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Abstract. The task of registering two coordinate frames is frequently accom-

plished by measuring the same set of points in both frames. Noise and possible 

bias in the measured locations degrade the quality of registration. It was shown 

that the performance of registration may be improved by filtering out noise from 

repeated measurements of the points, calculating small corrections to the mean 

locations and restoring rigid-body condition. In the current study, we investigate 

experimental conditions in which improvement in registration can still be 

achieved without cumbersome collection of repeated measurements. We show 

that for sufficiently small noise relative to bias, the corrections calculated from a 

single measurement of points can be used and still lead to the improved registra-

tion. 
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1 Introduction 

Registration is a commonly performed procedure when points measured in one coordi-

nate frame have to be accessed in another frame. Each registration requires identifica-

tion of common features with known spatial location in both frames. This may be a 

challenging task when spatial relations between features are not preserved, and thus 

non-rigid registration techniques must be used [1-4]. In many manufacturing applica-

tions (like part assembly) corresponding 3D points can be identified and rigid-body 

registration can be used. We call the first frame from which the points are transformed, 

the working frame, and the second frame the destination frame. In the ideal situation 

when the rigid-body condition (RBC) is satisfied, the distance between any two points 

(𝑿𝑖 , 𝑿𝑗) in the working frame and the distance between the same points in the destina-

tion frame (𝒀𝑖 , 𝒀𝑗) are equal  

 𝐿𝑖,𝑗 = ‖𝑿𝑖 − 𝑿𝑗‖ − ‖𝒀𝑖 − 𝒀𝑗‖ ≡ 0 (1) 

Then, the rotation 𝑹 and translation 𝝉 mapping one set of 𝐽 ≥ 3 points {𝑿}𝐽 exactly on 

another set {𝒀}𝐽 can be determined. These common points, measured in both frames 

and used for registration, are called fiducials. In reality, due to noise and possible bias 

in the measured data, RBC does not hold (i.e., 𝐿𝑖,𝑗 ≠ 0) and {𝑿}𝐽 cannot be mapped 
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exactly to {𝒀}𝐽. Then, the transformation {𝑹, 𝝉} can be found by minimizing the fol-

lowing Fiducial Registration Error  

 𝐹𝑅𝐸(𝑹, 𝝉) =
1

𝐽
∑ ‖𝑹𝑿𝑗 + 𝝉 − 𝒀𝑗‖

2𝐽
𝑗=1 . (2) 

Transformation {𝑹, 𝝉} can be determined and applied to the target points {𝑻𝑋} which 

are usually measured only in the working frame. If a corresponding set of targets {𝑻𝑌} 

is available in the destination frame, then the Target Registration Error 𝑇𝑅𝐸(𝑻𝑋) can 

be calculated as  

 𝑇𝑅𝐸(𝑻𝑋) = ‖𝑹𝑻𝑋 + 𝝉 − 𝑻𝑌‖. (3) 

The quality of the registration may be reported by providing the values of 𝑇𝑅𝐸 for a 

representative set of targets measured in both frames. Thus, reduction of 𝑇𝑅𝐸 should 

improve the performance of many tasks in manufacturing. For example, peg-in-hole 

testing (commonly used to benchmark a robot’s performance [5-7] for insertion tasks) 

depends on the error in hole location [8-12]. 

Registration can be improved by obtaining repeated measurements of fiducials 

{𝑿}𝐽
(𝑛)

, {𝒀}𝐽
(𝑛)

 and targets {𝑻𝑋}(𝑛), 𝑛 ≤ 𝑁. Then, noise could be filtered out by using 

the mean locations of points and virtually noise-free registration transformation could 

be obtained. Subsequent use of such transformation would map the mean locations of 

targets from the working frame almost exactly onto the true locations of targets in the 

destination frame. However, removal of noise does not remove non-homogenous bias 

from the measured 3D points and the mean locations {𝑿̅}𝐽 and {𝒀̅}𝐽 cannot satisfy RBC 

in (1). To deal with this problem, a method was developed which calculated bias in 

fiducials from their repeated measurements [13]. The method yields a set of dependent 

linear equations, and to solve it, a separate set of 𝐽 points without bias has to be meas-

ured. This requirement severely restricts the use of the method as the location of bias-

free points may not be known or available in practical applications. Another approach 

was developed in [14] where it was shown that the rigid-body condition can be restored 

for fiducials by calculating a small correction 𝜺𝑗 to each 𝑿̅𝑗. Then, the resulting trans-

formation {𝑹𝑐 , 𝝉𝑐} mapped exactly each corrected fiducial 𝑿̅𝑗 − 𝜺𝑗 from the working 

frame to 𝒀̅𝑗 in the destination frame and reduced 𝐹𝑅𝐸 in (2) to zero. Correction to the 

mean location of target 𝑻̅𝑋 in the working frame was then interpolated from corrections 

of nearby fiducials, leading to a reduction of 𝑇𝑅𝐸(𝑻̅𝑋) in most cases.  

It was hypothesized in [14] that repeated measurements may not be necessary if bias 

is the dominant cause of deviation from the rigid-body condition (i.e., the magnitude of 

noise is sufficiently smaller than bias). We test this hypothesis in this study: we do not 

use the mean of repeated measurements and instead apply the procedure directly to 

single measurements of fiducials and targets. Based on the outcome of our experiments 

we conclude that the procedure of restoration of rigid-body condition is still feasible 

for unfiltered, noisy data, and it can lead to improved registration when noise in the 

measured locations of points is sufficiently smaller (approximately three times) than 

bias.  
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2 Restoration of rigid-body condition 

If (1) does not hold and 𝐿𝑖,𝑗 ≠ 0 then the corrections {𝜺}𝐽 in locations of {𝑿}𝐽 are sought 

that would bring 𝐿𝑖,𝑗  back to zero. Corrections are calculated in the working frame for 

{𝑿}𝐽 since they will be needed to estimate corrections for targets {𝑻𝑋} which are meas-

ured in working frame. Thus, we seek for vectors {𝜺}𝐽 such that  

 ‖(𝑿𝑖 − 𝜺𝑖)  − (𝑿𝑗 − 𝜺𝑗)‖
2

= ‖𝒀𝑖 − 𝒀𝑗‖
2
, (4) 

for 1 ≤ 𝑖 < 𝑗 ≤ 𝐽. The solution {𝜺}𝐽 = {𝜺′}𝐽 + {𝜺′′}𝐽 is obtained in two-step iterative 

procedure described in [14] where {𝜺′}𝐽 and {𝜺′′}𝐽 are the corrections calculated in the 

first and the second iteration, respectively.  

 Once the corrections to fiducials are calculated, a registration between the corrected 

fiducial locations in the working frame 𝑿𝑗 − 𝜺𝑗 and the corresponding fiducials 𝒀𝑗 in 

the destination frame can be performed and the transformation {𝑹𝒄, 𝝉𝒄} can be deter-

mined (since the rigid-body condition is now restored for fiducials, corresponding 

𝐹𝑅𝐸 = 0). Then, a correction to the target 𝑻𝑋 in the working frame can be calculated 

by linear interpolation of corrections from 𝑀 nearby fiducials as  

 𝜺(𝑻𝑋) = ∑ 𝑤𝑚𝜺𝑚
𝑀
𝑚=1  , (5) 

where 𝜺𝑚 is the correction at 𝑿𝑚 fiducial and 𝑤𝑚 is a normalized weight. Corrected 

target locations  

 𝑻̃𝑋 =  𝑻𝑋 − 𝜺(𝑻𝑋) , (6) 

can now be transformed to the destination frame using {𝑹𝒄, 𝝉𝒄} and the transformed 

point is expected to be closer to the target point measured in the destination frame 𝑻𝒀.  

3 Experiment 

Two series of experiments were performed. In the first one, three different metrology 

systems were used: two motion tracking systems (A and B) and a laser tracker (LT). 

Registration of A to LT and B to LT were investigated. In the second set of experiments, 

an industrial robot operated in the compliance mode was used to measure the location 

of the end point of its tool and robot-world registration was investigated.  

In the first series of experiments, 3D fiducial points were measured by systems A, 

B, and LT on a semi-regular grid of 5 x 5 x 5 points, placed in a work volume (approx-

imately 3 m x 3 m x 1.8 m). In addition, 𝐾 = 16 target points distributed randomly in 

the work volume were also acquired, as shown in Fig. 1a. Measurements of each point 

(fiducial and target) were repeated 𝑁 = 200 times for System A and B; single meas-

urement of each point was acquired with LT. However, the setting for LT was such that 

the average of 50 raw measurements was output (corresponding instrument noise was 
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1.7 μm) and therefore, for the purpose of this study, LT was considered as noise and 

bias free. Details of experimental set up are described in [15].  

In the second set of experiments, a Six Degrees of Freedom (6DOF) collaborative 

robot arm (RA) operated in a compliance mode was used. The arm was mounted on an 

optical breadboard plate (600 mm x 900 mm) firmly supported by an aluminum frame. 

The plate has a flatness of ±0.15 mm and had threaded holes which form a regular grid 

of squares 25 mm x 25 mm. A part of the plate accessible to the robot arm covered an 

area containing 17 x 21 holes. All available 357 holes were divided into two subsets: 

the first subset contained 𝐽 = 277 points from which fiducials used in registration were 

selected; the second subset contained 𝐾 = 80 target points, as shown in Fig. 1b.  

A cylindrical adapter was screwed into each hole on the plate. The adapter had a 

hole into which a cylindrical peg, mounted to the end of robot wrist, could be inserted. 

The peg was made of tool steel and had 12.67 mm diameter; the hole in the aluminum 

adapter had a nominal diameter of (12.67 + 0.051) mm. Once the peg was inserted into 

the adapter, the location of the endpoint of the peg in the robot’s coordinate frame was 

recorded. The adapter was screwed into each of 357 holes and a single measurement 

was acquired for each hole. For a limited number of holes randomly distributed on the 

plate, 𝑁 = 16 repeated measurements were obtained. RA data contain 3D Cartesian 

coordinates of the endpoint of the peg and three angles defining the orientation of the 

peg in the robot’s frame. However, for this project, the angles and z-coordinate were 

ignored and only 2D data (𝑥, 𝑦) were further processed.  

 

 
Fig. 1. a) 3D data: locations of 125 fiducials and 16 targets plotted in coordinate frame of LT. 

b) 2D data: locations of 277 fiducials and 80 targets displayed in world coordinate frame. Large 

squares mark locations of five fiducials used to perform the registration of original, uncorrected 

data.  Triangles mark locations of three fiducials used to perform the registration after RBC was 

restored in the set of fiducials.  

4 Data processing 

The differences defined in (1) were calculated for all possible pairs of fiducials (𝑖, 𝑗) 

where 1 ≤ 𝑖 < 𝑗 ≤ 𝐽. For the series of experiments using LT, the number of such pairs 

was 𝐽𝑝 = 7 750, for the second series with a use of RA, 𝐽𝑝 = 38 226. For Systems A and 

B, the differences 𝐿𝑖,𝑗 were calculated for averaged locations {𝑿̅}𝐽 and 𝐿𝑖,𝑗
(𝑛)

 for each 
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repeated measurement of fiducials in working frame {𝑿}𝐽
(𝑛)

, 𝑛 ≤ 𝑁. For data acquired 

by RA, only one measurement of each point was acquired (𝑁 = 1). Standard deviations 

𝜎𝐿 of differences 𝐿 were calculated for instantaneous data acquired by RA and for av-

eraged locations acquired by Systems A and B  

 𝜎𝐿 =  √1
𝐽𝑝

⁄ ∑ ∑ (𝐿𝑖,𝑗 − 𝐿̅)
2𝐽

𝑗=2
𝑖=𝑗−1
𝑖=1  . (7) 

Three standard deviations were calculated: 𝜎𝐿0 for the original, uncorrected locations 

of fiducials; 𝜎𝐿1 for the fiducials after the first step of the procedure restoring RBC; 𝜎𝐿2 

after the second step when RBC was restored. In addition to the standard deviations, 

histograms of differences 𝐿 were built for each dataset and after each iteration of the 

procedure restoring RBC.  

Restoration of RBC was performed for 3D data for Systems A and B registered to 

LT and for 2D data for robot frame registered to world. Corrections {𝜺}𝐽 were calcu-

lated for average {𝑿̅}𝐽 and instantaneous {𝑿}𝐽
(𝑛)

 locations of the fiducials, yielding cor-

responding registration transformations {𝑹𝑐, 𝝉𝑐} and {𝑹𝑐
(𝑛)

, 𝝉𝑐
(𝑛)

}. Once corrections to 

fiducials were determined, estimated corrections to average and instantaneous target 

𝜺(𝑻̅𝑋) and 𝜺(𝑻𝑋
(𝑛)

) were determined using (5). For 3D data (Systems A and B registered 

to LT) corrections were interpolated from four nearby fiducials which constituted the 

tetrahedron containing a given target. For 2D data, correction from eight fiducials sur-

rounding a target on a plane were used in the interpolation. Then, corrected target 𝑻̃𝑋 

in the working frame was calculated as in (6) and transformed to the destination frame.  

Finally, two types of Target Registration Error were calculated. In the first error 

𝑇𝑅𝐸𝑢(𝑻𝑋), uncorrected target 𝑻𝑋 was transformed by {𝑹𝑢, 𝝉𝑢} derived from uncor-

rected locations of fiducials. In the second error 𝑇𝑅𝐸𝑐(𝑻̃𝑋), corrected target 𝑻̃𝑋 was 

transformed by {𝑹𝑐 , 𝝉𝑐} derived from corrected locations of fiducials (after RBC was 

restored). For 𝑁 repeated measurements, both types of errors were calculated for each 

dataset, i.e. 𝑇𝑅𝐸𝑢
(𝑛)

(𝑻𝑋
(𝑛)

) and 𝑇𝑅𝐸𝑐
(𝑛)

(𝑻̃𝑋
(𝑛)

), from which the corresponding median 

values were determined.  

For each of 𝐽 = 125 fiducials acquired by System A and B, the variance 𝜎𝑗
2 was 

calculated from 𝑁 = 200 repeated measurements and then the averaged variance 𝜎2 

for all 𝐽 fiducials was determined. For RA data, repeated 𝑁 = 16 measurements were 

acquired only for a limited number of fiducial locations (52 out of 277) from which the 

average variance 𝜎2 was calculated.  

5 Results 

Table 1 contains the mean standard deviation 𝜎, three standard deviations 𝜎𝐿0, 𝜎𝐿1 and 

𝜎𝐿2 calculated in (7), and parameter 𝜌 for three registrations. For the two registrations 

using LT, the differences 𝐿𝑖,𝑗 and corresponding standard deviations were calculated 

for the average locations of fiducials {𝑿̅}𝐽 (i.e., noise was filtered out from their loca-

tions).  
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Table 1. Summary of experimental results. 

Registration 
𝜎 

[mm] 

𝜎𝐿𝑂 

[mm] 
𝜌 = 𝜎𝐿𝑂 𝜎⁄  

𝜎𝐿1 

[mm] 

𝜎𝐿2 

[mm] 

A to LT 0.06 2.5 41.7 4.5 × 10−3 1.8 × 10−8 

B to LT 0.16 0.09 0.56 1.1 × 10−5 5 × 10−13 

RA to World 0.11 0.28 2.54 2.5 × 10−4 4 × 10−10 

 

For RA data, the differences 𝐿𝑖,𝑗 were calculated for instantaneous data, and the result-

ing standard deviations are affected by systematic bias as well as by random noise.  

 Histograms of the differences 𝐿 calculated for data acquired by Systems A, B and 

LT are shown in Fig. 2; histograms for data acquired by RA are shown in Fig. 3. Target 

registration errors calculated in (3) for data acquired with Systems A, B and LT are 

shown in Fig. 4. The results in Fig. 4 were obtained for three different post-processing 

methods, including 𝑇𝑅𝐸 calculated for the average as well as instantaneous locations 

of fiducials and targets. For data acquired with RA, only a single measurement of each 

fiducial or target was taken and, therefore, only two post-processing methods could be 

used and the results are presented in Fig. 5. The difference between both methods, i.e. 

∆𝑇𝑅𝐸 =  𝑇𝑅𝐸𝑐 − 𝑇𝑅𝐸𝑢, is shown in Fig. 5b: ∆𝑇𝑅𝐸 < 0 indicates improvement in reg-

istration. 

 

 
Fig. 2. Histogram of differences 𝐿 evaluated from data acquired by: 1) System A and LT, 2) 

System B and LT; a) based on original, uncorrected locations of fiducials; b) based on fiducials 

after the first step of RBC restoration. Grey plots A) correspond to the average locations of fidu-

cials {𝑿̅}𝐽. Solid lines B) show the lower limit of count at each bin over all 𝑁 histograms from 

repeated data; dashed lines C) are for upper limit of count at each bin.  
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Fig. 3. Histogram of differences 𝐿 evaluated from data acquired by RA on optical breadboard 

plate: a) based on original, uncorrected locations of fiducials; b) based on fiducials after the first 

step of RBC restoration; c) based on fiducials after the second, final step of RBC restoration. 

 

 
Fig. 4. Target registration error calculated using three methods: 1) 𝑇𝑅𝐸𝑢(𝑘) for uncorrected, 

average fiducials and targets; 2) 𝑇𝑅𝐸𝑐(𝑘) for corrected, average fiducials and targets; 3) cor-

rected, instantaneous fiducials and targets – displayed is median of 𝑁 = 200 instantaneous errors 

𝑇𝑅𝐸𝑐
(𝑛)(𝑘): a) data acquired by System A and LT; b) data acquired by System B and LT. 

 
Fig. 5. a) Target registration error calculated using two methods: 1) 𝑇𝑅𝐸𝑢(𝑘) for uncorrected, 

single measurement of fiducials and targets; 2) 𝑇𝑅𝐸𝑐(𝑘) for corrected, single measurement of 

fiducials and targets; b) the difference ∆𝑇𝑅𝐸 between both methods. 
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6 Discussion and Conclusions 

The three registrations listed in Table 1 were performed in very different experi-

mental conditions. System A has the smallest noise 𝜎 and (when registered to LT) has 

the largest bias, as evidenced by 𝜎𝐿𝑂. System B has the largest noise and the smallest 

bias. The characteristics of the robot arm are between these two conditions: noise and 

bias of RA is between the corresponding limits of Systems A, B and LT.  

Plots displayed in Fig. 2 and Fig. 3 clearly demonstrate that the two-step iterative 

procedure of restoring RBC in a set of fiducials converged very well. This applies to 

the restoration of RBC in the set of averaged fiducials {𝑿̅}𝐽 (filled grey histograms in 

Fig. 2) and in instantaneous locations {𝑿}𝐽
(𝑛)

 (dashed lines in Fig. 2 and filled grey 

histograms in Fig. 3). The progress of the procedure to restore RBC in the fiducials can 

be also noted in data included in Table 1 where 𝜎𝐿0 ≫  𝜎𝐿1 ≫  𝜎𝐿2 ≈ 0.  

Full restoration of RBC is limited only to a set of fiducials {𝑿}𝐽 and for other points, 

like targets {𝑻𝑋}, only partial restoration of RBC is possible. This is because targets are 

measured only in the working frame and corrections for their locations are estimated 

by extrapolating corrections of nearby fiducials. Therefore, target errors 𝑇𝑅𝐸𝑐(𝑻𝑋) are 

non-zero although fiducials error 𝐹𝑅𝐸 equals zero. For cases where repeated measure-

ments in working frame are available and noise could be filtered out from fiducials and 

targets, the procedure investigated in this study shows substantial improvement for 

most targets, as shown in Fig. 4 for cases 1) and 2). For example, for targets 𝑘 = 7,8 in 

Fig. 4a, corresponding 𝑇𝑅𝐸𝑐(𝑘) are reduced by almost ten times in comparison with 

uncorrected 𝑇𝑅𝐸𝑢(𝑘). The overall improvement is larger for System A registered to 

LT (Fig. 4a) and smaller for System B registered to LT (Fig. 4b). For some targets (𝑘 =
9,10 in Fig. 4b), the procedure leads to slightly increased 𝑇𝑅𝐸(𝑘). 

For instantaneous data containing both noise and bias, the outcome of the procedure 

may be very different. For System B registered to LT, the median of 𝑇𝑅𝐸𝑐
(𝑛)

 (evaluated 

after RBC has been restored for each n-th dataset) is much larger than 𝑇𝑅𝐸𝑐  calculated 

for average fiducials {𝑿̅}𝐽 and targets {𝑻̅𝑋}, see cases 3) and 2) in Fig. 4b. In fact, the 

median of 𝑇𝑅𝐸𝑐
(𝑛)

 is even larger than the uncorrected 𝑇𝑅𝐸𝑢(𝑘), see cases 3) and 1) in 

Fig. 4b. However, for System A registered to LT, there is practically no difference be-

tween the median of 𝑇𝑅𝐸𝑐
(𝑛)

 and corrected 𝑇𝑅𝐸𝑐 calculated for average {𝑿̅}𝐽 and {𝑻̅𝑋}, 

see cases 3) and 2) in Fig. 4a. Similarly, for instantaneous data acquired by RA and 

registered to world, the procedure of restoring RBC leads to noticeable reduction in 

𝑇𝑅𝐸𝑐  when compared with uncorrected 𝑇𝑅𝐸𝑢 , see cases 2) and 1) in Fig. 5a. In fact, in 

out of 80 target locations, the procedure failed only marginally in four cases, as indi-

cated by ∆𝑇𝑅𝐸 > 0 in Fig. 5b.  

If random noise is the main cause of poor registration, reduction in 𝑇𝑅𝐸(𝑘) can be 

obtained by preplanning the placement of fiducials relative to the k-th target. This pro-

cedure is based on the fact that uncertainty propagated from fiducials via transformation 

{𝑹, 𝝉} to the target is anisotropic, as predicted in [16] and confirmed experimentally in 

[17]. Thus, optimally placed fiducials will ensure that the uncertainty propagated to a 

given target is the smallest. However, unlike the suppression of bias which can decrease 
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𝑇𝑅𝐸 of any target point, placement of fiducials must be optimized for each target inde-

pendently. 

In summary, the calculation of parameter 𝜌 as shown in Table 1 may help to deter-

mine if the procedure of restoring RBC leads to improvement in the registration of 

instantaneous data (i.e., data containing both noise and bias). For 𝜌 < 1, the procedure 

should not be used as it will lead to worse performance of registration than for original, 

uncorrected data. For 𝜌 ≳ 2.5, the use of the procedure is beneficial. The larger the 

parameter 𝜌, the better improvement in registration is expected and this, in turn, should 

improve performance of part assembly when tight tolerances are required.  
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