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ABSTRACT 
 
Can small-displacement-based dynamic structural analysis software packages be used to 
accurately simulate large displacement responses and structural collapse due to earthquake 
excitations? This question has been raised by many researchers and practitioners as to whether 
different small-displacement-based solution algorithms can simulate the same collapse patterns. 
In this research, an investigation is made by comparing the structural dynamic responses using 
three small-displacement-based solution algorithms with those obtained using a large-
displacement-based finite element solution algorithm. Under the assumption that a large-
displacement-based solution algorithm gives the most precise responses for a given structural 
model, the comparison shows that consistencies are obtained among solution algorithms using 
different “dynamic” solvers, but inconsistencies occur due to implementation of different 
“nonlinear” solvers which do not necessarily occur only at large displacement responses. These 
nonlinear solvers make different assumptions for coupling geometric nonlinearity and material 
nonlinearity into their respective solution algorithms. For this reason, the quantification of 
uncertainties in the output responses is performed to identify the solution algorithm that is more 
appropriate for simulating structural responses at and near collapses.  
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ABSTRACT 
 
 Can small-displacement-based dynamic structural analysis software packages be used to accurately 

simulate large displacement responses and structural collapse due to earthquake excitations? This 
question has been raised by many researchers and practitioners as to whether different small-
displacement-based solution algorithms can simulate the same collapse patterns. In this research, an 
investigation is made by comparing the structural dynamic responses using three small-
displacement-based solution algorithms with those obtained using a large-displacement-based finite 
element solution algorithm. Under the assumption that a large-displacement-based solution 
algorithm gives the most precise responses for a given structural model, the comparison shows that 
consistencies are obtained among solution algorithms using different “dynamic” solvers, but 
inconsistencies occur due to implementation of different “nonlinear” solvers which do not 
necessarily occur only at large displacement responses. These nonlinear solvers make different 
assumptions for coupling geometric nonlinearity and material nonlinearity into their respective 
solution algorithms. For this reason, the quantification of uncertainties in the output responses is 
performed to identify the solution algorithm that is more appropriate for simulating structural 
responses at and near collapses. 

 
 

Introduction 
 
Performance-based seismic engineering is a useful approach for designing new structures and 
improving the seismic performance of existing structures. Modelling and simulation of structural 
response for determining the seismic demands is an essential part of the process. While the seismic 
demands are compared with the corresponding seismic capacity in the design, the analysis used to 
determine the demands may be sensitive to the software package used to conduct the analysis. 
Many of the seismic analysis software packages today use small-displacement theory, but claim 
to solve a wide-variety of nonlinear structural dynamic problems, up to and including structural 
collapse. References [1-4] present examples of using small-displacement-based software packages 
to solve collapse problems over the past decade.  
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 Being able to capture structural collapse generally requires software packages to handle 
significant coupling between geometric and material nonlinearities. The small-displacement-based 
software packages that are available today, either commercial or research-oriented, have typically 
been developed to give reasonable results when analyzing models with material nonlinearities and 
separately when analyzing models with geometric nonlinearities. However, the complexity of 
nonlinear analysis can lead to inconsistent results when the analysis requires significant coupling 
between geometric and material nonlinearities. This coupling between yielding components for 
material nonlinearity and member stability for geometric nonlinearity makes the problem difficult 
to solve, and being able to address this nonlinear coupling in small-displacement-based solution 
algorithms remains a challenge.   
 
 This paper presents recent research concerning the evaluation of several small-
displacement-based software packages based on various geometric nonlinearity and material 
nonlinearity formulations. Doing so can facilitate the understanding of how each embedded 
solution algorithm handles the coupling issue to capture large-displacement structural dynamic 
responses up to and including collapse. Numerical simulations are performed to simulate the 
nonlinear structural dynamic responses of an eight-story steel moment-resisting frame based on 
three different geometric nonlinearity formulations of small-displacement-based solution 
algorithms. The simulated responses are compared with each other and with those obtained using 
a large-displacement-based finite element analysis software package. Through this study, the 
applicability and limitations of using small-displacement-based software packages in simulating 
large displacement responses and structural collapse are examined with uncertainties quantified. 
 

Structural Model 
 
To investigate the coupling effects of geometric nonlinearity and material nonlinearity on the 
structural dynamic responses among solution algorithms, consider an eight-story, three-bay steel 
moment-resisting frame as shown in Fig. 1(a). The structural model of this frame consists of 8 
lateral degrees of freedom (DOFs) and 112 plastic hinge locations (PHLs) as shown in the figure. 
Let the mass be 74 075 kg on each floor. No leaning column is used in the model, and therefore 
gravity loads acting on the frame as shown in Fig. 1(b) have been slightly magnified to reflect the 
additional gravity load that would have otherwise been acting on the leaning column. The initial 
periods (without consideration of geometric nonlinearity) and elastic periods (consideration of 
geometric nonlinearity due to gravity loads) for the eight modes of vibration based on flexural 
stiffness only, labeled as T1 to T8, are summarized in Table 1. Assume all 112 plastic hinges 
exhibit elastic-perfectly-plastic behavior to eliminate the differences in simulated responses caused 
by different implementation of hardening and strength loss rules in the solution algorithms. All 
plastic hinges are assumed to have 152 mm offset from the center of the beam-column connection, 
and panel zones are not modeled to simplified the analysis. Let the elastic modulus be 200 GPa 
and yield stress of steel be 345 MPa for all members. A more detailed explanation of the structural 
model for the implementation of each solution algorithm is discussed in the following subsections. 
 
Table 1.     Periods of vibration using different stiffness representations of the eight-story frame. 

 

Stiffness T1 T2 T3 T4 T5 T6 T7 T8 

Initial 1.70 s 0.62 s 0.34 s 0.22 s 0.16 s 0.12 s 0.10 s 0.08 s 

Elastic 1.81 s 0.65 s 0.36 s 0.23 s 0.16 s 0.12 s 0.10 s 0.08 s 
 



 
 

Figure 1.    Eight-story three-bay steel moment frame with gravity loads. 
 
A Small-Displacement-Based Algorithm Using P-Delta Stiffness Formulation (PD) 
 
The investigated PD solution algorithm is embedded in a commercial nonlinear structural analysis 
software package that is commonly used in current practice to perform 3-D nonlinear response 
history analysis. For this reason, various features have been automatically included in the model 
development to simplify the input process, such as elastic shear deformation and yielding of 
column plastic hinges due to axial force and moment interactions. Including shear deformations in 
the structural model reduces the initial stiffness that is based on flexure only, and therefore the 
mass on each floor of the frame is reduced to 69 487 kg (a 6.2 % reduction) to give consistent 
periods of vibration of the frame as summarized in Table 1. In addition, this PD solution algorithm 
uses P-Delta stiffness formulation [5] that considers only large P- effects while ignoring small 
P- effects. The target for damping is to achieve a Rayleigh damping having a mass proportional 
constant of 0.25 and a stiffness proportional constant of 0.0. However, because the PD solution 
algorithm automatically adds numerical damping to the analysis when geometric nonlinearity is 
considered, the damping constants are calibrated and scaled down in this case such that Rayleigh 
damping with mass proportional constant of 0.2132 and a stiffness proportional constant of 0.0 is 
used in the model.  

W24x84
x1

x2

x3

x4

x5

x6

W24x84 W24x84

W24x84 W24x84 W24x84

W24x76 W24x76 W24x76

W24x76 W24x76 W24x76

W24x55

W24x55

W24x55

W24x55

W24x55

W24x55

W
18
x1

75

W
18
x1

92

W
18
x1

92

W
18
x1

75

W
18
x1

06

W
18
x1

92

W
18
x1

92

W
18
x1

06

W
18
x7

1

W
18
x1

43

W
18
x1

43

W
18
x7

1

9.14 m

4.
27

 m

9.14 m 9.14 m

4.
27

 m
4.

27
 m

4.
27

 m
4.

27
 m

5.
49

 m

PHL#1 #17 #33 #49

#65 #67 #69

#71 #73 #75#72 #74 #76

#77 #79 #81#78 #80 #82

#89 #91 #93#90 #92 #94

#83 #85 #87

#95 #97 #99

x7

x8

W21x44 W21x44 W21x44

W21x44 W21x44 W21x44
W

18
x5

5

W
18
x1

19

W
18
x1

19

W
18
x5

5

4.
27

 m
4.

27
 m

#101 #103 #105#102 #104 #106

#107 #109 #111

#3

#4

#5

#6

#9

#10

#13

#14

#51

#53

#55

#57

#59

#63

#61

#64
#16 #112

(a)

360 kN 360 kN781 kN781 kN

692 kN 692 kN1250 kN1250 kN

1143 kN 1143 kN1250 kN1250 kN

1143 kN 1143 kN1250 kN1250 kN

692 kN 692 kN1250 kN1250 kN

465 kN 465 kN934 kN934 kN

465 kN 465 kN934 kN934 kN

360 kN 360 kN781 kN781 kN

(b)



A Small-Displacement-Based Algorithm Based on Corotation Formulation (CR) 
 
The investigated CR solution algorithm is embedded in a research-oriented open-source nonlinear 
structural analysis software package for performing advanced nonlinear response history analysis. 
This algorithm provides the option to choose between the P-Delta stiffness formulation that 
considers only large P- effects or the corotation formulation [6-7] that considers large rigid-body 
displacement with small strains. The corotation formulation has been selected for this study, yet it 
is still considered here as small-displacement-based because of its use of a small strain formulation. 
This CR solution algorithm takes Rayleigh damping as inputs, and therefore Rayleigh damping 
having a mass proportional constant of 0.25 and a stiffness proportional constant of 0.0 is used. 
Lumped plasticity is selected to model the yielding of plastic hinges, but the CR solution algorithm 
allows only the yield moment as input without consideration of axial force and moment interaction. 
In order to match the yielding characteristics of CR with those defined of PD, the yield moments 
of the plastic hinges are therefore computed based on the column axial forces from gravity loads. 
 
A Small-Displacement-Based Algorithm Based on Stability Functions Formulation (SF) 
 
The investigated SF solution algorithm is based on the nonlinear structural dynamic analysis theory 
to address material nonlinearity in a dynamic context [8] and uses the stability functions 
formulation [9] with both large P- and small P- effects included for the geometric nonlinearity 
formulation. It requires damping inputs be in the form of modal damping, where the periods of 
vibration are based on the elastic stiffness of the frame as shown in Table 1. To achieve the target 
of Rayleigh damping having a mass proportional constant of 0.25 and a stiffness proportional 
constant of 0.0, the damping ratios are calculated by performing eigenvalue and eigenvector 
analyses and found to be 3.41 %, 1.22 %, 0.67 %, 0.43 %, 0.31 %, 0.23 %, 0.18 %, and 0.15 % 
among the eight modes of vibration. The material nonlinearity options of the SF solution algorithm 
are the least sophisticated among all the algorithms used in this study. Only a bilinear backbone 
curve with kinematic hardening is available for the model with a pre-defined yield moment. 
Therefore, in order for yielding characteristics of the model to be compatible with those defined 
in PD, the yield moments of the plastic hinges are computed based on the column axial forces due 
to the gravity loads, similar to the computation performed for the CR solution algorithm. 
 
Large-Displacement-Based Algorithm Using Large Displacement Formulation (LD) 
 
The investigated LD solution algorithm is embedded in a commercial finite element analysis 
software package that is based on a large displacement formulation with explicit time integration 
[10-11]. This type of formulation is often used in finite element analysis capable of capturing 
significant inelastic deformation, thereby capturing both geometric nonlinearity and material 
nonlinearity in every element. The drawback is that each member must be subdivided into many 
finite elements to capture the displacement profile. In the structural model, 10 elements are used 
to model each column member and 18 elements used to model each beam member, resulting in a 
significant increase in computational efforts. This LD solution algorithm takes Rayleigh damping 
as inputs, and therefore Rayleigh damping having a mass proportional constant of 0.25 and a 
stiffness proportional constant of 0.0 is used. For the yielding of plastic hinges, the interaction 
between the axial force and moments is considered at the integration points of the cross-section of 
each element, and therefore the yield stress for the members must be calibrated to match the 
yielding characteristics used in PD, CR, and SF. The yield stress for the beams are calibrated to 
354 MPa for having no interaction with axial force, while the yield stresses for the columns are 



calibrated at every two floors. These yield stresses are calculated as 365 MPa, 379 MPa, 386 MPa, 
and 400 MPa, respectively, from the bottom two floor columns up to the top two floor columns. 
 

Earthquake Ground Motions 
 
A total of 7 earthquake ground motions is used in this study, and these ground motion time histories 
are presented in Fig. 2. Various scaling factors are used to intensify each earthquake ground motion 
to cause at and near collapses among LD, PD, CR, and SF solution algorithms. 
 

 

Legend    
Kobe - 1995 Kobe at Kajima Station, Comp 000 
Sylm - 1994 Northridge at Sylmar Station, Comp 000 
Mulh - 1994 Northridge at Mulholland Dr, Comp 009 
Imp1 - 1979 Imperial at El Centro Array 11, Comp 140 
Nis2 - 1995 Kobe at Nishi Akashi, Comp 000 
Koca - 1999 Kocaeli at Duzce Station, Comp 270 
Loma - 1989 Loma Prieta at Capitola, Comp 000 

  

  
Figure 2.    Investigated earthquake ground motions. 

 
Nonlinear Response History Analyses 

 
The eight-story frame shown in Fig. 1(a) is subjected to the seven earthquake ground motions 
shown in Fig. 2 with various scaling factors. Fig. 3 shows the roof displacement responses in two 
charts due to different scaling factors of the Kobe earthquake. The right chart shows that at least 
one solution algorithm indicates that the frame collapses at a scaling factor of 2.2. Based on this 
scaling factor, the left chart shows the roof displacement responses due to a slightly reduced scaling 
factor of 2.0 to cause the frame to reach the point of having large displacement but remains 
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standing, which is defined here as near-collapse. Similar analyses are performed for the remaining 
six earthquake ground motions and the results are shown in Figs. 4 to 9. It can be seen from these 
figures that the responses during the first few seconds among the four solution algorithms are 
nearly identical, indicating that the structural models are consistent. 
 

 
Figure 3.    Roof responses of the eight-story frame at and near-collapse due to Kobe. 

 

 
Figure 4.    Roof responses of the eight-story frame at and near-collapse due to Sylm. 

 
 As shown in Figs. 3 to 9, the amplitudes and frequencies of oscillations of the post-yield 
responses among the four solution algorithms are about the same, except that the centers of 
oscillation have been shifted due to residual drifts caused by yielding of plastic hinges. This is 
particularly evident in Fig. 7 where significant differences for the center-of-oscillation on the left 
chart is observed among the solution algorithms toward the end of the 30s analysis. This suggests 
that the amplitudes and frequencies of oscillations have been captured consistently by the 
“dynamic” solvers among the four solution algorithms, but the “nonlinear” solvers among each 
algorithm are unable to capture consistent residual drifts that result in different offsets among the 
simulations. This observation highlights the differences in how the coupling between geometric 
nonlinearity and material nonlinearity in the nonlinear solver among each algorithm affects the 
simulated responses. Based on the observations of residual drifts in the figures, SF matches LD 
very well for Kobe (Fig. 3), Imp1 (Fig. 6), and Nis2 (Fig. 7), while CR matches LD very well for 
Sylm (Fig. 4). PD consistently produces different residual drifts from LD, but it matches LD the 
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best for Mulh (Fig. 5) and Loma (Fig. 9). Finally, none of the three algorithms matches LD for 
Koca (Fig. 8). This suggests that SF is most suitable for capturing large displacement responses 
among the solution algorithms in terms of residual drifts. 
 

 
Figure 5.    Roof responses of the eight-story frame at and near-collapse due to Mulh. 

 

 
Figure 6.    Roof responses of the eight-story frame at and near-collapse due to Imp1. 

 

 
Figure 7.    Roof responses of the eight-story frame at and near-collapse due to Nis2. 
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Figure 8.    Roof responses of the eight-story frame at and near-collapse due to Koca. 

 

 
Figure 9.    Roof responses of the eight-story frame at and near-collapse due to Loma. 

 
Table 2 summarizes the maximum roof displacement responses at near-collapse (i.e., left 

charts of Figs. 3 to 9) of the 8-story frame. Here, the LD results are used as the comparison 
standard. The percentage differences between the maximum responses simulated using LD and 
those simulated using PD, CR, and SF are summarized in the table. Similarly, Table 3 summarizes 
the maximum roof displacement responses at collapse (i.e., right charts of Figs. 3 to 9) and the 
associated errors in the prediction (i.e., the situation where LD predicting collapse while PD, CR, 
or SF predicting the frame remains standing, or vice versa). The percentage differences highlighted 
in red with an ‘×’ symbol indicate that the prediction of collapse is an error. As shown in Table 3, 
SF has only one prediction error, while PD has three and CR has five. 
 

The percentage differences highlighted in green in Tables 2 and 3 indicate that those values 
are minimum across each row or those indicate that collapse is predicted correctly with a ‘√’ 
symbol, demonstrating which solution algorithm has the smallest percentage difference. It is 
observed that in some cases one solution algorithm predicts a closer maximum roof displacement 
response than another solution algorithm, and vice versa for others. In particular, PD shows a better 
prediction of maximum roof displacement responses when the frame is at near-collapse, while SF 
shows a better prediction when the frame collapses. Therefore, there is no consistent trend on 
which small-displacement-based solution algorithm can produce results that match closer to those 
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simulated using large-displacement-based solution algorithm, except that CR consistently 
produces poor results.   
 

Table 2.     Maximum roof displacements of 8-story frame at near-collapse. 
 

EQ LD PD CR SF 

Disp (m) Disp (m) % Diff Disp (m) % Diff Disp (m) % Diff 

2.0 × Kobe 1.340 1.344 0.3 % 1.494 11.5 % 1.357 1.3 % 

1.8 × Sylm 0.771 0.771 0.0 % 0.768 0.4 % 0.771 0.0 % 

3.5 × Mulh 1.104 1.002 9.2 % 0.972 11.9 % 0.943 14.6 % 

2.8 × Imp1 0.582 0.607 4.4 % 0.545 6.2 % 0.551 5.3 % 

2.8 × Nis2 0.524 0.439 16.3 % 0.623 19.0 % 0.592 12.9 % 

1.7 × Koca 1.104 1.002 9.2 % 0.972 11.9 % 0.943 14.6 % 

3.0 × Loma 1.170 1.312 12.2 % 1.358 16.2 % 1.393 19.1 % 
 

Table 3.     Maximum roof displacements of 8-story frame at collapse. 
 

EQ LD PD CR SF 

Disp (m) Disp (m) % Diff Disp (m) % Diff Disp (m) % Diff 

2.2 × Kobe 1.728 ∞ × ∞ × 1.683 2.6 % 

1.9 × Sylm ∞ ∞ √ ∞ √ ∞ √ 

3.8 × Mulh 1.192 1.115 3.4 % ∞ × 0.993 16.7 % 

3.0 × Imp1 0.582 ∞ × ∞ × 0.549 5.7 % 

3.0 × Nis2 ∞ ∞ √ ∞ √ ∞ √ 

1.8 × Koca 1.006 ∞ × ∞ × ∞ × 

3.2 × Loma 1.294 1.448 11.9 % ∞ × 1.497 15.6 % 
 

A more objective way of comparing Table 2 is through uncertainties as shown in Table 4, 
where the means and standard deviations of the percentage differences are evaluated at near-
collapse of the frame. Table 4 shows the PD solution algorithm simulates responses that have only 
7.4 % differences from the LD responses with a standard deviation of 5.6 %, indicating that the 
PD solution algorithm simulates the maximum responses with less uncertainty. This is followed 
by the SF solution algorithm with a mean of 9.7 % and finally by CR with a mean of 11.0 %. 
 

Table 4.     Uncertainties in percentage differences of maximum roof displacements. 
 

 PD CR SF 

Mean 7.4 % 11.0 % 9.7 % 

Standard Deviation 5.6 % 5.7 % 6.9 % 
 

Conclusions 
 
Different small displacement formulation makes different assumptions in their solution algorithms 
to produce nonlinear structural dynamic responses. The assumption of geometric nonlinearity has 



been investigated by selecting three small-displacement-based software packages using P-Delta 
stiffness formulation (PD), corotation formulation (CR), and stability functions formulation (SF). 
Coupling these differences in geometric nonlinearity with each inherent material nonlinearity 
assumptions result in nonlinear solvers that are quite different among each small-displacement-
based solution algorithm. This results in output responses that are quite difficult to track. In this 
study, a consistent 8-story steel moment-resisting frame model has been developed using PD, CR, 
and SF, and the output roof displacement responses due to seven earthquake ground motions are 
compared with those from LD, a large-displacement-based finite element analysis software 
package that is assumed to produce the most precise responses. Comparison of responses shows 
that consistency is obtained in the amplitudes and frequencies of oscillations, suggesting that the 
dynamic solvers among each solution algorithm are reasonably consistent. The inconsistency 
occurs in the residual drifts predicted by each solution algorithm, suggesting that the nonlinear 
solvers for handling coupled material and geometric nonlinearities are the source of inconsistency. 
 
 Uncertainties are quantified due to the inconsistency among the three small-displacement-
based solution algorithms. Based on comparisons with LD responses, results show that SF has 
better performance based on residual drifts, while PD has better performance based on maximum 
displacements. At the same time, SF has fewer number of errors in predicting collapses. This 
suggests that further research on a more objective method of quantifying uncertainties in response 
history analyses is needed. 
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