 𝐶(𝑟) via the chosen closures for each pair. The 

guess for 𝛤𝑖𝑛(𝑟) can be a) set to 𝛤𝑖𝑛(𝑟) = 0, b) a converged solution of the system at a condition 

close to the condition of interest, or c) some other arbitrary choice of 𝛤𝑖𝑛(𝑟). Once 𝐶(𝑟) is 

calculated and inverted to Fourier space as 𝐶̂(𝑘), the PRISM equation (Equation 1) is used to 

calculate 𝐻̂(𝑘) which is inverted back to 𝐻(𝑟). Using this 𝐻(𝑟) and 𝐶(𝑟), 𝛤𝑜𝑢𝑡(𝑟) is calculated 

using Equation 7. Then, the output of the minimization function, Δ(r) is calculated as 

 Δ(r) = 𝑟(𝛤𝑜𝑢𝑡(𝑟) − 𝛤𝑖𝑛(𝑟)) (19) 

At this point the choice of solution scheme used to update 𝛤𝑖𝑛 based on Δ is up to the user, but the 

current implementation of pyPRISM uses a Newton-Krylov based approach by default.209  Once Δ 

is minimized to a satisfactory value, the PRISM equations are “solved” and the values for 

𝐻(𝑟) and 𝐶(𝑟) represent solutions to the PRISM equation for the given input parameters.  

F. Self-Consistent PRISM 

 

Figure 2: Flowchart of self-consistent PRISM method. The self-consistent loop can either be 

started by running single-molecule simulations with 𝛥𝜓(𝑟) = 0 or by starting with an ideal 

expression for Ω̂ and conducting the PRISM calculation.  
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As mentioned above, one of the original weaknesses of PRISM theory for flexible polymers 

was the neglect of explicit feedback coupling between the intra- and inter-molecular correlations. 

A powerful approach that circumvents this limitation is the self-consistent PRISM (SCPRISM) 

method.29-35, 38, 39, 43, 73, 90, 93, 94, 96, 97, 100, 133, 139, 142, 210-215 In this method, a simulation of a single-

molecule of interest is run in the presence of a pairwise-decomposed, medium-induced solvation 

potential field, Δ𝜓𝛼𝛽(𝑟), which is calculated from PRISM theory. The form of the solvation 

potential depends on the choice of closure used for sites 𝛼 and 𝛽, for the PY and HNC closures 

the relevant expressions are 

 𝛽𝛥𝛹̂𝑃𝑌(𝑘) =  − ln (1 + 𝐶̂(𝑘)𝑆̂(𝑘)𝐶̂(𝑘)) (20) 

 𝛽𝛥𝛹̂𝐻𝑁𝐶(𝑘) =  −𝐶̂(𝑘)𝑆̂(𝑘)𝐶̂(𝑘) (21) 

in which 𝛥𝛹 represents the matrix form of the solvation potentials, which are inverted back to real 

space before use.  𝑆̂(𝑘) is the structure factor matrix defined by 

 𝑆̂(𝑘) = 𝐻̂(𝑘) + Ω̂(𝑘) (22) 

This simulation samples the conformations of the single molecule with the effect of the medium 

(e.g., solvent, polymer matrix) being introduced via Δ𝜓𝛼𝛽(𝑟). As the solvent or other chains are 

not simulated explicitly, these single-chain or single-molecule simulations are much cheaper and 

more efficient than computationally intensive molecular dynamics or Monte Carlo simulations of 

the complete system (e.g., multiple chains at the desired concentration). Using the trajectories from 

these single-molecule simulations, 𝜔̂𝛼𝛽(𝑘) is calculated using the Debye equation (Equation 12) 

and used as input for a PRISM calculation. The PRISM equations are then solved and the resultant 

𝐶̂(𝑘) and 𝑆̂(𝑘) are then used to recalculate Δ𝜓𝛼𝛽(𝑟), which is fed back to a new simulation, 

thereby completing the self-consistent loop. The calculation loop continues until a convergence 

criterion or criteria is/are satisfied. For example, for the specific system presented in the work by 
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Nair and Jayaraman and for the specific convergence criteria they used, converged solutions were 

obtained within approximately 5 iterations.93 The convergence criterion used by Nair and 

Jayaraman was 

 
𝑆𝑆𝐸𝑛→𝑛+1 = ∑ ∑ (Δ𝜓𝛼𝛽

𝑛+1(𝑟) − Δ𝜓𝛼𝛽
𝑛 (𝑟))

2

𝑟𝛼,𝛽

 (23a) 

 𝑆𝑆𝐸𝑛→𝑛+1

𝑆𝑆𝐸0→1
≤ 0.001 (23b) 

in which 𝑛 denotes the 𝑛𝑡ℎ self-consistent iteration and Δ𝜓𝛼𝛽
𝑛 (𝑟) is the solvation potential of the 

𝑛𝑡ℎ iteration. The number of iterations any user may need will depend on the system and the 

convergence criterion.  The result of the self-consistent method is not only a PRISM calculation 

where non-ideal conformation effects are explicitly included, but also single-molecule trajectories 

with mean-field medium effects. The self-consistent PRISM-simulation approach explicitly 

includes the coupling between the intra- and inter-molecular correlation functions via the self-

consistent construction of the method. pyPRISM is currently fully capable of being used in the 

SCPRISM format, although users will have to code their own linkage between their simulation of 

choice and pyPRISM. Future versions of pyPRISM will include utilities to assist in the calculation 

of 𝜔̂𝛼𝛽(𝑘) from molecular simulation trajectories using the Debye method, along with other tools 

for setting up self-consistent PRISM calculations with common simulation packages.  

III. Implementation 

pyPRISM is written as a Python library (compatible with both 2.7 and 3.5+ series) and currently 

only depends on two standard numerical computing packages: Numpy and Scipy.198 Numpy 

provides a highly efficient array and matrix interface along with optimized linear algebra 

routines.216  Beyond the FFT support as described above, Scipy also provides a suite of numerical 
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optimization classes and functions which are used to numerically solve the PRISM equations.209, 

217  

 

 

Figure 3: Schematic depiction of a pyPRISM MatrixArray. 

While a detailed discussion of the object-oriented design of pyPRISM is outside the scope of 

this publication, we wish to highlight our implementation of the pyPRISM.MatrixArray, as it is 

this data-structure that elevates pyPRISM from being a “PRISM-code” to a “PRISM-framework”. 

A schematic depiction of a MatrixArray is shown in Figure 3. The goal of this data structure is to 

provide a unified syntax for both matrix and 1-D function-based mathematical manipulations. For 

example, while the PRISM equations are solved as a matrix equation (Equation 1), switching 

between Fourier and real representations of the correlation functions (i.e. ℎ̂𝛼𝛽(𝑘) → ℎ𝛼𝛽(𝑟)) must 
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be handled as 1-D pair functions. The pyPRISM.MatrixArray data structure transparently and 

efficiently handles this process by defining common mathematical operations (addition, 

subtraction, matrix inversion, matrix multiplication, etc.) as operators that broadcast operations 

across all matrix elements of the array. See Figure 4 for an overview of the available operations.  

Also in Figure 4, we show how the normalized structure factor matrix with elements defined by 

 𝜌𝛼𝛽
𝑠𝑖𝑡𝑒𝑆̂𝛼𝛽(𝑘) = 𝜌𝛼𝛽

𝑝𝑎𝑖𝑟ℎ̂𝛼𝛽(𝑘) + 𝜌𝛼𝛽
𝑠𝑖𝑡𝑒𝜔̂𝛼𝛽(𝑘) (24) 

can be calculated using two MatrixArrays.  

 

Figure 4: Code block demonstrating MatrixArray mathematics and calculation of normalized 

structure factor. We note that the example does not show how the PRISM equations are solved, 

or how 𝐻̂, Ω̂, and 𝜌𝑠𝑖𝑡𝑒 are filled with data.  

 

In Figure 4, 𝑆, 𝐻, and 𝑊 are MatrixArrays representing the structure factor, total correlation 

function, and intra-molecular correlation function (Ω̂) matrices and 𝑟ℎ𝑜 is an 𝑛 × 𝑛 Numpy array 

of site densities. Individual 1-D functions in the MatrixArray can easily be extracted and set via 

simple array access operators as shown. Internally, all data in a MatrixArray is stored in a three-
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dimensional Numpy array, which is hidden from the user and relays many linear algebra operations 

to optimized LAPACK and BLAS libraries and furthermore minimizes memory copying during 

these operations. 

While a PRISM-code might only be designed to solve the PRISM equations for a predefined 

set of quantities, MatrixArrays are designed to simplify the mathematics of PRISM theory in 

general. In this way, we envision the pyPRISM codebase being used as a starting point, i.e. a 

framework, for many types of polymer-liquid state theory tasks. This might include fitting 

experimental scattering results or coarse-graining atomistic simulation models. Overall, the 

MatrixArray and other data structures in pyPRISM reduce the barrier to using PRISM by allowing 

users to efficiently carry out calculations in a format that is similar to the written mathematics of 

the literature. 

IV. Case Studies 

To demonstrate the utility of the pyPRISM tool, we now explore several case studies on polymer 

systems commonly studied using PRISM theory. In each case, pyPRISM predicts the real and 

Fourier space correlations, effective interactions, and thermodynamics of these complex systems 

as a function of molecular architecture and pair interactions. In all cases, we will also include data 

extracted from the literature to verify that our implementation of PRISM theory reproduces past 

PRISM results/predictions. A detailed discussion of the physics underlying these results is not the 

goal of this paper; we refer the reader to the cited references for comprehensive understanding of 

the respective systems. See the companion pyPRISM tutorial for detailed explanations of how these 

data are produced using the pyPRISM package.196  
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A. Homopolymer Melts 

One of the classic applications of PRISM theory is to study homopolymer melts; PRISM has been 

extensively compared to computer simulations, X-ray scattering, and neutron scattering for many 

olefinic and non-olefinic homopolymer melt systems. 34-39, 67, 211, 218-220 When the self-consistent 

PRISM formalism is used, reasonable qualitative but not quantitative agreement is found between 

these methodologies and measurements. Some of the deviations between atomistic molecular 

dynamics simulations and self-consistent PRISM theory have been traced to the inability of 

PRISM to handle angular correlations in liquids.67 In these studies it was also shown that, while 

using the self-consistent version of PRISM theory is a good strategy to decouple the intra- and 

inter-molecular correlations, the mean-field treatment of the medium-induced solvation potential 

is imperfect when compared to detailed atomistic simulations.38 Also within the scope of polymer 

melts, several studies have explored the solubility of penetrant species via estimating Hansen 

solubility parameters from the cohesive energy density calculated from PRISM theory.38, 67, 221, 222 

Reasonable agreement between theoretical and experimental solubility parameters has been found 

for various polyolefins although the PRISM results tend to under-predict experimental values.38, 67 

In addition to atomistically-detailed models for specific chemistries, PRISM theory has been 

used with coarse-grained representations of homopolymer chains. In Figure 5, we show a Kratky 

plot of 𝜔̂ for five analytical polymer chain models which are currently implemented in pyPRISM. 

This figure highlights the differences between scattering models over long and moderate length-

scales. All models reproduce Gaussian chain statistics at long length scales (𝑘𝜎 < 0.5), but diverge 

from one another at moderate 𝑘𝜎. At shorter length scales and higher 𝑘𝜎 (not shown), the 𝜔̂(𝑘) 

converge into two groups: those that include a length scale associated with the bond length (freely-

jointed chain, non-overlapping freely-jointed chain, and discrete Koyama) and those that do not 
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(linear and cyclic Gaussian). Out of all the chain models shown, the discrete Koyama 𝜔̂(𝑘) best 

reproduces the simulation data for a standard coarse-grained bead-spring polymer (molecular 

dynamics, red triangles) at long and moderate length scales; this is expected as it has the most 

realistic local structure. The discrete Koyama 𝜔̂(𝑘) was derived to model a semi-flexible worm-

like chain and can be calculated for varying chain length and persistence length.27 

 
Figure 5: Wavenumber-scaled intra-molecular correlation function,(𝑘𝑑)2𝜔̂, versus the 

dimensionless wavenumber, 𝑘𝑑, showing analytical polymer 𝜔̂ currently implemented in 

pyPRISM. The reference data for the discrete Koyama, non-overlapping freely-jointed chain 

(NFJC), and molecular dynamics 𝜔̂ are from Figure 2 in Ref. 27. To match these reference data, 

we use 𝑑 = 𝜎𝐿𝐽 from Ref. 27 in scaling the axes.  The details of how these data are generated using 

pyPRISM can be found in the companion pyPRISM tutorial.196  

 

Each of the 𝜔̂ in Figure 5 are implemented in pyPRISM as simple Python classes, and new 𝜔̂ 

are easily added by copying and modifying these classes. It is also important to remind the reader 

that they are not limited to these analytical 𝜔̂ and that 𝜔̂ can be calculated from simulation using 

the Debye method outlined in Section II.C.  
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Figure 6: a) Shifted and normalized monomer-monomer collective structure factor, 
𝑆̂(𝑘)−1

𝑆̂(0)−1
, versus 

reduced wavenumber, 𝑘𝑑, prediction for a Gaussian, linear homopolymer melt of length, 

N=16 000 , as a function of melt density, 𝜌, as described in Figure 3 of Ref. 223. b) Monomer-

monomer pair correlation functions, 𝑔(𝑟), versus reduced separation distance, 𝑟/𝑑, of a Gaussian 

ring-polymer melt at reduced density, 𝜌𝑑3 = 0.9, with varying chain length, 𝑁, from Figure 2 of 

Ref. 26. The lines are the predictions from pyPRISM and the symbols are data extracted from the 

corresponding referenced literature. In both subplots, 𝑑 = 1.0 is the characteristic length scale of 

the system equal to the monomer site diameter. The details of how these data are generated using 

pyPRISM can be found in the companion pyPRISM tutorial.196  

 

Figure 6 reproduces PRISM predictions for linear (Figure 6a) and cyclic (Figure 6b) polymer 

melts. Figure 6a shows the shifted, normalized collective structure factor of linear Gaussian 

polymer chains in a melt as a function of melt density. The slope of the data is inversely related to 

a correlation length over which the total density fluctuations decay; this correlation length 

increases with increasing density. These data smoothly decay with 𝑘, rather than tracking local 

monomer density fluctuations, due to the Gaussian 𝜔̂(𝑘) used which does not account for 

intramolecular excluded volume. While the Gaussian chain assumption has been shown to be 
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reasonable for ideal, dense polymer melts, with pyPRISM we could easily have substituted the 

Gaussian 𝜔̂ for one of the others discussed in Figure 5. The system described in Figure 6b is also 

a homopolymer melt, but the architecture of the chains is cyclic rather than linear. In PRISM, 

switching from linear to cyclic polymers is achieved simply by swapping the linear Gaussian 𝜔̂(𝑘) 

for a ring Gaussian 𝜔̂(𝑘).26 We note that this ring Gaussian 𝜔̂(𝑘) is simply a toy-model for 

demonstration as modern simulations have shown that ring polymers are collapsed and non-

Gaussian.224 In addition to the Fourier and real-space pair correlation functions shown above, once 

the PRISM equations are solved for 𝐻(𝑟) and 𝐶(𝑟), a variety of structural and thermodynamic 

calculations can easily be calculated, such as isothermal compressibilities27 and equations of 

state.225, 226 pyPRISM makes this process simple by codifying these 𝜔̂(𝑘) and calculations in 

simple functions and classes. This highlights the power of PRISM in surveying the effect of 

molecular architecture in polymer and soft matter systems with minimal user effort and minimal 

use of computational resources.  

B. Polymer Nanocomposites (PNCs) 

There have been many PRISM-based theoretical studies focused on understanding how the design 

of the filler and matrix material in polymer nanocomposites (PNCs) lead to controlled 

morphologies and particle/filler dispersion in the matrix; much of this work is summarized in 

several recent reviews.87, 93, 99 Due to the nature of the formalism itself, PRISM is uniquely suited 

to the task of connecting the statistical pair correlations and interactions of the PNC components 

in the globally disordered or amorphous material state to the resultant PNC morphology.  

Simulation methodologies are challenged to equilibrate large PNC systems with long matrix chains 

because the relaxation times of these systems are often much longer than comparable simulations 

at lower densities and/or with short matrix chains. Results from PRISM calculations are, by 
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definition, equilibrium predictions, meaning that relaxation times and equilibration are not a 

problem. Furthermore, the problem of finite-size effects is not present in PRISM theory.  

The primary challenge of using PRISM theory to study PNCs is that it cannot predict the 

behavior of the phase-separated state, i.e., the aggregated morphology. This is particularly a 

problem at higher filler loadings where, even in the mixed state, the filler material can begin to 

order and crystallize. Often, attempting to use PRISM theory for systems or states where it is not 

applicable results in numerical convergence issues, but occasionally PRISM will produce non-

physical predictions instead. In the former case, it is often unclear whether the lack of convergence 

is due to numerical limitations or the lack of a true solution due to phase separation. Since 

understanding the physical and chemical origins of phase separation in PNCs is of primary interest, 

strategies must be employed to study PNC phase separation without directly doing calculations for 

phase separated systems.  While the standard approach for calculating spinodal phase boundaries 

with PRISM theory is to observe the divergence of the total collective structure factor at zero 

wavenumber at the phase boundary is approached,59 one can also employ approaches that avoid 

directly calculating the phase boundary at all. For example, one can infer phase behavior of a PNC 

system by analyzing the filler-filler potential of mean force. Alternatively, one can focus on 

systems where attractive particle-matrix interactions stabilize the dispersed morphology. Both 

strategies are demonstrated below. A secondary challenge is that polymer PNCs often have 

components with disparate size scales, e.g., large spherical fillers, which make solving the PRISM 

equations more difficult. This contrasts with polymer melts and blends where the site diameters 

are often close in value between site types.  
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Figure 7: a) Particle-particle site-site pair correlations, 𝑔𝑃𝑃(𝑟), versus reduced separation 

distance, 𝑟/𝑑, in a PNC at a total packing fraction,𝜂 = 0.4, with a freely-jointed chain matrix of 

length, 𝑁 = 100, with attractive polymer-particle interactions at an attraction strength, 𝜀 = 1.0, 

and with varying interaction range, 𝛼, as described in Figure 3 of Ref. 113. b) Particle-particle 

potential of mean force, 𝑤𝑃𝑃(𝑟), versus reduced separation distance, 𝑟/𝑑, between polymer 

grafted particles in a linear polymer matrix at a total packing fraction of 𝜂 = 0.35 for varying 

graft architecture and matrix length, 𝑁𝑀, as discussed in Figure 9 of Ref. 83. The lines are the 

predictions from pyPRISM and the symbols are data extracted from the corresponding referenced 

literature. In both subplots, 𝑑 = 1.0 is the characteristic length scale of the system equal to the 

monomer site diameter. The details of how these data are generated using pyPRISM can be found 

in the companion pyPRISM tutorial.196 

 

Figure 7a and 7b both describe nanocomposite systems with varying interactions and chain 

architectures. In Figure 7a, we show the particle-particle pair correlation functions for a system of 

matrix chains with spherical hard nanoparticles of diameter D=16d (i.e., 16 times the monomer 

site diameter, 𝑑); we note that PRISM theory has also been used to study fillers of diverse non-

spherical shapes.85, 98 In addition to the heterogeneity in size scales, this example also demonstrates 

pyPRISM’s ability to handle heterogeneous interaction potentials; in this system the hard sphere 

potential describes pairwise interactions for all species, excepting particle-polymer interactions 

which are modeled via an exponential attraction.113 It is the particle-polymer attraction that 



30 
 

stabilizes the dispersed state in this system and makes the PRISM calculation possible. The data 

in Figure 7a show how the ordering of the particles shift as the range of the attractive potential is 

varied. By analyzing the polymer-particle correlations (not shown), the changes in the particle-

particle correlations can be shown to be a result of complex surface wetting and particle-particle 

bridging behavior of the matrix chains. PRISM tracks the density fluctuations of all components 

over all length scales so that information about relative locations of various species can easily be 

determined as a function of interaction parameters.  

In contrast to the example in Figure 7a, the PNC system in Figure 7b has athermal interactions 

for all pairs of sites and has polymer chains permanently grafted to the particle surface. The 

purpose of these grafted chains is to tune the dispersability of the particles as a function of graft 

length and architecture. These calculations are conducted at infinite dilution of polymer grafted 

particles to calculate the effective particle-particle interactions, which can be analyzed to 

understand the dispersibility. In this case, analytical expressions for the graft-particle and graft-

graft 𝜔̂(𝑘) do not exist and these functions are calculated using the Debye approach and short 

simulations of a single grafted particle. As is shown by the shift of the minima of the potentials of 

mean force, PRISM captures the effect of varying chain length as a wetting-dewetting effect. This 

wetting-dewetting effect is connected to the graft to matrix chain length ratio which dictates the 

mixing-demixing of the graft and matrix chains and, in turn, the macrophase separation of the 

PNC.99 Furthermore, Figure 7b also demonstrates the power of the Debye approach, which allows 

us to make predictions for systems with complex comb-polymer architectures that do not have 

analytical expressions for 𝜔̂(𝑘).83 
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C. Block copolymers 

Another important class of systems that has been studied via PRISM are block copolymers. PRISM 

has been applied to understand the thermodynamic and structural implications of block 

architecture, sequence, and composition in a variety of copolymer melts and solutions.72, 75-82, 227 

For example, PRISM was used to demonstrate how the effective Flory-Huggins 𝜒 parameter (one 

of the many potential thermodynamic outputs of a PRISM calculation) and the peak scattering 

intensity in a block copolymer melt varied as a function of multiple parameters including 

temperature, chain length, composition, stiffness asymmetry, and others.77-81 In later work, 

structural quantities and estimates for the microphase spinodal temperature for copolymer 

solutions were studied as a function of temperature, chain length, and copolymer concentration.76, 

227 Despite these and many other successful applications of PRISM theory to block copolymers, 

there are several challenges associated with these systems. First, as described with polymer blends 

in Section IIB, molecular closures (rather than atomic closures) are in general necessary for 

accurately determining key thermodynamic and structural properties due to effects of the chain 

connectivity on the spatial correlations which are not accounted for in the atomic closures.52, 53, 80 

This requirement increases the complexity of implementing and solving the PRISM formalism. 

Additionally, phase-separated systems cannot be directly accessed with PRISM, rather, 

information about the phase transition and phase-separated structure must be inferred from the 

properties of the disordered state. Finally, due to the vast array of chain architectures, 

compositions, sequences, and chemistries that can be synthetically incorporated into block 

copolymers, analytical 𝜔̂(𝑘) are unlikely to be available for a given system of interest, often 

necessitating contact with simulations via single-chain or full-fledged simulations and/or 
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SCPRISM. Despite these challenges, there are continued efforts to probe the ways in which 

PRISM can provide useful and accurate predictions for block copolymer systems.82 

 

Figure 8: a) Collective partial structure factor between A (solvophilic) segments, 𝑆̂𝐴𝐴(𝑘), versus 

reduced wavenumber, 𝑘𝑑, for amphiphilic A-B diblock, A-B-A triblock, and B-A-B triblock linear 

polymers as described in Figure 5 of Ref. 82. b) Collective partial structure factor between B 

(solvophobic) segments, 𝑆̂𝐵𝐵(𝑘), versus reduced wavenumber, 𝑘𝑑, for amphiphilic A-B diblock, 

A-B-A triblock, and B-A-B triblock linear polymers as described in Figure 5 of Ref. 82. The total 

site density, 𝜌𝐴𝐵
𝑠𝑖𝑡𝑒 , is ≈ 0.19, and the strength of the B-B Lennard-Jones attraction is 𝜖𝐵𝐵 = 0.25. 

The lines are the predictions from pyPRISM and the symbols are data extracted from the 

corresponding referenced literature. In both subplots, 𝑑 = 1.0 is the characteristic length scale of 

the system equal to the monomer site diameter.  The details of how these data can be generated 

using pyPRISM can be found in the companion pyPRISM tutorial.196 
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In Figure 8, we replicate recent results demonstrating how PRISM can be used to study the 

self-assembly of amphiphilic block copolymers in solution.82 Interestingly, while the previous 

block copolymer work using the Gaussian thread model necessitated molecular closures as 

described above,76, 227 an attractive bead-spring model in implicit solvent conditions showed 

agreement between molecular dynamics simulations and PRISM theory using the atomic PY 

closure.82 We plot the diagonal terms of the collective structure factor matrix, 𝑆̂𝐴𝐴(𝑘) and 𝑆̂𝐵𝐵(𝑘), 

in Figure 8a and 8b respectively, for three block copolymer sequences in which the A block is 

solvophilic and the B block is solvophobic: 1) A12-B12 diblock copolymer, 2) A6-B12-A6 triblock 

copolymer, and 3) B6-A12-B6 triblock copolymer. In this implicit solvent model system, A-A and 

A-B interactions are purely repulsive (described using the Weeks-Chandler-Andersen potential), 

while B-B interactions are described with an attractive Lennard-Jones potential. These interactions 

mimic the amphiphilic nature of the copolymer and B block solvophobicity, which induces 

micellization. The 𝜔̂(𝑘) used in this work are obtained through single-chain molecular dynamics 

simulations and the Debye method, as analytical 𝜔̂(𝑘) expressions are not readily available that 

span the range of block copolymer sequences, compositions, and degrees of solvophobicity 

studied. A-B diblock polymers show stronger A-A and B-B correlations than their triblock 

counterparts, and in the triblocks, correlations in the mid-blocks are stronger than correlations in 

the end-blocks. Furthermore, the location of the microphase peak maximum (k*) provides 

information about the length scale of concentration fluctuations; the A-B diblocks have the lowest 

k*, suggesting that A-B diblocks form larger micelles, and this inference was confirmed by the 

simulations. 82 Finally, analyzing the trends in the 1/𝑆𝐵𝐵(𝑘∗) as a function of B-B interaction 

strength allows for the prediction of the onset of micellization, as discussed in detail in Ref. 82.   
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D. General Challenges and Limitations 

While the primary foci of this paper are the strengths and utility of PRISM theory, it is also 

important that we highlight some weaknesses and limitations associated with its use. As stated in 

the introduction, it is well known that using the classic, atomic closures to describe the phase 

behavior of polymer blends results in an incorrect scaling dependence of the spinodal temperature 

on chain length.66 While correct scaling is recovered by using thermodynamic perturbation 

theory50 or the molecular closures,52, 53 it is important to note that all closures are an inherent and 

unavoidable source of error in PRISM calculations due to the approximations invoked in their 

construction. For example, as true for even atomic liquids, both the HNC and PY closures have 

been shown to be thermodynamically inconsistent in that the system pressure calculated from 

separate virial, energetic, and compressibility routes is different.228 As stated in the approach 

section, pyPRISM helps users to assess the effect of the closure itself on the results by making it 

easy to switch between closures and/or implement new closures. 

When using PRISM, users must recognize the classes of systems and states that are appropriate 

for the theory. The version of PRISM theory implemented in pyPRISM is a liquid-state theory for 

isotropic, homogeneous polymer liquids. PRISM cannot directly predict the structure of an 

ordered, macrophase-separated, or microphase-separated material. PRISM’s foundation as a 

liquid-state theory also means that it is only applicable for systems with liquid-like structural 

correlations. While the exact definition of what is meant by liquid-like correlations is beyond the 

scope of this paper,228 this can generally be interpreted as an inability of PRISM theory to directly 

predict correlations for the glassy or crystalline states of polymer materials. On the other hand, 

many modern thermodynamic density functional theories for the spatially inhomogeneous 
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symmetry-broken state requires liquid state correlations as input, and PRISM theory is useful for 

this task.174-177  

Compared to simulation methods like molecular dynamics or Monte Carlo, PRISM theory 

produces only pair correlation functions rather than a coordinate trajectory. This means that all 

results about structure and phase behavior must be inferred from the numerical analyses available 

from PRISM theory rather than direct visualization. While this is not a unique challenge to PRISM 

and is shared by other metrologies (e.g., scattering, spectroscopy), the loss of visual analysis can 

be a difficult adjustment for those coming from a simulation background. Interestingly, self-

consistent PRISM partially mitigates this problem by providing trajectories of single molecules in 

a mean-field, medium-induced solvation potential. While these trajectories do provide a physical 

picture of the molecular building blocks of a polymer system, they do not describe how the 

components interact with one another and suffer from limitations inherent in the mean-field 

treatment of the medium, as discussed above.  

One of the challenges in solving the PRISM equations numerically is that the minimization 

functional (Equation 19) is extremely slow to converge and can be unstable with large fluctuations 

in Δ that can result from small changes in Γ𝑖𝑛(𝑟). The most important factor in determining the 

ability of pyPRISM to solve the PRISM equations is the quality of the initial guess Γ𝑖𝑛(𝑟) provided 

to the solver. Unfortunately, a guess for Γ𝑖𝑛(𝑟) is non-trivial to provide as it requires some 

knowledge of 𝐶(𝑟) and 𝐻(𝑟) before the PRISM equations are solved. A route towards producing 

improved guesses for Γ𝑖𝑛(𝑟) is to solve a system that is ‘nearby’ in phase or configuration space. 

For example, pyPRISM has difficultly converging for the N=100 case in Figure 6b using a guess 

of Γ𝑖𝑛(𝑟) = 0, but can relatively easily converge for the N=2 000 case on the same guess. To solve 

for the shorter polymer system, we simply use the final Γ𝑖𝑛 result from the N=2 000 solution as the 
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guess for Γ𝑖𝑛(𝑟) and pyPRISM converges. Similarly, the results for the D=16d diameter 

nanoparticles in Figure 7a cannot be directly solved from a naive initial guess but can be achieved 

iteratively by solving sequentially larger nanoparticles starting from D=1d. pyPRISM makes this 

process simple, as all details about the system and PRISM solution are held in memory and can 

easily be modified or utilized in a loop. For all examples shown this process is clearly laid out in 

the provided example scripts.  

V. Summary 

pyPRISM is an open-source Python framework that aims to reduce the barrier to using PRISM 

theory in the study of complex soft-matter based materials. While PRISM theory has been 

successfully applied to predict the equilibrium thermodynamic and structural behavior of a large 

array of soft-matter systems, its overall use has been limited compared to other simulation-

techniques like molecular dynamics and Monte Carlo. While we cannot identify the exact reasons 

for this lack of use, it is likely related in part to the complexities involved in setting up and solving 

the PRISM formalism and issues associated with the closures as described in section IV.D. 

pyPRISM provides a straightforward interface to posing PRISM problems and data structures that 

simplify doing the mathematics associated with PRISM theory. Furthermore, by codifying our 

approach in an open-source package with both documentation and knowledgebase materials hosted 

on the repository web-site,195-197 we help to ensure that pyPRISM users produce correct and 

accurate results and provide a platform for users to easily contribute, create, and modify closures, 

numerical solution algorithms, and analyses. Overall, we hope that pyPRISM will nucleate a 

community of soft-material researchers that use PRISM theory to study, design, and understand 

novel polymer systems.  
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