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A quantity value, such as 5 kg, consists of a number and a reference (often an International System of Units 

(SI) unit) that together express the magnitude of a quantity. Many software libraries, packages, and ontologies 

that implement “quantities and units ” functions are available. Although all of them begin with SI and associated 

practices, they differ in how they address issues such as ad hoc counting units, ratios of two quantities of the same 

kind, and uncertainty. This short article describes an architecture that addresses the complete set of functions in 

a simple and consistent fashion. Its goal is to encourage more convergent thinking about the functions and the 

underlying concepts so that the many disparate implementations, present and future, will become more consistent 

with one another. 
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. Introduction 

In the scientific conventions of the early 19th century, mathematical

perations applied only to numbers, and units of measure were just in-

ormation that described what the numbers represented. This belief gave

ay to the practice of including units of measure within the scope of the

athematical operations, thereby formalizing the method of working

ith combinations of units. The resulting quantity calculus methodically

etermines the units of derived quantities and protects us from the error

f computing nonsensical combinations of quantities that have different

imensions [2] . For example, if a property line is moved by 3 m, we are

llowed to add 3 m to the width of the lot, but we cannot add 3 m to

he lot size that is measured in m 

2 . We must multiply 3 m by the depth

f the lot ( x m) to obtain the change to the lot size (3 x m 

2 ). 

Many software libraries and packages that implement “quantities

nd units ” (Q&U) functions are available; for example: 1 

• Mathematica, quantities and units in the Wolfram language [3] ; 
• Maxima package ezunits [4] ; 
• Modelica, physical variables and SIunits library [5] ; 
• LabVIEW unit labels [6] ; 
• MathCad units [7] ; 
• GNU Units [8] ; 
• UDUNITS [9] ; 
☆ This article is an abbreviated and revised extract from a National Institute of Standards and  
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vailable for the purpose. 

ttps://doi.org/10.1016/j.csi.2017.10.002 

eceived 9 August 2017; Received in revised form 27 September 2017; Accepted 10 October 20

vailable online 13 October 2017 

920-5489/Published by Elsevier B.V. 
Technology (NIST) technical report with the same title [1] . Official contributions of NIST

• R packages for units of measure (e.g., units and udunits2 [10] ); 
• Ruby gems for units of measure (e.g., ruby-units [11] , phys-units

[12] , and unitwise [13] ; there are at least 10); 
• C++ libraries for units of measure (e.g., Boost.Units [14] ); 
• F# units of measure (a built-in language feature) [15] ; 
• Python package numericalunits [16] ; and 
• Julia packages SIUnit [17] and Unitful [18] . 

A comparable number of formal models and ontologies related to

uantities and units exist; for example: 

• Conceptual model of the International Vocabulary of Metrology

(VIM) [19, Annex A] ; 
• Dybkaer ’s Ontology on Property [20] ; 
• Unified Code for Units of Measure (UCUM) [21] ; 
• Quantities and Units of Measure Ontology Standard (QUOMOS)

[22] ; 
• Units Markup Language (UnitsML) [23] ; 
• Quantities, Units, Dimensions, and Data Types Ontologies (QUDT)

[24] ; 
• Quantities, Units, Dimensions, Values (QUDV) in Systems Modeling

Language (SysML) [25] ; and 
• Ontology of units of Measure and related concepts (OM) [26] . 
17 
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Fig. 1. Values in a software implementation of quantity calculus. 

Fig. 2. Propagation of the distributions of base values through a function to the distribu- 

tion of a derived value. 
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operating algebraically on the functions themselves. 
Although all of the above libraries, packages, models, and ontologies

egin with the International System of Units (SI) [27] and associated

ractices, they differ in how they address issues such as ad hoc counting

nits, ratios of two quantities of the same kind, and uncertainty. These

ssues and others that have undermined the functionality and consis-

ency of software for metrology have been discussed in related work

7,28] . 

This article describes an architecture that addresses the complete set

f functions for Q&U software in a simple and consistent fashion. The

oal is not to produce yet another implementation or framework to com-

ete in an already overcrowded arena, but to identify the major archi-

ectural features that have proven to be important or sorely needed in

his author ’s experience, and thereby encourage more convergent think-

ng and improved compatibility among different implementations in the

uture. 

The building blocks of the architecture are: 

• A catalog of recognized units and numerical prefixes; 
• Values (in the measurement sense), including derived values and

compound values; 
• Probability distributions to characterize uncertain values, with au-

tomated propagation of distributions to derived values; and 
• An extensible type system for specializations of the SI unit 1. 

Section 2 through Section 5 address each of these in turn. Additional

ecommendations concerning numeric data types are given in Section 6 .

ection 7 summarizes. 

. Units 

Quite simply, one cannot begin to implement quantity calculus with-

ut first having a catalog of units that the software will recognize and re-

er to. We need not belabor the point, but all Q&U software must at least

ecognize the standard base units, derived units, and numerical prefixes

k, M, etc.) that are identified in the SI brochure [27] and be capable of

onverting “non-coherent ” units to their standard equivalents. 

. Values 

The following terms are defined by the 3rd edition of the VIM [19] .

quantity : property of a phenomenon, body, or substance, where the

property has a magnitude that can be expressed as a number and a

reference. 

[The “reference ” is typically an expression in terms of SI units.] 

quantity value : number and reference together expressing magni-

tude of a quantity . 

measurement result : set of quantity values being attributed to a

measurand together with any other available relevant information.

[The “set of quantity values ” is intended to accommodate uncer-

ainty, given that a single true quantity value generally cannot be deter-

ined.] 

A value in a software implementation of quantity calculus represents

ne or more measurement results with one or more quantity value

ariables. Those with only one such variable (the usual case) are simple

alues ; the rest are compound values . 

A base value represents immediate results of a measurement. A de-

ived value is the result (output) of a function of other values (the inputs).

Figure 1 illustrates the concepts. On the left side, two base values,

 speed expressed in meters per second and a duration expressed in

econds, are input to a function that multiplies them together, producing

 derived value that is expressed in meters. On the right side, polar

oordinates are given as an example of a compound value, because in

ost applications it is necessary to keep the radial coordinate and the

ngular coordinate together. 
145 
Like the catalog of SI units, simple values and value functions are es-

ential to all software implementations of quantity calculus. Compound

alues, on the other hand, are not universally supported. 

In the architecture described by this article, values are represented

y distributions, as explained in the next section. 

. Characterizing and propagating uncertainty 

Uncertainty too often is completely ignored or is handled in a limited

ay in available Q&U software. 

Expressing uncertainty using standard deviations and multiples

hereof involves simplifying assumptions that are unnecessary when

uantity calculus is automated. The more general approach is to propa-

ate probability distributions (see Figure 2 ) [29,30] . Probability distri-

utions replace both a point estimate and its standard uncertainty. They

ay be continuous (for dimensional quantities and ratios) or discrete

for counted quantities). They may be univariate (for simple values) or

ultivariate (for compound values). They may be unimodal (for simple

stimates) or multimodal (for when a single estimate would be mislead-

ng). And if a user wishes to have a quantity value with zero uncertainty,

uch as a trivial count or a defined constant, it can be assigned a degen-

rate (deterministic) distribution that has only one possible value. 

Propagation of distributions can be implemented in two distinct

ays: 

1. A distribution is a black box software function that exposes only the

interface to get sampled quantity values. A quantity value is char-

acterized by a histogram or kernel density plot derived from a suf-

ficiently large sample, and an interval is produced using statistical

methods. When a derived value is sampled, its value is calculated

using samples from other values as inputs to its function. 

2. A distribution is a symbolic mathematical function that is either rep-

resented directly by the software or suitably approximated (e.g., with

Chebfun [31] ). Sampling is not required; instead, a quantity value

is plotted directly, and intervals and derived values are derived by
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Fig. 3. Example types of non-dimensional units. 
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A given system could implement both approaches. For example, the

lack box approach could be used as a fallback when it becomes infea-

ible to represent or derive a distribution algebraically. 

Existing implementations in software include Uncertain ⟨T ⟩ [32] , the

IST Uncertainty Machine [33] , and many others [34] . Unfortunately,

mplementations are seldom pre-integrated with Q&U software. 

. Subtyping unit 1 

A quantity in SI can be stated as the product of a numerical value

nd a unit of measurement. The unit is derived from the seven SI base

uantities, which measure seven different physical dimensions. How-

ver, many kinds of quantities have no extent in any of those dimen-

ions. For example, a counted quantity is a number of some distinguish-

ble kind of thing, such as 32 bits. Ratios of two quantities of the same

ind, such as mass fractions (kg/kg), are in another major category of di-

ensionless quantities that includes all of what are variously referred to

s ‘characteristic numbers, ’ ‘similarity criteria, ’ and ‘composed dimen-

ionless quantities ’ [35] . 

The SI unit for dimensionless quantities is the special unit 1, which

ither is derived from base quantities by raising them to the power 0

r is an implicit, zeroth base quantity [19,27] . Regardless of its deriva-

ion, when this same unit is used for all dimensionless quantities, the

ormalisms of quantity calculus will not detect or prevent mistakes such

s converting an amount of data (measured in bits) into an angle (mea-

ured in radians), as might occur if it were erroneously supplied as the

nput to a trigonometric function. Such mistakes might go undetected if

hey were embedded within a more complex computation. The risk of

onfusing different kinds of quantities that happen to be expressed in

he same units is not limited to dimensionless quantities, but it is worse

ecause of the sheer number of different kinds of quantities that all must

efer to the unit 1. 

Unfortunately for computer science, “amount of data ” is not an SI

imension, and bits and bytes are not SI units. To avoid user surprise

t the canonical treatment of amounts of data and other dimensionless

uantities in SI, software libraries and packages that implement Q&U

unctions often apply workarounds. Different software has applied dif-

erent workarounds, creating subtle problems for transfer of scientific

ata. 

Here, again, we seek to encourage more convergent thinking by in-

roducing a sufficiently general model. It is a formalization, extension,

nd modification of an approach that was initiated by Mohr and Phillips

36] . The idea is to extend quantity calculus to support subtyping of the

pecial unit 1. This enables traceability to SI to occur not only through

irect reference to SI units (the identity relationship), but also through

ubtyping (the generalization/specialization relationship). 
146 
The top levels of a type system that interprets dimensionless units are

hown in Figure 3 . Following Ref. [36] , countable things are subtyped

nto entities and events. Although certain terms in natural language refer

imultaneously to entities and events, it is important in a measurement

ontext to distinguish which is being counted. For example, the number

f operations defined in a software application ’s source code (entities)

as nothing to do with the number of operations that it performed at

un time (events). 

While a basic type system is simple enough to implement, usually

ne should exploit an existing facility such as user-defined types in a

rogramming language (e.g., C++ classes), description logic in an on-

ology language, or even a graph theory library to avoid building yet

nother instance of this abstraction. The most appropriate mechanism

ill depend on the idioms and interoperability needs of the particular

nvironment being served. 

For a complete discussion of this model, related work, and alterna-

ive approaches, please see Ref. [37] . 

. Numeric data types 

It is unfortunately common in scientific applications for all numeric

alues to be represented using floating-point numbers as the catch-all

ata type. While additional numeric types and arbitrary-precision arith-

etic are widely implemented, their integration with scientific applica-

ions in general and quantity calculus in particular is inconsistent. 

In addition to the basic types of floating point, signed integer, and

nsigned integer, the following constructed types are frequently useful:

• Fixed-point numbers, specifically integers that are scaled by pow-

ers of 10, for exact representation of amounts of money and other

quantities where the decimal places are inflexible; 
• Rational numbers, represented as the fraction of two integers, for

exact representation of values like 1/3 that floating-point numbers

can only approximate; and 
• Complex numbers ( a + bi ), represented using two numbers of any of

the preceding types. 

Basic types should be available in both the fixed sizes that are

atively supported by the CPU and in arbitrary-precision form. The

onstructed types, in turn, should be usable with either fixed-size or

rbitrary-precision representations. 

Finally, it should be possible to enable and handle exceptions for

umeric overflow, underflow, etc. The user should not need to instru-

ent every numeric calculation at the application level to try to detect

r prevent these errors, which are properly detected and reported at the

rithmetic-logic level. 
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. Conclusion 

This short article described an architecture that addresses the com-

lete set of functions for quantities and units in a simple and consistent

ashion. Hopefully, this will encourage more convergent thinking about

he functions and the underlying concepts so that the many disparate

oftware implementations, present and future, will become more con-

istent with one another. 
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