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Abstract. We analyze the performance of classical and quantum search algorithms
from a thermodynamic perspective, focusing on resources such as time, energy,
and memory size. We consider two examples that are relevant to post-quantum
cryptography: Grover’s search algorithm, and the quantum algorithm for collision-
finding. Using Bennett’s “Brownian” model of low-power reversible computation,
we show classical algorithms that have the same asymptotic energy consumption
as these quantum algorithms. Thus, the quantum advantage in query complexity
does not imply a reduction in these thermodynamic resource costs. In addition, we
present realistic estimates of the resource costs of quantum and classical search,
for near-future computing technologies. We find that, if memory is cheap, classical
exhaustive search can be surprisingly competitive with Grover’s algorithm.
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1 Introduction

1.1 Motivation

Quantum computers are believed to solve a number of important problems, in areas such
as number theory, physical simulation and combinatorial search, asymptotically faster than
classical computers [17]. How large is this quantum speedup? There is now a rich body of
literature that analyzes different quantum speedups, using idealized models of computation,
such as the quantum circuit model, and quantum oracle models (i.e., quantum query
complexity). In most of this work, the models of computation are intentionally made simple,
in order to allow rigorous analyses; for instance, in quantum query complexity, one only
accounts for the number of oracle queries made by the algorithm, while disregarding the
actual time-complexity of the algorithm.

In order to obtain more realistic analyses of quantum speedups, one must consider
more realistic models of quantum computation, which take into account time-complexity
(not just query complexity), as well as possible time-space tradeoffs due to the use of
parallel processors, and restrictions on the connectivity of the different components of the
computer. There have been a few results of this type [8, 5, 10, 4]. Some of these results
suggest that practical quantum speedups may fall short of the most idealized theoretical
predictions.

In this paper we give a new analysis of some fundamental quantum speedups, from
the perspective of thermodynamics. A computer can be viewed as an engine that converts



energy into computational work; and one may ask how much energy is consumed by running
a particular algorithm. To answer this question, one must specify the model of computation.
Following Bennett [7], one can consider three different models:

1. “Conventional” computation (as in present-day electronic computers) uses operations
that are irreversible and deterministic. Since the operations are irreversible, at tempera-
ture T , each operation must dissipate at least kT (ln 2) of energy, where k is Boltzmann’s
constant. (This is the “Landauer limit.”)

2. “Ballistic” computation (as in billiard ball models [11]) uses operations that are re-
versible and deterministic. Since the operations are reversible, in principle, they can
dissipate zero energy. The computer is assumed to be isolated from all sources of ther-
mal noise, hence energy barriers are not needed to prevent errors.

3. “Brownian” computation (as in DNA computation [6] and adiabatic circuits [3]) uses
operations that are reversible and stochastic. Each operation dissipates a small amount
of energy ε, which may be less than kT , so that the computation “drifts” forward, even
in the presence of strong thermal noise.

By using reversible operations, models (2) and (3) are able to compute using an amount
of energy per operation that is below the Landauer limit. However, it has been argued
that model (2) is unrealistic, because it cannot be made fault-tolerant, i.e., it is sensitive
to small errors when performing a long computation. In this paper, we use model (3), the
Brownian model of computation, as our standard.

We consider quantum and classical algorithms for unstructured search and collision
finding. Using the Brownian model of computation, we analyze the cost of these algo-
rithms in terms of time, energy consumption, and memory size. The motivation for this
study comes from post-quantum cryptography. For instance, an algorithm for unstructured
search can be used to recover the secret key of a block cipher, given a sufficient number
of plaintext-ciphertext pairs; while an algorithm for collision-finding can be used to com-
promise the security of a cryptographic hash function. In order to design block ciphers
and hash functions that achieve sufficiently high levels of security, one must make detailed
estimates of the resources required to carry out both quantum and classical cryptanalytic
attacks.

1.2 Our Results

For the problem of collision finding, previous work suggested that quantum algorithms
were unlikely to provide an asymptotic advantage in terms of circuit size (despite using
fewer oracle queries) [8]. Our thermodynamic analysis leads to a similar conclusion. We
compare in detail the classical collision finding algorithm of Van-Oorschot and Wiener
[21], and the quantum collision finding algorithm of Brassard, Høyer, and Tapp (BHT
[9],) including parallelized generalizations of BHT. We find that the energy consumption
required to search for collisions on a range of size N using a memory of size M < O(N) in
time t is O

(
N
Mt

)
, regardless of the choice of algorithm.

While we focus on the collision finding problem, it should be noted that similar analysis
may also be applied to the Claw Finding problem, which seeks to find collisions between
two functions with domain sizes N1 and N2 . A quantum algorithm was proposed by Tani
for this purpose [19]. This may be compared to the algorithm given by Van-Oorschot and
Wiener [21]. In this case, the energy consumption required to find a claw using a memory



of size M < O(N1 +N2) in time t is O
(
max

(
N1N2

Mt ,
N1

t ,
N2

t

))
for the quantum algorithm,

and O
(

(N1+N2)3

M2t

)
for the classical algorithm.

For the problem of unstructured search, it was known previously that Grover’s algo-
rithm does achieve a quadratic speedup over classical exhaustive search, both in terms of
circuit size, and in terms of oracle queries. Quite surprisingly, we do not find a quantum
advantage using our thermodynamic analysis. On the contrary, we find that a Brownian
implementation of classical random search can achieve the same asymptotic performance
as Grover’s algorithm (up to logarithmic factors), where we measure the performance in
terms of running time, memory size and energy consumption.

To show this, we use a variant of the Brownian model, where certain steps in the
computation are unpowered, in the sense that we set ε = 0, so that no energy is dissipated,
and the computation is simply driven by random thermal noise, with equal probability
of moving forwards or backwards. Energy consumption is instead dominated by memory
initialization costs. This model may be of independent interest. Our analysis shows that,
in order to find a preimage within a domain of size N using a memory of size M in time
t, both Grover’s algorithm and unpowered classical search require an energy consumption
of O(Nt ), regardless of the memory size.

Finally, we turn to a more detailed comparison of Grover’s algorithm and (powered and
unpowered) classical search. Unlike the case for quantum versus classical collision search,
here there are some plausible reasons why Grover’s algorithm may be more efficient than
classical search in practice. In particular, for unpowered preimage search, the indepen-
dence of memory size and energy consumption relies on a heuristic assumption of scale
invariance. If we remove this assumption, and instead assume that unpowered preimage
search can only be efficiently implemented at a fixed temperature scale T , we find that un-
powered preimage search is significantly more memory intensive than Grover’s algorithm.
Additionally, unpowered preimage search is less efficient than Grover’s algorithm when
oracle queries have a large memory complexity, although this is only a minor problem in
the typical scenario where the memory complexity of oracle queries scales logarithmically
with N .

1.3 Near-Future Computing Technologies

We end by making some quantitative estimates, based on the hypothetical scaling of near-
future computing technologies. This is necessarily somewhat speculative. Nonetheless, we
argue that one can draw some rough conclusions regarding applications such as brute-force
cryptanalysis of block ciphers, which takes on the order of 280 or 296 operations, and thus is
comfortably in the asymptotic regime. By making rough calculations based on asymptotic
scaling, one can draw some conclusions that do not depend too much on any particular
type of qubit, or any particular scheme for quantum error correction.

Our results suggest that the cost of constructing computing hardware (e.g., memory
and CPU’s) is a major factor that determines the practical advantage of running Grover’s
algorithm (as compared to classical brute-force search). If memory and CPU’s are cheap,
then one can use classical search and still be competitive with Grover’s algorithm, simply
by building enormous data centers. This seems obvious, on a qualitative level. Our quan-
titative estimates show that, in fact, classical computing technology can do surprisingly
well. In particular, it is possible to envision a possible future state of technology where
unpowered classical preimage search could outperform both Grover search and powered



classical search. Such a scenario could occur if memory costs could be brought very close
to fundamental thermodynamic limits, but quantum computers could not be implemented
without very low operating temperatures and expensive error correction.

This paper is organized as follows. In Sections 2 and 3, we describe the model of
Brownian computation, and its unpowered variant. In Sections 4 and 5, we give simple
analyses of quantum and classical algorithms for collision search and preimage search,
focusing on energy costs and time-space tradeoffs. In Sections 6 and 7, we investigate
the cost of preimage search at constant temperature and power, and we estimate the
cost of implementing the oracle that checks each solution. Finally, in Section 8, we make
some detailed estimates of quantum-versus-classical speedups for some hypothetical future
computing technologies, and in Section 9, we conclude.

2 Powered Brownian Computation
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Fig. 1. A Brownian computation is described by a logically reversible circuit, whose gates are to
be applied in some specified order. The dynamics of the Brownian computer are described by a
random walk along a 1-dimensional chain.

Brownian computers are assumed to operate near thermal equilibrium at a finite tem-
perature, T . A program for a Brownian computer consists of a logically reversible circuit,
whose gates (denoted g1, g2, . . . , gm) are to be applied in some specified sequential order.
The time-evolution of the Brownian computer may be described as a random walk on a
1-dimensional chain, where the i’th vertex corresponds to the state of the computation
after the first i − 1 gates g1, g2, . . . , gi−1 have been applied. A forward step from vertex i
to vertex i+ 1 corresponds to applying the i’th gate gi, and a backwards step from vertex
i + 1 to vertex i corresponds to undoing the i’th gate gi. (See Figure 1.) In the absence
of any driving force, forward and backward steps occur with equal probability. In order
for a computation to proceed forward at a nonzero rate, a driving force, dissipating an
energy of ε per gate, is imposed. This causes forward steps to occur with e

ε
kT times greater

probability than backward steps, resulting in a net forward computation rate proportional
to ε

kT , for ε small compared to kT .
Note that the Brownian model of computation can be generalized to work with quantum

circuits, provided that all operations are unitary, and all measurements are deferred to the



end of the computation. Essentially, this amounts to running a quantum computer with a
classical controller that behaves in a Brownian fashion.

2.1 Energy Consumption and Running Time

For the Brownian model, we can derive an asymptotic scaling for the relation between
per-gate time and per-gate energy, assuming a fixed temperature T . Strictly speaking this
analysis can only be extended to a range of possible temperatures under an assumption
that physics is scale invariant within that range. However, we can give a somewhat heuristic
argument specifying a lower bound, independent of temperature, on the per-gate energy ε
required to perform G sequential operations in time t. Briefly, if we assume that Brownian
motion within a reversible circuit can be modeled as a series of ballistic motions, each
with typical energy scale kT and each completing O(1) gates, then we can apply the
Margolus-Levitin theorem [16] to bound the total rate at which forward and backward
transitions occur in the circuit. This suggests that the rate at which gates are traversed
due to Brownian motion is no more than 4kT

h . Combining this with the expectation that

approximately G · kTε total transitions are required to complete G sequential operations,
we obtain the bound:

t > G · kT
ε
· h

4kT
=
hG

4ε

or equivalently:

ε >
hG

4t
.

As the above argument is somewhat heuristic, for the remainder of this paper we will
ignore the small unitless factors in the above formula, and simply use ε ∼ ~G

t when we
need to give a concrete estimate of the dissipation energy required to perform a serial
computation at a desired rate.

2.2 Fault Tolerance

Some additional costs are required in order for Brownian computation to be achieved
fault-tolerantly. Energy barriers must be imposed to prevent transitions to physical states
outside the reversible circuit, representing the prescribed computation path. In order to
suppress the probability of such undesirable transitions so that a circuit of size G can be
completed with high probability, the size of these energy barriers must at least be on the
order of kT ln(kTε · G). Additionally, dissipating a “latching” energy of about kT ln(kTε )
during the computation’s final step is required to suppress backwards transitions once the
computation has reached its halting state. These costs are described in detail in [7].

The above costs may, however, be assumed to be negligible in a number of important
cases: In particular, the latching energy will be negligible when ε

kT is at least logarithmi-
cally more than 1

G . Additionally, establishing energy barriers to non-computational paths
is likely to be a negligible cost when a description of the circuit can be expressed in a
physically compact form, for example, using looping constructs. More precisely, if we as-
sume that the circuit can be compressed into a program with memory requirement m0

(including both the memory required to store the program and the data it acts on), then



the cost of imposing energy barriers should be on the order of m0 · kT ln(kTε ·G). This cost

is negligible as long as ε
kT is significantly larger than e−

G
m0 .

In fact, the initialization cost may be less than this, since it may be more proper to
think of the initialization process as rearranging the energy barriers already present in the
available raw materials for constructing our computer. The cost is then determined by the
Landauer limit and the information content of the circuit, including appropriately large
energy barriers. Since the size of these barriers does not need to be precislely specified,
but merely bounded above kT ln(kTε ·G), the information content of the circuit may grow
sublogarithmically with G. All we can say with confidence is that the information content
of the circuit is at least m0, and therefore the initialization energy is at least on the order
of m0 · kT .

Finally, it is worth commenting on the feasibility of Brownian computation for quan-
tum computers. Brownian computation was originally proposed as a way to improve the
thermodynamic efficiency of classical computation. It should be noted that many of the
techniques that have been proposed for fault tolerance in quantum compuation are thermo-
dynamically irreversible, in particular, syndrome measurement and magic state prepara-
tion. These techniques cannot be used in a Brownian mode of computation. However, there
are some proposed techniques, such as the use of Fibonacci anyons for universal quantum
computation [20], that may be able to achieve fault tolerance without requiring significant
thermodynamic irreversibility (although even in such cases, the cost of fault tolerance is
believed to be polylogarithmic in the size of the circuit1.) We will therefore optimistically
assume that quantum operations can be implemented in a Brownian fashion.

3 Unpowered Brownian Computation

For some of our results, we will use a variant of the Brownian model of computation, where
the intermediate steps in the computation are unpowered. More precisely, we dissipate
energy when initializing the state of the computer, and when reading the final output; but
for the intermediate steps in the computation, we set ε = 0, so that no energy is dissipated,
and the computation has equal probability of moving forwards or backwards, driven by
random thermal noise. (In other words, the computation is a random walk without any
“forward drift.”) We now describe this in more detail.

Formally, the computation is described by a random walk on a graph G = (V,E),
together with a marked vertex vstart, a set of marked vertices Vfinish ⊂ V , and an energy
threshold εth > 0. The computation proceeds as follows:

1. The computer initializes its memory. (This dissipates εthsmax units of energy, where
smax is the size of the computer’s memory.) Then the random walk begins at vstart.

2. At every step, the walk moves from its current position v to a neighboring vertex
w ∈ Γ (v) chosen uniformly at random.

3. When the walk reaches a vertex v that belongs to the set Vfinish, we say that the
computation has returned a result, which consists of the vertex v. (To read out this
result, the computer dissipates εth log2 |V | units of energy.)

1 In addition to the need for logarithmic-size energy barriers, shared with the classical case, only
a discrete subset of the continuous space of quantum gates can be implemented fault tolerantly
in proposed systems. The remaining gates must be approximated, and the cost of doing this is
believed to be logarithmic in the inverse of the approximation error. See e.g. [15]



We assume that the graph G, and the energy threshold εth, have a few specific proper-
ties. Then computations of this type can be implemented by the same physical mechanisms
as in the usual Brownian model. Specifically, we make the following assumptions:

1. We assume that the graph G has constant degree (say, at most 10), so that every step
in the random walk can be implemented in constant time, by coupling the computer
to a noisy environment.

2. We assume that the energy threshold εth is large enough so that auxiliary data stored
in the computer’s memory will remain stable for the duration of the computation. (In
particular, this ensures that, once the random walk reaches a vertex in the set Vfinish,
it will stay there for the remainder of the computation.)

To illustrate this model of unpowered Brownian computation, we now consider some
representative examples, and we analyze their energy consumption and running time.

3.1 Energy Consumption

First, consider an unpowered Brownian computation that uses a memory of size smax, and
runs in τmax steps. We argue that the total energy consumption (call this E) grows almost
linearly with smax, but only logarithmically with τmax. This is in contrast to powered
Brownian computation, where E grows linearly with the running time,2 since energy is
dissipated at every step.

This can be seen as follows: Note that we have E = O(smaxεth). We need to choose εth

large enough so that errors will not occur in the computer’s memory while it is running.
We can estimate the probability of having an error (call this perr) as follows: suppose that
at temperature T , errors occur independently on each bit of the memory, at each step of
the computation, with probability exp(−εth/kT ). Then perr can be bounded by

perr ≤ τmaxsmax exp(−εth/kT ). (1)

For example, for any c0 > 0, if we set the energy threshold εth to be

εth = kT (ln(τmaxsmax) + c0), (2)

then we have that perr ≤ exp(−c0). Thus, in order to make perr small, it is sufficient to set
εth to grow logarithmically with τmax and smax. Furthermore, by increasing εth, we can
force perr to drop exponentially.

3.2 Running Time

We now consider three examples of unpowered Brownian computation (see Figure 2). We
will compute the expected running times of these computations; that is, we let τfinish be the
first time when the random walk reaches a vertex in Vfinish, and we compute the expected
value E(τfinish), averaging over the coin flips of the random walk.

In general, we expect that unpowered Brownian computation will be slower than pow-
ered Brownian computation. However, this slow-down varies depending on the structure of
the computation. In particular, we will show that sequential computations have a quadratic
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Fig. 2. Examples of unpowered Brownian computations: (left) a sequential computation of length
`, (middle) a branching computation of depth h, (right) a branching computation, followed by a
sequential computation on each leaf.

slow-down, whereas branching computations incur a slow-down that is only a logarithmic
factor.

First, we consider a sequential computation of length `. Here, the graph G is a chain
of `+ 1 vertices. The expected running time of the computation is the expected time for a
random walk to travel from one end of the chain to the other. A straightforward calculation
[2] gives

E(τfinish) = `2. (3)

This is consistent with the intuition that a random walk on a 1-D chain will take ∼ r2 steps
to move a distance r. Thus, for sequential computation, unpowered Brownian computation
is quadratically slower than powered Brownian computation.

Second, we consider a branching computation, which begins at the root of a binary tree
of height h, and finishes when it hits a particular marked leaf of the tree. The expected
running time can be upper-bounded as follows (Example 5.14 in [2]):

E(τfinish) ≤ 2(|V | − 1)h < 4 · 2hh. (4)

For comparison, a deterministic search of the tree would take time O(2h). Hence, for
branching computation, unpowered Brownian computation is only slightly slower than
powered Brownian computation (they differ by a factor of O(h), which is logarithmic in
the total number of vertices).

Finally, we will consider a computation that consists of h branching steps, followed
by ` sequential steps. Such a computation can be used to perform brute-force search: the
computation first branches to select one of 2h possible candidate solutions, then it does `
sequential operations to check whether that solution is correct. The expected running time
can be upper-bounded as follows (Theorem 5.20 in [2]):

E(τfinish) ≤ 2(|V | − 1)(h+ `) < 2 · 2h(`+ 2)(h+ `). (5)

For comparison, a deterministic search of the tree would take time O(2h`). Hence, for brute-
force search, this shows that unpowered Brownian computation is only slightly slower than

2 Note, however, that powered Brownian computation may have a shorter running time than
unpowered Brownian computation; we will discuss this in the next section.



powered Brownian computation, provided that `� 2h (i.e., one can quickly check whether
a candidate solution is correct).

These observations suggest that branching computation (in the unpowered Brownian
model) can be a useful tool for solving search problems. By using many parallel processors,
one can make a natural time-space tradeoff. Moreover, in this situation, an unpowered
Brownian algorithm can beat a powered Brownian algorithm, because its running time is
not much worse (since most of the computation is branching rather than sequential), and
its energy cost can be quadratically better (since the energy consumption scales linearly
with space, but only logarithmically with time). As we will see in Section 5, this can lead
to classical search algorithms whose energy cost is competitive with Grover’s algorithm.

4 Collision Search

The best known classical algorithm for finding collisions in a random function is the parallel
collision search algorithm of Van Oorschot and Wiener [21]. If the range of the function
is of size N , then, given M parallel processes each with memory O(1) the algorithm can

find a collision in expected serial depth O(
√
N
M ). The communication cost between threads

is negligible compared to overall computational costs as long as M is smaller than
√
N by

at least a logarithmic factor.

An improvement over classical collision search (and claw finding) has been claimed by
Brassard, Høyer, and Tapp (BHT) [9]. Their algorithm is a serial process consisting of

O(N
1
3 ) operations and requires a memory of size N

1
3 . This can be generalized to arbitrary

memory size, M < O(N
1
3 ), giving a serial complexity of O

(√
N
M

)
. The BHT algorithm

may be further generalized to a parallel algorithm involving p parallel processors and a

shared memory M , where p < M < O
(

(Np)
1
3

)
.3 in this case, the serial complexity is

O
(√

N
Mp

)
.

Bernstein [8] has observed that the BHT algorithm, even if parallelized, does not im-
prove upon the Van Oorschot - Wiener algorithm, when measured in terms of memory

and serial depth. Since the BHT algorithm also requires O
(√

N
M

)
random access queries

to a memory of size M , each requiring O(M) gates, it also does not improve upon Van
Oorschot Weiner algorithm when evaluated in terms of circuit size and depth (See Beals et
al. [5] for a more thorough analysis.) However, BHT does represent an improvement over
all classical algorithms in terms of query complexity. Furthermore, the Quantum RAM
model of Giovanetti et al. [12] gives a theoretical argument that despite their large gate
complexity, quantum memory access operations can be performed at logarithmic energy
cost. A question therefore remains whether there exists a physically realistic model of
computation where BHT is actually cheaper than the classical algorithms for the same
problem. However, if there is such a model, it is not the Brownian model of computation,
as we proceed to show:

3 Note this also implies that M < O
(√

N
)

. The constraint arises from the requirement that the

serial complexity, O
(

M
p

)
, of filling a table of size M with oracle values does not exceed the

serial complexity O
(√

N
Mp

)
of Grover search.



We first analyze the quantum algorithm, calculating the total energy required to per-
form a collision search, given a maximum time limit t and a maximum memory size M .
(Here, we assume, following the quantum RAM model, that the energy complexity of the
BHT is dominated by oracle queries rather than memory access): The per operation energy
ε scales with the serial complexity divided by t, i.e.:

εquant = O


√

N
Mp

t

 . (6)

The total energy E is then the product of the parallelism, the serial complexity, and
the per operation energy, i.e.:

Equant = O

p ·√ N

Mp
·

√
N
Mp

t

 = O

(
N

Mt

)
. (7)

Now, we analyze the classical algorithm: The per operation energy again scales with
the serial complexity, i.e.:

εcl = O

(√
N

Mt

)
. (8)

The total energy E is again the product of the parallelism (In this case p = O(M)),
the serial complexity, and the per operation energy, i.e.:

Ecl = O

(
M ·
√
N

M
·
√
N

Mt

)
= O

(
N

Mt

)
. (9)

Thus, even under optimistic assumptions within the Brownian model of computation,
we find that quantum computers provide no advantage in terms of energy, memory, or
time, for solving the collision search problem.

5 Preimage Search

Grover’s algorithm finds preimages in a function with domain size N in serial complexity
O(
√
N). Grover’s algorithm can be generalized to take advantage of M parallel processes

each with memory O(1), in which case the serial complexity is reduced to O
(√

N
M

)
.

This serial complexity was shown to be optimal by Zalka [22]. If we implement Grover’s
algorithm in a Brownian fashion, we find that

εquant = O


√

N
M

t

 , (10)

and,

Equant = O

M ·√N

M
·

√
N
M

t

 = O

(
N

t

)
. (11)



A näıve Brownian implementation for classical search would divide the key space among
M parallel processes, each of which would deterministically step throughN

M keys searching
for the correct one. Such a deterministic classical algorithm would require,

εdet = O

(
N

Mt

)
, (12)

and,

Edet = O

(
M · N

M
· N
Mt

)
= O

(
N2

Mt

)
. (13)

This already allows us to compete with Grover’s algorithm if we allow ourselves a mem-
ory of size O(N). However, we can exploit the structure, or rather the lack of structure,
of the search problem to improve upon this figure. In particular, rather than determinis-
tically stepping through the keys, dissipating a driving energy each time, we can simply
allow Brownian motion to drive the system on a random walk through the keyspace. (That
is to say, we can use the unpowered Brownian computation model described in detail in
section 3.) We will still require a latching energy to end the computation, once the correct
key has been found, and an initialization energy to create the necessary energy barriers to
prevent unwanted transitions from occuring.

If the search is implemented by M parallel processes, each of size O(1), then each
process must reach N

M keys. This requires the processes to operate at a temperature:

kT = O

(
N

Mt

)
. (14)

The initialization energy should be of order MkT i.e.:

Einit = O

(
M · N

Mt

)
= O

(
N

t

)
.

This is identical to the energy required by a Brownian implementation of Grover’s
algorithm. All that remains is to show that the latching energy is negligible. Indeed, we
find that the energy required to suppress backwards transitions from the final state for a
time of order t is O (kT ln(tkT )) = O

(
N
Mt ln

(
N
M

))
. This is negligible as long as M is at

least logarithmic in N .
Thus, as with collision search, the quantum and classical algorithms for preimage search

appear to offer the same tradeoffs between time, energy and space:

Ecl = O

(
N

t

)
and Equant = O

(
N

t

)
. (15)

6 Preimage Search at Constant Power and Temperature

In contrast to the collision search case, matching the time/ memory/ energy tradeoffs of
Grover’s algorithm with a classical search requires a somewhat unrealistic assumption. We
assume that if a computational process can be accomplished at a temperature T in a time
t, then an isomorphic computation can also be accomplished at a temperature αT in a time
T
α . This would be true if physics were scale invariant, but the physics of the real world is



almost certainly not scale invariant. A more realistic model would therefore restrict the
range of temperatures where a given computation is considered feasible. We will therefore
repeat the analysis of the previous section assuming a fixed temperature T . For added
realism, in addition to memory M , and time t, we will express the resources required for
search in terms of power, P = E

t , rather than energy, since a fixed power budget is a more
common limitation than a fixed energy budget.

From Equation (15) we find:
N = O

(
Pt2

)
.

Plugging this into Equation (14) gives us:

M = O

(
Pt

T

)
.

We can now calculate time and memory requirements in terms of T , P , and N :

tcl = O

(√
N

P

)
; (16)

Mcl = O

(√
NP

T

)
. (17)

A similar analysis may be done in the quantum case. Here we use Equation (10) as
a lower bound for T . If the per gate energy ε exceeds kT , we enter the thermodynamic
regime of irreversible computing, as opposed to Brownian computing, at which point the
time per gate not only fails to further decrease with increasing ε, but must in fact increase
to prevent the waste heat from heating the computing system to a temperature higher than
T . Combining this bound with Equation (11) then yields the following time and memory
requirements for Grover search at fixed power and temperature:

tquant = O

(√
N

P

)
; (18)

Mquant = O

(
P

T 2

)
. (19)

Thus, fixing power and temperature, we find that our classical search strategy recovers
the square-root time scaling of Grover’s algorithm. However, unlike Grover’s algorithm,
whose space requirement is determined only by the power budget and maximum operating
temperature, the classical algorithm also requires memory that scales, like the time, with
the square root of the size of the search space.

7 The Cost of Oracle Queries

The asymptotic complexities given in previous sections ignore the computational complex-
ity of individual oracle queries. Most of the results of previous sections remain substantively
similar if these factors are included. We will model each oracle query as a circuit with depth
d0, width m0, and total gates g0.



In the case of powered Brownian computation, the effect of these factors is fairly
straightforward. The memory imposed limit on parallelism (and number of table entries

in the case of BHT) is now pmax = O
(
M
m0

)
. Likewise, if t0 is the time per query re-

quired to complete the computation in time t, we will now require an energy per gate of

ε = O
(
d0
t0

)
. We must also ensure that all the bits or qubits in the circuit advance through

it roughly synchronously. This can be done, for example, by associating a clock state of
size O (log(d0)) to each bit or qubit in the oracle circuit, and imposing a restoring potential
proportional to the squared difference of the clock states of neighboring qubits. This will
tend to couple the clock states of nearby qubits, but will not dissipate any net energy. As
with other energy barriers ensuring correct computation, this potential need only extend
logarithmically far from the equilibrium point, relative to the total size of the computation.
We will generally ignore the logarithmic memory cost of the clock state and the logarithmic
computational costs associated with creating interactions between the clock state, but in
more detailed models, they may be subsumed into m0 and g0 respectively. Finally, we must
take into account the number of gates required to perform an oracle query, g0.

7.1 Collision search

Making these substitutions into equations (7) and (9) gives the following energy costs for
quantum and classical collision search:

Equant = O

p · g0

√
m0N

Mp
· d0

√
m0N
Mp

t

 = O

(
g0m0d0N

Mt

)
; (20)

Ecl = O

(
M

m0
· g0

m0

√
N

M
· m0d0

√
N

Mt

)
= O

(
g0m0d0N

Mt

)
. (21)

Again, we find the classical and quantum complexities to be identical, up to constant

factors. In both cases, the useful memory size is bounded above by O
(
m0

√
N
)

.

7.2 Preimage search

Similarly, we may make the same substitutions in equations (10) and (11) to include these
factors in the per-gate and total energy cost of Grover search:

εquant = O

d0

√
m0N
M

t

 ; (22)

Equant = O

M

m0
· g0

√
m0N

M
·
d0

√
m0N
M

t

 = O

(
g0d0N

t

)
. (23)

In the case of unpowered Brownian computation, we must calculate the temperature T
required for random Brownian motion to power the traversal of an oracle circuit of depth
d0 and containing g0 gates in time t0. To do this, we create a random variable, x indicating



the total number of gates that have been completed at a time t. We expect that x will
obey the usual formula for Brownian motion, 〈x2〉 = Dt, for some D, which will depend on
T , g0, and d0. We will then require Dt0 = O

(
g2

0

)
. It remains to determine the scaling of

D. Note that at any given time, on average O
(
g0
d0

)
gates will be exposed to activation by

thermal noise. (The remaining gates will be disallowed by the clock states associated with
their input/output bits.) Each of these gates is expected to contribute O(Tdt) to d〈x2〉.
The coupling potential between neighboring clock states will also drive the activation of
individual gates, but it should have no net effect on x, since every gate driven forward by
the coupling potential will be counterbalanced by another gate driven backwards. Thus we

find that D = O
(
Tg0
d0

)
and therefore T = O

(
g0d0
t0

)
.

We may now apply this analysis to equations (14) and (15). Since, in order to complete
a preimage search of size N in time, t with memory M , we need t0 = m0N

Mt , we find that:

Tcl = O

(
g0m0d0N

Mt

)
, (24)

and,

Ecl = O

(
M · g0m0d0N

Mt

)
= O

(
g0m0d0N

t

)
= O (m0Equant) . (25)

Note that, when we include cost factors associated with the size and computational
complexity of oracle queries, the mostly unpowered randomized preimage search is more
energy intensive than Grover’s algorithm by a factor of O(m0). Nonetheless, this factor is
generally expected to be logarithmic in N , and may easily be overwhelmed by the various
costs associated with implementing fault tolerant quantum computation.

Finally, we may also consider the fixed power and temperature scenario discussed in
Section 6. In this case, equations (16), (17), (18) and (19) become:

tcl = O

(√
g0m0d0N

P

)
, (26)

Mcl = O

(√
g0m0d0NP

T

)
, (27)

and,

tquant = O

(√
g0d0N

P

)
, (28)

Mquant = O

(
m0d0P

g0T 2

)
. (29)

For completeness, we will also consider the case of powered preimage search. Adapting
equations (12) and (13) gives us:

εdet = O

(
m0d0N

Mt

)
, (30)



and,

Edet = O

(
M

m0
· g0

m0N

M
· m0d0N

Mt

)
= O

(
g0m0d0N

2

Mt

)
. (31)

Note that, by comparing equations (31) and (21), we can see that the cost of powered
preimage search with a domain of size N is identical to the cost of collision search on a
range of size N2.

8 Near-Future Computing Technologies and the Grover Speedup

We are now in a position to estimate the practical relevance of Grover’s algorithm and
its classical counterpart, unpowered Brownian preimage search. The particular questions
we intend to answer are the following: Is it reasonable, given Grover’s algorithm (and its
classical counterpart), to treat finding a preimage within a domain of size N as an easier
problem than finding a collision within a range of size N2? How much easier? How do the
answers to these questions depend upon the present and future state of technology – in
particular how do they depend upon the various ways that present and future technology
may fall significantly short of thermodynamically ideal behavior?

The technology-dependent costs we will consider are:

1. The cost of memory. For example, if we assume that power costs 10 cents per kWh
and memory costs $100 per TB, then the cost of a bit of memory is on the order of
memcost = 1015kT , where the temperature, T is taken to be on the order of 300K.

2. The increase in physical quantum circuit depth and gate count due to quantum error
correction. Based on [14] we roughly estimate that near-future quantum error correction
may increase memory requirements by a factor of

mquant

m0
= 105, effective circuit depth

by a factor of
dquant

d0
= 103, and effective gate count by a factor of

gquant
g0

= 108.
3. The need for various quantum computing technologies to operate at extremely low

temperatures. In addition to placing a lower limit on gate times, such low temperatures
impose an energy cost due to the fact that any energy dissipated as heat at the lower
temperature must eventually be removed and expelled to a heat bath, which typically
must be at a much higher temperature, e.g. 300K. Moving heat from a sytem at
a low temperature Tquant to a system at a higher temperature T increases energy
consumption by a factor of T

Tquant
.

In the remainder of this section, we will study the relative cost of Grover’s algo-
rithm, unpowered classical search, and powered classical search, when the above-mentioned
technology-dependent cost factors take on our estimated current and near future values,
and as they approach unity. For concreteness, we will also need to set values for the mem-
ory, m0, circuit depth, d0, and total gate count g0 involved in oracle queries. Based on [13]
we will estimate typical ranges for these values as m0 = 103, d0 = 105 and g0 = 3× 106.

For each of the three algorithms considered, we will express the efficiency of the algo-
rithm based on the maximum value of N such that the search problem can be solved given
an energy budget E and a time budget t. We will denote this by Nquant, Ndet and Ncl, for
Grover’s algorithm, powered classical search, and unpowered classical search, respectively.

We will take the time budget to be 1 year. As we will calculate relative efficiencies (i.e.
Nquant

Ndet
and Ncl

Ndet
), and in all cases N will scale with E, we will not need to set a concrete



value for E. Rather than providing an explicit memory budget, we will assume that the
memory budget, M is set so that memcost ·M ≤ E.4 By taking the log base 2 of these
ratios, we can calculate Grover speedups in terms of the ”bits of security” metric typically
used to evaluate cryptographic hardness.

8.1 Powered classical search

We will first evaluate powered classical search (either for a collision within a range of size
N2

det or for a preimage within a domain of size Ndet.) We first solve for M by setting
memcost ·M ≤ E, where the relation between E and Ndet is given by Equation (31). We
find that

M = O

(
Ndet ·

√
~g0m0d0

kT t
·
(
memcost

kT

)− 1
2

)
. (32)

Plugging M back into Equation (31), and solving for Ndet, we get:

Ndet = O

(
E ·
√

t

~g0m0d0kT
·
(
memcost

kT

)− 1
2

)
(33)

Note that the above computations assume a Brownian model of computation. To check
that this is reasonable we must verify, that ε ≤ kT for the range of values we’re interested
in. We will check this using equation (30) with M given by equation (32). Here we find:

ε

kT
= O

(
~m0d0N

kTMt

)
= O

(√
~m0d0

g0kT t
·
(
memcost

kT

) 1
2

)
.

If we use memcost
kT = 1015 along with our other estimated values: m0 = 103; d0 = 105;

g0 = 3× 106; T = 300K; t = 1 year, we get

ε

kT
≈ 5× 10−2.

Letting memcost
kT approach unity yields

ε

kT
≈ 2× 10−9.

As both values are less than 1, this indicates that the Brownian model of computation
should yield a plausible, if slightly optimistic, approximation of Ndet accross the range
of values of memcost of interest to us. While these estimates of ε

kT indicate that there
may be advantages to using reversible computing even with current memory costs, it is
not surprising that these advantages have not yet been realized, even for applications like
bitcoin mining, which seems like a good fit but nonetheless continues to use standard
irreversible computing technology at the time of writing. 5 × 10−2 does not differ from
1 by many orders of magnitude, and it could easily be overwhelmed by engineering costs

4 Strictly speaking a larger memory budget is possible, since memory costs can be amortized
accross multiple computations using the same hardware in series, but we judge that 1 year is a
long enough time window to make this cost savings of only minor consideration.



not included in our model (fixed overhead associated with using reversible logic, extra
gates required to synchronize different parts of a non-serial reversible circuit, different gate
technology etc.) Nonetheless, it seems likely that if memory costs continue to fall, a broadly
Brownian approach to computing will become cost effective. 2 × 10−9 differs from 1 by a
significantly larger amount, and is less likely to be overcome by these sorts of overheads.

8.2 Grover’s algorithm

We will now evaluate Grover’s algorithm. Here all we need to do is modify Equation (11)
to account for technology-dependent cost factors and solve for Nquant.

Nquant = O

(
E · t

~g0d0
· Tquant

T
· g0

gquant
· d0

dquant

)
. (34)

We compare Grover’s algorithm with powered classical search, and we compute a
speedup factor:

Nquant

Ndet
= O

(√
m0kT t

~g0d0
·
(
memcost

kT

) 1
2

· Tquant

T
· g0

gquant
· d0

dquant

)
. (35)

Using our estimated near future values for the technology dependent cost factors:
memcost

kT = 1015;
mquant

m0
= 105;

dquant
d0

= 103; and
gquant
g0

= 108 along with our other es-

timated values: m0 = 103; d0 = 105; g0 = 3× 106; T = 300K; t = 1 year, we get

log2

(
Nquant

Ndet

)
≈ 4,

indicating that Grover’s algorithm will provide little, if any, advantage over classical search
in the near future. Setting all technology-dependent cost factors to unity, yields a somewhat
larger, but still modest, advantage of

log2

(
Nquant

Ndet

)
≈ 21.

In order to envision a larger advantage for Grover’s algorithm, we must instead envision
a scenario where classical memory remains as expensive as it is today, but all technology-
dependent cost factors associated with quantum computers are eliminated. In this case,
we get

log2

(
Nquant

Ndet

)
≈ 46.

In the above analysis, we have ignored memory initialization costs for Grover’s algo-
rithm. To demonstrate that memory initialization costs do not necessarily overwhelm com-
putation costs, we evaluate the memory requirements for Grover’s algorithm at Tquant =
10mK, assuming that physical qubits can be manufactured as cheaply as classical bits
today (i.e., memcost = 1015kT , for T = 300K). For fault-tolerance related cost factors, we
make no special assumptions other than that error correction does not appreciably change
circuit density (i.e.,

gquant

mquantdquant
≈ g0

m0d0
). Suitably modifying equation (22) gives us:

memcost ·Mquant

E
= O

(
~m0d0

g0kT t
· mquant

m0
· dquant

d0
· g0

gquant
· T

Tquant
· memcost

kT

)
≈ 1.



We also note that, while we have considered the possibility that quantum fault tolerance
might be implemented in a fashion that avoids irreversible operations like measurement, if
it cannot, this does not affect the above analysis. The energy cost of Grover’s algorithm,
aside from initialization, does not depend on memory within the Brownian computation
regime. Thus, in order to minimize the memory requirement it is optimal to set ε ≈ kT , at
which point Brownian computation exhibits essentially the same energy costs as irreversible
computation.

8.3 Unpowered classical search

Finally, we evaluate unpowered classical preimage search. Modifying Equation (15) gives
us:

Ncl = O

(
E · t

~g0m0d0
·
(
memcost

kT

)−1
)
. (36)

Again, we can compare this with powered classical search, by computing a speedup
factor:

Ncl

Ndet
= O

(√
kT t

~m0g0d0
·
(
memcost

kT

)− 1
2

)
(37)

As before, we may use memcost
kT = 1015 along with our other estimated values: m0 = 103;

d0 = 105; g0 = 3× 106; T = 300K; t = 1 year. With these values, we get

log2

(
Ncl

Ndet

)
≈ −14,

that is to say we find that unpowered classical search has a modest disadvantage over
powered classical search assuming near future memory costs. However, this can be turned
into a modest advantage of

log2

(
Ncl

Ndet

)
≈ 11,

if memcost
kT goes to unity. A somewhat larger advantage may also be possible if we consider

computations that last significantly longer than a year or scenarios where the ratio memcost
kT

reaches its optimum value at a temperature higher than 300K.

In considering extremely optimistic scenarios for unpowered classical preimage search,
it is worth noting that memory costs may be determined by the scarcity of matter rather
than energy. We may estimate the total energy budget of the Earth, based on the total
solar irradiance received by the Earth’s atmosphere, which has been estimated at 174
PW [18]. This translates to approximately 2 × 1045kT per year at 300K. In contrast, we
may give an estimated matter budget based on the total number of atoms in the earth,
which has been estimated around 1050 [1]. As 1050 is a few orders of magnitude larger
than 2× 1045, it remains plausible that energy could be the limiting factor in determining
memory requirements, even given an extremely energy efficient manufacturing process, but
the numbers are quite similar (especially if we are limited to only use atoms in the Earth’s
crust, for example.)



9 Conclusion

The development of quantum computing has created a great deal of excitement, particu-
larly due to the discovery of quantum algorithms, such as Shor’s algorithm, that perform
exponentially better than the best known classical algorithm. Nonetheless, a large body of
research concerns quantum algorithms, such as Grover’s algorithm, that have only demon-
strated a polynomial improvement over the best known classical algorithm with respect to
metrics, such as query complexity, that bear an uncertain relationship to the real physical
costs of computation.

We argue that, in order to assess the impact of such algorithms, we need a more
explicitly physical model of computation. We also feel that, in order to fairly compare
classical algorithms to their future quantum counterparts, we need to take into account, not
just the current state of classical computing technology, but possible future developments,
such as low-power reversible computing. For example, it certainly does not seem reasonable
to consider extremely low cost and low power quantum memories, without assuming similar
advances in classical computing technology. To this end, we have developed the Brownian
computation model of Bennett, and given extensive analysis of the costs of classical and
quantum algorithms for collision and preimage search.

In the case of collision search, our analysis suggests that despite their lower query com-
plexity, quantum collision-finding algorithms do not offer a substantial, physically plausible
advantage over their classical counterparts.

The case of preimage search is more delicate. In our analysis, we have developed a
novel variant of Brownian computation, namely unpowered Brownian computation. It is
interesting to note that, using this model of computation, we can perform a randomized
classical search with the same asymptotic thermodynamic costs as Grover’s algorithm. This
is certainly of theoretical interest. But the practical significance of this result is somewhat
less clear than in the case of collision search, since there are plausible reasons for thinking
Grover’s algorithm may indeed turn out to be more efficient than unpowered classical search
in practice, although it should be noted that there are plausible scenarios where the reverse
might hold. (As a further point of contrast, in the present state of technology, powered
classical search appears to be more efficient than both approaches in finding preimages.)

We analyze in detail the technological costs which may affect the true advantage of
Grover’s algorithm over powered and unpowered classical preimage search. Aside from the
various unique challenges involved in building fault tolerant quantum computing hardware,
a key metric which appears to be relevant here is the cost of memory (or perhaps more
accurately, the cost of hardware in general). As the cost of memory falls, thermodynami-
cally reversible computing becomes more attractive to relative to current (non-reversible)
computing technology. Our estimates indicate that the cost of semiconductor hardware is
fairly close to the point at which reversible computing would begin to offer a real advan-
tage. If the cost of hardware continues to fall, we would expect to see reversible computing
developed for very computationally expensive tasks such as proof of work, or for very low
power devices.

As the cost of memory falls further, Grover’s algorithm looks less attractive, because
the efficiency of classical powered search improves relative to the efficiency of Grover’s
algorithm, and the efficiency of unpowered classical search improves relative to the effi-
ciency of powered classical search. Nonetheless, even without the assumption of very low
hardware costs, we find that the potential advantage provided by Grover’s algorithm is
significantly smaller than is often assumed. Even in scenarios that are simultaneously ex-



tremely optimistic with respect to quantum computing and extremely pessimistic with
regard to classical computing, Grover’s algorithm will only extend the reach of classical
search by a factor of 246.

This analysis can be used to give guidance for post-quantum cryptography, in particular,
for choosing key lengths for block ciphers. This analysis suggests that doubling the key
sizes is likely unnecessary to provide protection against quantum computers, and that a
smaller increase, from 128 to 192 bits for example, is likely sufficient.

Note: Contributions to this work by NIST, an agency of the US government, are not
subject to US copyright. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s), and do not necessarily reflect the views
of NIST.
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