
A Layered Graphical Model for Cloud Forensic and Mission

Attack Impact Analysis

Changwei Liu1, Anoop Singhal2, and Duminda Wijesekera1,2

1Department of Computer Science, George Mason University, Fairfax VA 22030 USA

2National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg

MD 20899 USA

1{cliu6,dwijesek}@gmu.edu

2anoop.singhal@nist.gov

Abstract

Cyber-attacks on the system supporting an enterprise’s mission can impact achieving its ob-

jectives. We describe a layered graphical model as an extension of a forensic investigation in order

to quantify mission impacts. Our model has three layers: the upper layer models operational

tasks that constitute the mission and their inter-dependencies. The middle layer reconstructs at-

tack scenarios from available evidence to reconstruct their inter-relationships. In cases where not

all evidence is available, the lower level reconstructs potentially missing attack steps. Using the

three levels of graphs constructed in these steps, we present a method to compute the impacts of

attack activities on missions. We use NIST’s National Vulnerability Database’s (NVD)-Common

Vulnerability Scoring System (CVSS) scores or forensic investigators’ estimates in our impact

computation. We present a case study to show the utility of our model.

Keywords: Mission attack impact, Enterprise infrastructure, Cloud forensic analysis, Layered-

graphical model

mailto:2anoop.singhal@nist.gov
mailto:1{cliu6,dwijesek}@gmu.edu

1 Introduction

Organizational missions are used to abstract activities envisioned by organizations, usually defined at

the high-level as a collection of business processes. Cyber-attacks on an enterprise infrastructure that

support such missions can impact these missions. Concurrently, a growing number of organizational

business processes and services are now hosted on cloud operators’ data centers. Given that most

networked infrastructures including cloud services are supported by hardware and software assets, any

attack that impacts these assets could impact the missions they support. Therefore, analyzing and

quantifying the mission impacts of cyber-attacks is of importance to infrastructure system planners

in migrating security threats and improving mission resilience, which is the primary objective in this

paper.

NIST’s NVD-CVSS provides impact estimates of exploitable vulnerabilities on IT systems [2].

Other publications use NIST’s NVD-CVSS to predict the impacts of multi-step attacks on assets

by considering constructing all possible attack paths [1, 5, 6]. However, evaluating all paths is

infeasible for forensic analysis to assess damages due to the large number of paths and vulnerabilities.

Additionally, quoted publications only consider the vulnerabilities reported publicly, not including

zero-day attacks.

Because post-attack artifacts obtained during forensic investigations provide information that can

be used to analyze attacks, we create a layered graphical model that uses this information to quantify

the attacks’ impacts on missions. Our model has three layers. The upper layer models operational

tasks that constitute the mission and their inter-dependencies, where a mission is modeled as a

collection of choreographed tasks. The middle layer collects evidence from intrusion detection system

(IDS) tools and event logs to reconstruct attack scenarios. In cases where not all evidence is available,

the lower layer reconstructs potentially missing attack steps using system calls that were executed

to fulfill the mission. Finally, the two mapping algorithms integrate the information obtained from

the three layers to ascertain how the mission execution was supported midst attack activities. Using

the layers of graph-like dependency information, our model provides a method to compute impacts of

attacks on missions using the NIST NVD-CVSS scores or forensic investigators’ estimates on attacks

toward the underlying software or hardware. We present a case study to show the utility of our

model, and how it can be used to migrate attack risks in a networked infrastructure. To the best

of our knowledge, there isn’t an integrated forensic analysis framework that quantifies the mission

impacts of multi-step attacks in a complex enterprise infrastructure which uses cloud-based services.

The rest of the paper is organized as follows. Section 2 discusses background and related work.

Section 3 presents the three-layered graphical model. Section 4 uses a case study to show how the

model computes mission impacts of attacks in a cloud environment, and discusses how the impact

analysis can be used to enhance a networked infrastructure. Section 5 gives the conclusion.

1

2 Background and Related Work

We present the background and related work in this section.

2.1 Cloud Forensics

NIST defined Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-

Service (IaaS) as deployment models [3]. SaaS allows clients to use providers’ applications running on

a cloud infrastructure. PaaS allows clients to deploy on the cloud client applications using program-

ming languages, libraries, services and tools supported by the provider. IaaS provides clients with the

capability of provisioning processing, storage, networks and other fundamental computing resources,

so that the clients can deploy and run software including operating systems and applications.

Digital forensic investigators seek attack evidence from computers and networks. According to

Ruan et al., cloud forensics is a subset of network forensics that follows the main phases of network

forensics with techniques tailored to cloud computing environments [4]. For example, data acquisition

is different in SaaS and IaaS, because the investigator will have to solely depend on cloud service

providers in SaaS. Investigators can acquire the virtual machine images from IaaS customers.

2.2 Related Work

Attackers tend to use multi-step, multi-stage attacks to impact important services protected us-

ing complex mechanisms. Researchers have proposed and designed models to estimate the mission

impacts of such attacks by considering all known vulnerabilities. Sun et al. proposed using a multi-

layered impact evaluation model to estimate the mission impacts [10]. In this model, a lower vulnera-

bility layer is proposed to map to an asset layer, and then to a service layer, which finally maps to the

mission layer, so that the mission impacts can be calculated by using vulnerabilities’ CVSS scores and

the relationships between missions to the lower level vulnerabilities. However, this model does not

provide a method to construct the attack paths. Another group of researchers, Sun et al., combined

mission dependency graphs with attack graphs generated by an attack graph generation tool, Mul-

VAL [11], to estimate the attack mission impacts in the clouds [6]. Noel at el. designed a cyber-mission

impact assessment framework by leveraging Business Process Modeling Notation (BPMN) and their

attack graph generation tool named Topological Vulnerability Analysis (TVA) [12] that combines an

exploit knowledge base and a remote network scanner, analyzing all potential attack paths leading to

attack goals to evaluate potential mission impacts [5, 6]. However, these approaches use vulnerabili-

ties collected from the bug-report community such as NIST’s NVD to assess the impacts of attacks.

These do not scale to large infrastructures or zero-day attacks.

Forensics researchers have reasoned on post-attack evidence using correlation rules to reconstruct

2

Figure 1: The three-layered graph model for mission impact evaluation

the attack scenarios. The objective of this work has been to reconstruct criminal or unauthorized

actions shown to be disruptive to missions [7, 13]. To reconstruct attack scenarios that have legal

standing, we integrated a Prolog logic tool, MulVAL, with two databases, including a vulnerability

database and an anti-forensic database, to ascertain the admissibility of evidence and explain missing

evidence due to attackers’ using anti-forensics [9]. We also expanded this work by using system calls

to reconstruct the missing attack steps due to missing evidence in the higher application level, and

using Bayesian Network to estimate the experts’ belief on the reconstructed attack scenarios [14].

However, no work exists to estimate the mission impacts of attacks launched toward an enterprise’s

infrastructure.

3 Our Three-layered Graphical Model

Figure 1 shows our model. The lower layers reconstruct attack paths so that the attacks can be

mapped to tasks and missions in the upper layer for mission impact computation.

3.1 The Upper Layer

The upper layer models tasks and missions as business processes. We model business processes using

a Business Process Diagram (BPD) using the Business Process Modeling Notation (BPMN). We use

tasks, events, sequencing, exclusive choice, parallel gateways, message flows and pools [16] to constuct

BPDs formalized in Definition 1 (Originally defined in [16]).

3

Definition 1 Business Process Diagram-BPD:

Any quintuple (P ool, T, E, C, OP) satisfying the following conditions are said to be a BPD.

• Let T be a set of tasks and E be a set of events.

• Let Esend, Erec be two disjoint subsets of E and estart, eend ∈ E be two events we refer to as

start and end events. Hence, E = estart ∪ eend ∪ Esend ∪ Erec are respectively called start, stop,

message sending, message receiving events.

• T com ∈ Erec= {(t, esend, c), (t, erec, c) : t ∈ T, esend ∈ Esend, erec , c ∈ C} are said to be the set

of communicating tasks.

• OP = {F, M, XOR, ; } called parallel fork, parallel merge, exclusive choice and sequencing.

• C is a set of channels.

Business processlets and a Business Process are defined as follows.

• Any t ∈ T ∪ T com is said to be a processlet.

• If P and Q are processlets, then so are P ; Q, F (P, Q)M and P (XOR)Q.

• If P ∈ T \ T com and estart, eend are start and end events, then estart; P ; eend is said to be a

business process.

• Pools are business processes with the constrains: for two pools P1 and P2, there is a task

(t1, esend, c) in P1 if and only if there will be another task (t2, erec, c) in P2, so that the message

can be passed through channel c.

3.2 The Middle Layer

The middle layer constructs potential attacks from evidence available from system logs and IDS

alerts. Our objective is to map these attack scenarios to missions modeled as BPDs. Because we

only consider attack scenarios substantiated using available evidence, the created attack paths do not

include all possible attack paths and vulnerabilities. However, sometimes, not all evidence may be

available in IDS logs, which will be addressed in the lower layer.

We reconstruct attack scenarios by using a forensic analysis tool created in our previous work [7].

This tool uses rules to create directed graphs of available items of evidence and correlate them together

as witnesses of attacks. Because rules are used to create these graphs, they are called logical evidence

graphs (LEGs) formalized in Definition 2, originally defined in [7]).

Definition 2 Logical Evidence Graph-LEG:

4

A LEG = (Nr, Nf , Nc, E, L, G) is said to be a logical evidence graph (LEG), where Nf , Nr and

Nc are three sets of disjoint nodes called fact, rule, and consequence fact nodes respectively. E ⊆

Nf ∪ Nc × Nr ∪ (Nr × Nc, L is the mapping from a node to its labels and G ⊆ Nc are observed

attack events. Every rule node has a consequence fact node as its single child and one or more

fact or consequence fact nodes from prior attack steps as its parents. The labels of nodes consist of

instantiations of rules or sets of predicates specified as follows:

1. A node in Nf is an instantiation of predicates that codify system states including access priv-

ileges, network topology consisting of interconnectivity information, or known vulnerabilities

associated with host computers in the system. We use the following predicates:

(a) hasAccount(principal, host, account), canAccessFile(host, user, access, path) etc. to model

access privileges.

(b) attackerLocated(host) and hacl(src, dst, prot, port) to model network topology, namely,

the attacker’s location and network reachability information.

(c) vulExists(host, vulID, program) and vulProperty(vulID, range, consequence) to model vul-

nerabilities exhibited by nodes.

2. A node in Nc represents a predicate that codifies the post attack state as the consequence of an

attack step. We use predicates execCode(host, user) and netAccess(machine, protocol, port)

to model the attacker’s capability after an attack step. Valid instantiations of these predicates

after an attack will update valid instantiations of the predicates listed in (1).

3. A node in Nr consists of a single rule in the form p ← p1 ∧ p2, . . . , ∧pn with p as the child node

of Nr is an instantiation of predicates from Nc. All pi for i ∈ {1 . . . n} as the parent nodes of

Nr are the collection of all predicate instantiations of Nf from the current step and Nc from

the prior attack step.

Table 1: Dependencies arising out of systems calls

Dependency Event Description Unix System Calls

process → file Process modifies file write, pwrite64, rename, mkdir, linkat, link, symlinkat, etc

file → process Process reads file stat64, lstat6e, fsat64, open, read, pread64, execve, etc.

process ↔ file Process uses/modifies file open, rename, mount, mmap2, mprotect etc.

process1 → process2 Process1 creates/terminates Process2 vfork, fork, kill, etc.

process → socket process writes socket write, pwrite64, etc.

socket → process process checks/reads socket fstat64, read, pread64, etc.

process ↔ socket

socket ↔ socket

Process reads/writes/checks socket

process reads/writes socket

mount, connect, accept, bind, sendto, send, sendmsg, etc.

connect, accept, sendto, sendmsg, recvfrom, recvmsg

5

3.3 The Lower Layer

The lower layer uses instances of interactions between services and the execution environment to

obtain evidence unavailable from systems logs and IDS alerts. We obtain interaction instances from

systems call logs. This usage is based on our postulate of missing evidence due to the attackers’

using anti-forensic techniques, limitation of forensic tools, or zero-day attacks. Because there are

many system calls, we use those chosen in [8], listed in the right-hand column of Table 1. Our

abstraction of them appear in the left-hand column of Table 1. A process making system calls

creates dependencies between itself and other processes, files, or sockets for network connection. We

model these dependencies as graphs that we call object dependency graphs (ODGs), formalized in

Definition 3.

Definition 3 Object Dependency Graph-ODG:

The reflexive transitive closure of → defined in Table 1 is an object dependency graph. We use the

notation ODG=(VO, VE , E) to represent an object dependency graph, where VO is the set of vertexes

that are composed of objects including Processes P, Files F or Sockets S; VE is the set of textual event

descriptions listed in the middle column; and E is the set of dependency edges listed in the left-hand

column of Table 1.

3.4 The Mapping between the Three Layers

The left-hand and right-hand columns in Figure 1 show the system resource mapping and graph

mapping of our model. We use the resource mapping obtained from the infrastructure configuration

and software deployment to map graphs. To do so, we map attacked services in corresponding vertices

in BPDs, LEGs and ODGs so that the source graphs can be mapped to the destination graphs. A LEG

is easily mapped to a BPD by matching the attacked services to the corresponding tasks supported

by the services. We use depth first search (DFS) method to map an ODG to a LEG, which is shown

in Algorithm 1.

In Algorithm 1, all object nodes in an ODG are initially marked as having not been checked by

using color white as shown in the for loop between Line 2 and 4. Then, for each given unchecked

object node VO (Line 6 and 7), the algorithm repeatedly calls F ind(VO, LEG) function (calls from

Line 13, and the function itself is between Line 36 and Line 50), attempting to find the matching

post-attack status node in the LEG by checking if the attacked service in the LEG is equal to the

attacked service in the ODG. If such a post-attack status node, say Nc1, is found (Line 15), then,

Algorithm 1 checks if the attack step between Node VO and its parent node parent(VO) in the ODG

has a mapping attack step between Node Nc1 and its parent node(s) parent(Nc1) in the LEG (Line

19). If there is no such a matching attack step, one is added to the LEG (Line 22 to 25). If there

6

5

10

15

20

25

30

35

40

45

50

Algorithm 1: Mapping an ODG to a LEG

1

2

3

4

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

26

27

28

29

31

32

33

34

36

37

38

39

41

42

43

44

46

47

48

49

Input: An ODG=(V, VE , E) and a LEG=(Nr, Nf , Nc, E, L, G).
Output: A LEG integrated with attack paths from the ODG.
//Color all nodes in ODG WHITE
for each node VO in ODG do

color[VO] ← WHITE
end
//Go through each object in ODG
for each node VO in ODG do

if VO == WHITE then
//Initialize all nodes in LEG white
for each node Nc in LEG do

color[Nc] ← WHITE
end
//Search for the corresponding Nc1 in LEG
Nc1 = Find(VO, LEG)
//If there is such a matching Nc1

if Nc1 6= ∅ then
color(VO) ← BLACK
//See if the object’s parent matches
//corresponding Nc1’ s parent
Nc2=Find(parent(VO), LEG)
//If not matching parents,
//add the missing attack step from ODG to LEG
if Nc2 6= parent(NC1) then

LEG ← Flow(Nc1, VE)
LEG ← Flow(VE , Nc2)

end
end
else

//If there is no such a matching Nc1 in LEG
//Add the new object to LEG
LEG ← VO

color [VO]=GRAY
end
VO =child(VO)

end
end
Function Find(VO, LEG)

//Go through each Nc in LEG
for each post attack status Nc from LEG do

//Check if there is any matching Nc for VO

if (Nc.service == VO.service AND
color[Nc] == white then

color[Nc] ← BLACK
return Nc

end
else

color[Nc] ← GRAY
Nc ← the child post attack status node of Nc

end
end
return ∅

7

isn’t a mapping post-attack status Node Nc1 in the LEG for Node VO (Line 27) in the ODG, one is

added to the LEG (Line 27 to 32), and the search continues (Line 33) until all nodes in the ODG are

checked (i.e. colored).

3.5 Computing Mission Impact

We propose to use the interval [0,1] to quantify a mission impact of an attack, computed by using

the following steps.

3.5.1 Compute the impact scores of attacks in LEGs

In a LEG, we use P (a) to represent the impact of attacks on services deployed on host computers.

NIST’s NVD-CVSS published reported vulnerabilities with assigned impact scores, which we propose

to use for each P(a) if an attack a can be found in NIST’s NVD. If the attack a cannot be found

in NIST’s NVD, we suggest using expert knowledge to assign an impact score to P (a). We use our

previous work [9] to compute a cumulative impact score of attacks on the same service as follows.

P (a) = P (a1) ∪ P (a2) (1)

In Equation 1, a1 and a2 are two attacks on the same service. P (a1) ∪ P (a2) = P (a1) + P (a2) −

P (a1) × P (a2).

3.5.2 Assign weight to tasks/missions

A value between [0,1] is proposed as the weight of mission impact of attacks on a task, indicating the

importance of the corresponding task to the mission of a business process.

3.5.3 Compute mission attack impacts in BPDs

We map LEGs to BPDs so that the mission impact of attacks I(T) on a task T is computed using

Equation 2.

I(T) = weight × P (T) (2)

P (T) = P (a) (3)

P (T) = P (a1) ∪ P (a2) (4)

In Equation 2, P(T) is the impact of attacks on a task T in a BPD. Depending on the mapping

relationship from the attacked service(s) (represented by a, a1, a2) in a LEG to a task (represented

8

by T) in a BPD, P(T) is computed by using Equation 3(one-to-one mapping relationship) and Equa-

tion 4(many-to-one mapping relationship) respectively.

3.5.4 Compute the cumulative mission impact

Mission impact of attacks on each task can be computed using Equation 2, Equation 3 and Equation 4.

However, in some cases, the cumulative mission attack impact for the final mission is required to esti-

mate the overall damage, which we compute as the maximum. We use M to represent the cumulative

mission impact. Correspondingly, for the four kinds of relationships between tasks composing of a

business process, M is computed using the following equations, explained below.

M(B) = Max{I(T1), I(T2), . . . , I(Tn)} (5)

M(B) = Max{I(T1), I(T2), I(T4) . . . , I(Tn)} (6)

M(B) = Max{I(T1), I(T3), I(T4) . . . , I(Tn)} (7)

M(B) = Max{M(Bbefore), I(T20)} (8)

1. If the tasks T1, T2, . . . , Tn composing of the final mission B have a sequential relationship with

each other, or among them, there are tasks, say T2, T3 that have a parallel fork relationships

with the predecessor task T1 and a parallel merge relationships with the successor tasks T4,

M(B) is computed as shown in Equation 5.

2. Among tasks T1, T2, . . . , Tn that compose of the final mission B, if there are tasks, say T2, T3,

which have an exclusive decision relationship with the predecessor task T1 and the successor

tasks T4, and all other tasks including T4, . . . , Tn have a sequential relationship with each other,

depending on which task (either T2 or T3) the business process chooses, either Equation 6 or

Equation 7 is used to compute M(B).

3. Suppose tasks T1, T2, . . . , Tn compose of the final mission B in Pool 1. We use M(Bbefore) to

represent the cumulative mission attack impact of B without any message passing from other

pools. If there is message passing relationship between a task T20 from Pool 2 to T2 in Pool 1,

Equation 8 is used to compute M(B).

4 The Case Study

This section describes our case study used to show the utility of our model.

9

(a) The Experimental Network
(b) VM1 and VM2

Figure 2: The experimental network and attacks using cloud services

4.1 The experimental network and attacks

Figure 2a shows our experimental network configured to manage the customers’ medical records and

their health insurance policy files. These records and files are stored on two separate VMs in a private

cloud set up by using OpenStack (we used the version Juno 2014.2.3). OpenStack is a collection

of python-based software projects that manage access to pooled storage, computing and network

resources that reside in one or many machines of a cloud system [17]. These projects include Neutron

(Networking), Nova (Compute), Glance (Image Management), Swift (Object Storage), Cinder (Block

Storage) and Keystone (Authorization and Authentication). OpenStack can be used to deploy SaaS,

PaaS and IaaS cloud models, but is mostly deployed as an IaaS cloud. Authenticated users can

access the file server to retrieve policy files using ssh and query the medical database stored in the

database server using MySQL queries through a web application.

We assume that the attacker’s objective is to steal customers’ medical records, prevent the medical

records’ availability and modify the health insurance policies. By probing the deployed web and cloud

services, as the attacker, we launched the following attacks.

The SQL injection attack: Because our web application did not sanitize user input, the attacker

could use it to create a SQL injection attack (CWE-89) to access customers’ medical records. By

using the query select * from profile where name=’Alice’ and (password=’alice’ or ’1’ = ’1’), where

profile was the database name, and ’1’=’1’ was the payload that made the query bypass the password

check, we retrieved all customer medical records.

The DoS attack: According to NIST’s NVD, the vulnerability CVE-2015–3241 that is in Open-

Stack Compute (Nova) versions 2015.1 through 2015.1.1, 2014.2.3 and earlier allows authenticated

users to cause Denial of Services (DoS) by re-sizing and then deleting an instance (VM). The pro-

cess of resizing and deleting an instance is also called an instance migration. The migration process

10

does not terminate when an instance is deleted with CVE-2015-3241, so an authenticated user could

bypass user quota enforcement to deplete all available disk space by repeatedly performing instance

migration. By using this vulnerability, playing a privileged IaaS malicious user, we launched the DoS

attack toward the database server by repeatedly re-sizing and deleting VM2 that co-resided in the

same physical machine as the medical database server(VM1).

The cross-VM side-channel attack: Side-channel attacks can be used to extract fine grain

information across VMs that reside on the same hypervisor [18].

In our experimental network, we simulated Yarom’s cache side-channel attack [19] shown in Fig-

ure 2b on our two VMs that co-reside in the same multi-core processor (an Intel quad-core i7). In this

attack, the cache shared between the victim and attacking VMs can be used to fill with data from

the attacking machine. Each time when an encryption occurs, the processor evicts one or more lines

of the attacker’s memory from the shared cache, causing timing variation. By measuring the timing,

we can obtain the information to hijack the encryption key being used with the GNU Privacy Guard

(GnuPG) application in the victim VM. Because Yarom’s attack uses the implementation weakness

existing in GnuPG 1.x before 1.4.16 versions to obtain the information used to extract the private

encryption key, we installed GnuPG 1.4.12 in our VM1 (the medical database server), and executed

the attack from the VM2.

The social engineering attack: We simulated a social engineering attack toward the file server.

Assuming that the attacker obtained a legitimate user’s (username, password) credentials, the attacker

could easily log into the file server, using the user’s privilege to modify corresponding insurance policy

files in the file server.

To capture attacks, in our experimental network, we deployed snort as the IDS, installed Wireshark

to monitor network traffic, and configured all servers to log users’ access. Also, in order to obtain

evidence for those attacks that are missed by the IDS alerts and service logs, we intercepted system

calls from the users’ processes in the cloud.

4.2 The three levels of graphs

By using the network configuration, service deployment and captured evidence, we constructed the

three levels of graphs, including a BPD, two LEGs and two ODGs, described as follows.

1. The Business Process Diagram

Figure 3 shows our BPD with 3 pools. They are Pool 1 (Web Interface), Pool 2 (Public Cloud

Service) and Pool 3 (IaaS User Service). The business process in Pool 1 is the web interface for

the clients(medical customers), which is composed of start/end events, two consecutive tasks

enter username/password, send out request and an exclusive gateway for tasks review policy file

11

and review medical records that depends on the client’s request. The business process in Pool 2

is composed of start/end events, a task check user request followed by an exclusive gateway that

directs to two tasks request policy files and request customer databases, which depends on the

message passed from the task send out request in pool 1. In each of the decision task branch,

there is an exclusion decision gateway(named file available and data available respectively)

followed by tasks that either send the data(policy file or customer medical records through the

message passing) back to the clients or reject the customer’s requests otherwise. Pool 3 is a

business process used to describe IaaS user services, which is mainly composed of three tasks

encrypt data in VM1, resize VM2, and install and run program in VM2 that are the exclusive

decisions of the task check IaaS user request. For each of the three business processes in the

three pools, we consider the last task(s) before the end event as the business process mission(s).

Figure 3: The BPD of the experimental network

2. The Logical Evidence Graph

Table 2 shows evidence of the SQL injection attack with Snort alerts and database access logs.

Using timestamps, corresponding alert content and MySQL general query logs, we asserted that

the attacker used a typical SQL injection with payload ’1’=’1’ to attack the customers’ database

12

Table 2: The snort alert and database server log of SQL injection attack

Time Stamp Machine IP Address/Port Snort Alert and Database Server Access Log

Attacker 129.174.124.122

06/13-14:37:27 web server 129.174.124.184 SQL injection attack(CWE-89)

13/Jun/2017:14:37:34 Database server 129.174.124.35 Access from 129.174.124.184

in the database server. Our IDS failed in capturing the DoS attack launched by exploiting

the vulnerability CVE-2015-3241 in OpenStack Nova services. Because OpenStack application

programing interface (API) logs provide users’ operations of running instances (we illustrate

some of these API logs in Figure 4, where we use bold font to show the users’ operations), we

used them to conclude that the IaaS user in VM2 (the attacker in our experiment) kept re-sizing

and deleting the instance VM2 that co-resided in the same physical machine as the database

server (VM1), which caused the DoS attack toward the database server.

2017-07-18 07:52:00.237 DEBUG oslo concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-0ae0a487c0f7
admin admin] Running cmd (subprocess): mv /opt/stack/data/nova/instances/bd1dac18-
1c e2-44b5-93ee-967fec640ff3= /opt/stack/data/nova/instances/bd1dac18-1ce2-
44b5-93ee-967fec640ff3 resize from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo concurrency/processutils.py:344

2017-07-18 07:52:00.253 DEBUG oslo concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-
0ae0a487c0f7 admin admin] CMD “mv /opt/stack/data/nova/instances/bd1dac18-1ce2-
44b5-93ee-967fec640ff3 /opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-
967fec640ff3 resize” returned: 0 in 0.016s from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo concurrency/processutils.py:374

2017-07-18 07:52:00.254 DEBUG oslo concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-0ae0a487c0f7
admin admin] Running cmd (subprocess): mkdir –p /opt/stack/data/nova/instances/bd1dac18-
1ce2-44b5-93ee-967fec640ff3 from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo concurrency/processutils.py:344

Figure 4: OpenStack Nova API call logs

/* the initial attack location and final attack status*/
attackerLocated(internet).
attackGoal(execCode(database,user)).
/* the network access configuration*/
hacl(internet, webServer, tcp, 80).
hacl(webServer, database, tcp, 3306).
/* configuration information of webServer */
vulExists(webServer, ’directAccess’, httpd).
vulProperty(’directAccess’, remoteExploit, privEscalation).
networkServiceInfo(webServer , httpd, tcp , 80 , apache).
/* the vulnerability of the web application */
vulExists(database, ’CWE-89’, httpd).
vulProperty(’CWE-89’, remoteExploit, privEscalation).
networkServiceInfo(database , httpd, tcp , 3306, user).

Figure 5: Prolog predicates for SQL injection

In order to use the forensic analysis tool mentioned in Section 3.2, we converted system configu-

13

/* the initial attack status of being an iaas user and the final attack status*/
attackerLocated(iaas).
attackGoal(execCode(nova,admin)).
/*the cloud configuration, the “ ” represents any protocol and port*/
hacl(iaas,nova, ,).
/* the vulnerability in nova */
vulExists(nova, ’CVE-2015-3241’, ’REST’).
vulProperty(’CVE-2015-3241’,remoteExploit, privEscalation).
networkServiceInfo(nova , ’REST’, http, , admin).

Figure 6: Prolog predicates for DoS attack

rations and the evidence for the SQL injection attack and DoS attack to Prolog predicates shown

in Figures 5, 6. The output LEGs produced by the tool are shown in Figure 7 and Figure 8

respectively with node names in Tables 3, 4. The two LEGs are not grouped together due to dis-

tinct attacker locations and privileges. Consider an example attack step (Nodes 3, 7, 8 → 2 → 1

in Figure 8). Facts of LEGs are shown in Nodes 7, 8, modeling pre-attack configurations and

vulnerabilities. The consequence fact node (Node 1) shows post-attack evidence derived by

applying a rule (an ellipse Node 2 connecting Nodes 3, 7, 8 to the post attack status, Node 1)

to the parent facts (Nodes 7, 8) and parent consequence fact (Node 3 that is obtained from a

prior stepping stone step).

Figure 7: The LEG of SQL
injection attack toward the
database

Figure 8: The LEG of DoS
attack toward the database
server

14

Table 3: Names of nodes in Figure 7

No. Notation of all nodes

1 execCode(database,)

2 RULE 2 (remote exploit of a server program)

3 netAccess(database,tcp,3306)

4 RULE 5 (multi-hop access)

5 hacl(webServer,database,tcp,3306)

6 execCode(webServer,apache)

7 RULE 2 (remote exploit of a server program)

8 netAccess(webServer,tcp,80)

9 RULE 6 (direct network access)

10 hacl(internet,webServer,tcp,80)

11 attackerLocated(internet)

12 networkServiceInfo(webServer,httpd,tcp,80,apache)

13 vulExists(webServer,’directAccess’,httpd, remoteExploit,privEscalation)

14 networkServiceInfo(database,httpd,tcp,3306,)

15 vulExists(database,’CWE-89’,httpd,remoteExploit, privEscalation)

Table 4: Names of nodes in Figure 8

No. Notation of all nodes

1 execCode(nova,admin)

2 RULE 2 (remote exploit of a server program)

3 netAccess(nova,http,)

4 RULE 6 (direct network access)

5 hacl(cloud,nova,http,)

6 attackerLocated(cloud)

7 networkServiceInfo(nova,’REST’,http, ,admin)

8 vulExists(nova,’CVE-2015-3241’, ’REST’,remoteExploit,privEscalation)

3. The Object Dependency Graph

Due to the lack of IDS alerts and logs for the side-channel and social engineering attacks, we

could not reconstruct the two attack scenarios in the form of LEGs as we did for the SQL

injection and DoS attacks. Therefore, we turned to the corresponding system calls we captured

during the attacks and used the method mentioned in Section 3.3 to construct ODGs for a

forensic analysis.

Figure 9 and Figure 10 are a fraction of the system calls captured from VM1 (the database

server) and VM2 (the attacker’s VM) during the side-channel attack. The system call in Figure 9

shows that a file from VM1 (named message.txt) was encrypted by using GnuPG 1.4.12. System

calls in Figure 10 show that a probe program bin/probe (Line 1) in VM2 used mmap2 (Line 3)

15

to force the underlying system to share memory addresses (Lines 5, 6, 7...) with the probing

process; hence the probing process could read data from the shared memory addresses between

VM1 and VM2 for a later malicious analysis (Lines 10, 11, 12 and Line 1 show the data was

written to a file named out.txt, and our continuous captured system calls show, later, a Python

program was used to extract and analyze the information in out.txt). Figure 11 is a fraction

of the system calls captured from the file server, where the read/write system call trace shows

that the test.txt in FileServer has been modified. Because the corresponding sshd log in the

FileServer recorded the users’ access, it was easy to judge that the attacker stole a legitimate

user’s credentials to modify the policy file (the sshd log is omitted).

Figure 9: Filtered system calls of the side-channel attack from VM1

Figure 10: Filtered system calls of the side-channel attack from VM2

Using the dependency rules listed in the left column of Table 1 and corresponding analysis

on the system calls as shown in Figures 9, 10 and 11, we constructed two ODGs, showing

the attacker from VM2 read the shared cache between VM1 and VM2, and the attacker from

Internet used a legitimate user’s credentials to access the file server and modified a policy file.

We mapped both ODGs to the LEGs in Figure 7 and Figure 8. The integrated LEGs show that:

(1) the attacker from the Internet launched two attacks including using stolen credentials to

modify a policy file and stealing all customers’ medical records by using a SQL injection attack;

(2) the attacker who was an IaaS user launched two other attacks including a DoS attack and

a side-channel attack to the database server.

16

write(9, “v”, 1) = 1
read(11, “v”, 16384) = 1
write(3, “\0\0\0\20\331\255\275\264c\2173)z2j\32\255n\2007d\366m\21\316
\2648\240\207\31\211” . . . , 36) = 36
read(3,“\0\0\0\20\240\253\341\227\321xU\305\347\226\246\361\316\242S =
\30\341QT \231\n\343\314\343\307\f\361”. . . , 16384) = 36
write(9, “i”, 1) = 1
read(11, “i”, 16384) = 1
write(3,“\0\0\0\20\177\352\313\332\373yjM\3416l\230\215\10\220p\252g\375\365
\1\f\335\361\r\273\374\357”. . . , 36) = 36
read(3,“\0\0\0\20\27\334?\201x\300\16\356\346, \0379\32\220{\372)\366\4\v\1 =
\347\263\311\250k\353” . . . , 16384) = 36
write(9, “ ”, 1) = 1
read(11, “ ”, 16384) = 1
write(3,“\0\0\0\200i\321\344\220\313\322\254S\252o\201\225; 6v\243\205\10gŝ
\253\237\325\375\332v” . . . , 36) = 36
read(3, “\0\0\0\20\5\27k; \254\301\24\n\\ZN\267\260\336\3230\323\32\345\2b\
226 − \271|[B\21” . . . , 16384) = 36
write(9, “t”, 1) = 1
read(11, “t”, 16384) = 1
read(3,“\0\0\0\20\325\261\7\254\211(\201\331\272\344[\355\200\\u4\357G\347
\232\276 : \201\376\342\202\201.” . . . , 16384) = 36
write(3,“\0\0\0\20\320\254\#\312\211 \3022\n\227u\16I\372\202\347\37\252T
\257\220
\210E\343\222\342\24S” . . . , 36) = 36
write(9, “e”, 1) = 1
read(11, “e”, 16384) = 1
...
write(9, “\t”, 1) = 1
read(11, “st.txt ”, 16384) = 7
. . .

Figure 11: Filtered system calls of modifying a file from the file server

Table 5: The CVSS impact scores

Attack Name CVE Entry Symbol Representation Attack Impact

SQL injection CWE-89 N1 0.9

DoS attack CVE-2015-3241 N10 0.69

Social Engineering Ns 0.5

side-channel attack CVE-2013-4576 Nsc 0.29

4.3 Mission impact computation in our case study

The impact score of each attack step in all LEGs and ODGs is shown in Table 5, where the three

impact scores of CWE-89, CVE-2015-3241, CVE-2013-4576 were obtained from NIST’s NVD-CVSS

and the impact score of the social engineering attack was from our expert knowledge. The impact

scores in NIST’s NVD-CVSS are based on a [0, 10] scale, which we converted to a [0,1] interval scale.

We mapped all attacks from LEGs and ODGs to the BPD in Figure 3 and computed the mission

impacts of the four attacks as shown in Table 6. Based on Table 6 and the BPD in Figure 3, the

cumulative mission impacts are computed and listed in Table 7.

17

Table 6: The mission impact scores

Pool Task Mapping Attack Weight Mission Impact

Pool 1 Check username and password CWE-89 1 I1 = 1 × P (N1) = 1 × 0.9 = 0.9

Pool 2 Data available CVE-2015-3241 0.9 I2 = 0.9 × P (N10) = 0.9 × 0.69 = 0.621

Pool 2 Request policy files Social Engineering 1 I3 = 1 × P (Ns) = 1 × 0.5 = 0.5

Pool 3 Encrypt data in VM1 CVE-2013-4576 1 I4 = 1 × P (Nsc) = 1 × 0.29 = 0.29

Table 7: The cumulative mission impact

Pool Mission Cumulative Mission Impact

Pool 1 Review policy file M =Max(I3) = Max(0.5) = 0.5

Pool 1 Review medical records M = Max(I1, I2) = Max(0.9, 0.621) = 0.9

Pool 3 Encrypt data in VM1 M = Max(I4) = Max(0.29) = 0.29

4.4 Using mission impacts to reduce attack risks

In a complex infrastructure, different missions use connections and combinations of multiple services.

Each service is supported by software and hardware assets that are usually the target of attackers.

In such cases, a tool can determine the impacts of cyber-attacks on the missions. By correlating the

attacks on lower level assets to the higher level business process diagram and using mission impact

scores of those attacks provided by NIST’s NVD-CVSS, our model shows attacks and computes their

impacts on complex missions. The information provided by such an analysis can be used by forensic

investigators and infrastructure system planners.

As an example, we show how the mission impacts can be used by the system planners to enhance

our experimental network. First, the cumulative impact scores in Table 7 show that the attacks on

the mission of review medical records have a higher impact because the customers’ medical records

could be stolen by using a SQL injection attack. This suggests the user input sanitization should be

implemented to defeat SQL injections. Second, the attacks and their impact scores shown in Table 6

show the two attacks (a DoS attack and a side-channel attack) were caused by cloud services that

have vulnerabilities; hence the corresponding services should be moved to a more stable cloud that

has countermeasures to attacks that can be launched through the shared hypervisor or host. Third,

Table 6 shows, though the mission impact on the insurance policy stored in the file sever might not

be as bad as the SQL injection attack on the database server, it has a score “0.5” that can not be

neglected. An easy solution would be limiting the file write/modify right to only administrators with

local access.

18

5 Conclusion

We proposed a three-layered graphical model to quantify mission impacts of cyber-attacks in this

work. We did so by reconstructing attacks based on available evidence from attack logs and system

call sequences when logs missed requisite evidence to reconstruct attack steps. We used impact scores

published in the NIST’s NVD-CVSS and expert opinions when such numbers are unavailable as a base

line to estimate attack impacts. We then mapped the attacks to higher-level business processes and

considered their importance weight for business processes to compute the impacts of cyber-attacks

on missions. Our case study showed that this model can be used to mitigate the impacts of cyber-

attacks in a network. In the future, we will conduct more experiments using attacks on the cloud

infrastructure to determine how our framework should be used in order to help enterprises to reduce

the security risks of their infrastructures.

DISCLAIMER

This paper is not subject to copyright in the United States. Commercial products are identified

in order to adequately specify certain procedures. In no case does such an identification imply a

recommendation or endorsement by the National Institute of Standards and Technology, nor does it

imply that the identified products are necessarily the best available for the purpose.

References

[1] S. Musman and A. Temin, A cyber mission impact assessment tool, In Technologies for Homeland
Security (HST), 2015 IEEE International Symposium on 2015 Apr 14 (pp. 1-7).

[2] NIST National Vulnerability Database Common Vulnerability Scoring System, available at
https://nvd.nist.gov/vuln-metrics/cvss.

[3] P. Mell and T. Grance. “NIST definition of cloud computing”. National Institute of Standards
and Technology. October 7, 2009.

[4] K. Ruan, J. Carthy, T. Kechadi, and M. Crosbie. “Cloud forensics”. In IFIP International Con-
ference on Digital Forensics, pp. 35-46. Springer Berlin Heidelberg, 2011.

[5] S. Noel, J. Ludwig, P. Jain, D. Johnson, R. K. Thomas, J. McFarland, B. King, S. Webster and
B. Tello, Analyzing mission impacts of cyber actions (AMICA), In NATO IST-128 Workshop on
Cyber Attack Detection, Forensics and Attribution for Assessment of Mission Impact, Istanbul,
Turkey, 2015.

[6] X. Sun, A. Singhal, P. Liu, Towards Actionable Mission Impact Assessment in the Context of
Cloud Computing, In Livraga G., Zhu S. (eds) Data and Applications Security and Privacy
XXXI. DBSec 2017. Lecture Notes in Computer Science, vol 10359.

[7] C. Liu, A. Singhal and D. Wijesekara, A logic-based network forensic model for evidence analysis,
in Advances in Digital Forensics XI, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg,
Germany, pp. 129-145, 2015.

[8] X. Sun, J. Dai, A. Singhal, P. Liu and J. Yen, Towards Probabilistic Identification of Zero-day
Attack Paths, Accepted for IEEE Conference on Communication and Network Security, Philadel-
phia, October 17th 19th, 2016.

[9] C. Liu, A. Singhal and D. Wijesekera, Mapping evidence graphs to attack graphs, In Information
Forensics and Security (WIFS), 2012 IEEE International Workshop on (pp. 121-126). IEEE.

19

https://nvd.nist.gov/vuln-metrics/cvss

[10] Y. Sun, T. Y. Wu, X. Liu, X. and M.S. Obaidat, Multilayered Impact Evaluation Model for
Attacking Missions, IEEE Systems Journal, 10(4), pp.1304-1315, 2016.

[11] X. Ou, S. Govindavajhala, S. and A. W. Appel, MulVAL: A Logic-based Network Security
Analyzer, In USENIX Security Symposium (pp. 8-8), July 2005.

[12] S. Jajodia and S. Noel, Topological vulnerability analysis, In Cyber situational awareness, pp.
139-154. Springer US, 2010.

[13] W. Wang, E.D. Thomas, A graph based approach toward network forensics analysis, ACM
Transactions on Information and Systems Security 12 (1) 2008.

[14] C. Liu, A. Singhal and D. Wijesekera, A Probabilistic Network Forensic Model for Evidence
Analysis, IFIP International Conference on Digital Forensics. Springer International Publishing,
2016.

[15] Online Resource for Markup Language Technologies, retrieved from
http://xml.coverpages.org/bpm.html#bpmi.

[16] L. Herbert, Specification, Verification and Optimization of Business Processes, A Unified Frame-
work, Technical University of Denmark (2014).

[17] OpenStack Open Source Cloud Computing Software. Retrieved from https://www.openstack.org.

[18] Y. Zhang, A. Juels, M. K. Reiter and T. Ristenpart, Cross-vm side channels and their use to ex-
tract private keys, In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 305–316.

[19] Yarom, Yuval, and Katrina Falkner. ”FLUSH+ RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack.” In USENIX Security Symposium, pp. 719-732. 2014.

20

http:https://www.openstack.org
http://xml.coverpages.org/bpm.html#bpmi

	Structure Bookmarks
	Figure 7: The LEG of SQL injection attack toward the database
	Figure 8: The LEG of DoS attack toward the database server
	Figure 10: Filtered system calls of the side-channel attack from VM2

