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Abstract 

Cyber-attacks on the system supporting an enterprise’s mission can impact achieving its ob-

jectives. We describe a layered graphical model as an extension of a forensic investigation in order 

to quantify mission impacts. Our model has three layers: the upper layer models operational 

tasks that constitute the mission and their inter-dependencies. The middle layer reconstructs at-

tack scenarios from available evidence to reconstruct their inter-relationships. In cases where not 

all evidence is available, the lower level reconstructs potentially missing attack steps. Using the 

three levels of graphs constructed in these steps, we present a method to compute the impacts of 

attack activities on missions. We use NIST’s National Vulnerability Database’s (NVD)-Common 

Vulnerability Scoring System (CVSS) scores or forensic investigators’ estimates in our impact 

computation. We present a case study to show the utility of our model. 

Keywords: Mission attack impact, Enterprise infrastructure, Cloud forensic analysis, Layered-

graphical model 

mailto:2anoop.singhal@nist.gov
mailto:1{cliu6,dwijesek}@gmu.edu


1 Introduction 

Organizational missions are used to abstract activities envisioned by organizations, usually defined at 

the high-level as a collection of business processes. Cyber-attacks on an enterprise infrastructure that 

support such missions can impact these missions. Concurrently, a growing number of organizational 

business processes and services are now hosted on cloud operators’ data centers. Given that most 

networked infrastructures including cloud services are supported by hardware and software assets, any 

attack that impacts these assets could impact the missions they support. Therefore, analyzing and 

quantifying the mission impacts of cyber-attacks is of importance to infrastructure system planners 

in migrating security threats and improving mission resilience, which is the primary objective in this 

paper. 

NIST’s NVD-CVSS provides impact estimates of exploitable vulnerabilities on IT systems [2]. 

Other publications use NIST’s NVD-CVSS to predict the impacts of multi-step attacks on assets 

by considering constructing all possible attack paths [1, 5, 6]. However, evaluating all paths is 

infeasible for forensic analysis to assess damages due to the large number of paths and vulnerabilities. 

Additionally, quoted publications only consider the vulnerabilities reported publicly, not including 

zero-day attacks. 

Because post-attack artifacts obtained during forensic investigations provide information that can 

be used to analyze attacks, we create a layered graphical model that uses this information to quantify 

the attacks’ impacts on missions. Our model has three layers. The upper layer models operational 

tasks that constitute the mission and their inter-dependencies, where a mission is modeled as a 

collection of choreographed tasks. The middle layer collects evidence from intrusion detection system 

(IDS) tools and event logs to reconstruct attack scenarios. In cases where not all evidence is available, 

the lower layer reconstructs potentially missing attack steps using system calls that were executed 

to fulfill the mission. Finally, the two mapping algorithms integrate the information obtained from 

the three layers to ascertain how the mission execution was supported midst attack activities. Using 

the layers of graph-like dependency information, our model provides a method to compute impacts of 

attacks on missions using the NIST NVD-CVSS scores or forensic investigators’ estimates on attacks 

toward the underlying software or hardware. We present a case study to show the utility of our 

model, and how it can be used to migrate attack risks in a networked infrastructure. To the best 

of our knowledge, there isn’t an integrated forensic analysis framework that quantifies the mission 

impacts of multi-step attacks in a complex enterprise infrastructure which uses cloud-based services. 

The rest of the paper is organized as follows. Section 2 discusses background and related work. 

Section 3 presents the three-layered graphical model. Section 4 uses a case study to show how the 

model computes mission impacts of attacks in a cloud environment, and discusses how the impact 

analysis can be used to enhance a networked infrastructure. Section 5 gives the conclusion. 
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2 Background and Related Work 

We present the background and related work in this section. 

2.1 Cloud Forensics 

NIST defined Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-

Service (IaaS) as deployment models [3]. SaaS allows clients to use providers’ applications running on 

a cloud infrastructure. PaaS allows clients to deploy on the cloud client applications using program-

ming languages, libraries, services and tools supported by the provider. IaaS provides clients with the 

capability of provisioning processing, storage, networks and other fundamental computing resources, 

so that the clients can deploy and run software including operating systems and applications. 

Digital forensic investigators seek attack evidence from computers and networks. According to 

Ruan et al., cloud forensics is a subset of network forensics that follows the main phases of network 

forensics with techniques tailored to cloud computing environments [4]. For example, data acquisition 

is different in SaaS and IaaS, because the investigator will have to solely depend on cloud service 

providers in SaaS. Investigators can acquire the virtual machine images from IaaS customers. 

2.2 Related Work 

Attackers tend to use multi-step, multi-stage attacks to impact important services protected us-

ing complex mechanisms. Researchers have proposed and designed models to estimate the mission 

impacts of such attacks by considering all known vulnerabilities. Sun et al. proposed using a multi-

layered impact evaluation model to estimate the mission impacts [10]. In this model, a lower vulnera-

bility layer is proposed to map to an asset layer, and then to a service layer, which finally maps to the 

mission layer, so that the mission impacts can be calculated by using vulnerabilities’ CVSS scores and 

the relationships between missions to the lower level vulnerabilities. However, this model does not 

provide a method to construct the attack paths. Another group of researchers, Sun et al., combined 

mission dependency graphs with attack graphs generated by an attack graph generation tool, Mul-

VAL [11], to estimate the attack mission impacts in the clouds [6]. Noel at el. designed a cyber-mission 

impact assessment framework by leveraging Business Process Modeling Notation (BPMN) and their 

attack graph generation tool named Topological Vulnerability Analysis (TVA) [12] that combines an 

exploit knowledge base and a remote network scanner, analyzing all potential attack paths leading to 

attack goals to evaluate potential mission impacts [5, 6]. However, these approaches use vulnerabili-

ties collected from the bug-report community such as NIST’s NVD to assess the impacts of attacks. 

These do not scale to large infrastructures or zero-day attacks. 

Forensics researchers have reasoned on post-attack evidence using correlation rules to reconstruct 
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Figure 1: The three-layered graph model for mission impact evaluation 

the attack scenarios. The objective of this work has been to reconstruct criminal or unauthorized 

actions shown to be disruptive to missions [7, 13]. To reconstruct attack scenarios that have legal 

standing, we integrated a Prolog logic tool, MulVAL, with two databases, including a vulnerability 

database and an anti-forensic database, to ascertain the admissibility of evidence and explain missing 

evidence due to attackers’ using anti-forensics [9]. We also expanded this work by using system calls 

to reconstruct the missing attack steps due to missing evidence in the higher application level, and 

using Bayesian Network to estimate the experts’ belief on the reconstructed attack scenarios [14]. 

However, no work exists to estimate the mission impacts of attacks launched toward an enterprise’s 

infrastructure. 

3 Our Three-layered Graphical Model 

Figure 1 shows our model. The lower layers reconstruct attack paths so that the attacks can be 

mapped to tasks and missions in the upper layer for mission impact computation. 

3.1 The Upper Layer 

The upper layer models tasks and missions as business processes. We model business processes using 

a Business Process Diagram (BPD) using the Business Process Modeling Notation (BPMN). We use 

tasks, events, sequencing, exclusive choice, parallel gateways, message flows and pools [16] to constuct 

BPDs formalized in Definition 1 (Originally defined in [16]). 
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Definition 1 Business Process Diagram-BPD: 

Any quintuple (P ool, T, E, C, OP ) satisfying the following conditions are said to be a BPD. 

• Let T be a set of tasks and E be a set of events. 

• Let Esend, Erec be two disjoint subsets of E and estart, eend ∈ E be two events we refer to as 

start and end events. Hence, E = estart ∪ eend ∪ Esend ∪ Erec are respectively called start, stop, 

message sending, message receiving events. 

• T com ∈ Erec= {(t, esend, c), (t, erec, c) : t ∈ T, esend ∈ Esend, erec , c ∈ C} are said to be the set 

of communicating tasks. 

• OP = {F, M, XOR, ; } called parallel fork, parallel merge, exclusive choice and sequencing. 

• C is a set of channels. 

Business processlets and a Business Process are defined as follows. 

• Any t ∈ T ∪ T com is said to be a processlet. 

• If P and Q are processlets, then so are P ; Q, F (P, Q)M and P (XOR)Q. 

• If P ∈ T \ T com and estart, eend are start and end events, then estart; P ; eend is said to be a 

business process. 

• Pools are business processes with the constrains: for two pools P1 and P2, there is a task 

(t1, esend, c) in P1 if and only if there will be another task (t2, erec, c) in P2, so that the message 

can be passed through channel c. 

3.2 The Middle Layer 

The middle layer constructs potential attacks from evidence available from system logs and IDS 

alerts. Our objective is to map these attack scenarios to missions modeled as BPDs. Because we 

only consider attack scenarios substantiated using available evidence, the created attack paths do not 

include all possible attack paths and vulnerabilities. However, sometimes, not all evidence may be 

available in IDS logs, which will be addressed in the lower layer. 

We reconstruct attack scenarios by using a forensic analysis tool created in our previous work [7]. 

This tool uses rules to create directed graphs of available items of evidence and correlate them together 

as witnesses of attacks. Because rules are used to create these graphs, they are called logical evidence 

graphs (LEGs) formalized in Definition 2, originally defined in [7]). 

Definition 2 Logical Evidence Graph-LEG: 
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A LEG = (Nr, Nf , Nc, E, L, G) is said to be a logical evidence graph (LEG), where Nf , Nr and 

Nc are three sets of disjoint nodes called fact, rule, and consequence fact nodes respectively. E ⊆ 

Nf ∪ Nc × Nr ∪ (Nr × Nc, L is the mapping from a node to its labels and G ⊆ Nc are observed 

attack events. Every rule node has a consequence fact node as its single child and one or more 

fact or consequence fact nodes from prior attack steps as its parents. The labels of nodes consist of 

instantiations of rules or sets of predicates specified as follows: 

1. A node in Nf is an instantiation of predicates that codify system states including access priv-

ileges, network topology consisting of interconnectivity information, or known vulnerabilities 

associated with host computers in the system. We use the following predicates: 

(a) hasAccount( principal, host, account), canAccessFile( host, user, access, path) etc. to model 

access privileges. 

(b) attackerLocated( host) and hacl( src, dst, prot, port) to model network topology, namely, 

the attacker’s location and network reachability information. 

(c) vulExists( host, vulID, program) and vulProperty( vulID, range, consequence) to model vul-

nerabilities exhibited by nodes. 

2. A node in Nc represents a predicate that codifies the post attack state as the consequence of an 

attack step. We use predicates execCode( host, user) and netAccess( machine, protocol, port) 

to model the attacker’s capability after an attack step. Valid instantiations of these predicates 

after an attack will update valid instantiations of the predicates listed in (1). 

3. A node in Nr consists of a single rule in the form p ← p1 ∧ p2, . . . , ∧pn with p as the child node 

of Nr is an instantiation of predicates from Nc. All pi for i ∈ {1 . . . n} as the parent nodes of 

Nr are the collection of all predicate instantiations of Nf from the current step and Nc from 

the prior attack step. 

Table 1: Dependencies arising out of systems calls 

Dependency Event Description Unix System Calls 

process → file Process modifies file write, pwrite64, rename, mkdir, linkat, link, symlinkat, etc 

file → process Process reads file stat64, lstat6e, fsat64, open, read, pread64, execve, etc. 

process ↔ file Process uses/modifies file open, rename, mount, mmap2, mprotect etc. 

process1 → process2 Process1 creates/terminates Process2 vfork, fork, kill, etc. 

process → socket process writes socket write, pwrite64, etc. 

socket → process process checks/reads socket fstat64, read, pread64, etc. 

process ↔ socket 

socket ↔ socket 

Process reads/writes/checks socket 

process reads/writes socket 

mount, connect, accept, bind, sendto, send, sendmsg, etc. 

connect, accept, sendto, sendmsg, recvfrom, recvmsg 
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3.3 The Lower Layer 

The lower layer uses instances of interactions between services and the execution environment to 

obtain evidence unavailable from systems logs and IDS alerts. We obtain interaction instances from 

systems call logs. This usage is based on our postulate of missing evidence due to the attackers’ 

using anti-forensic techniques, limitation of forensic tools, or zero-day attacks. Because there are 

many system calls, we use those chosen in [8], listed in the right-hand column of Table 1. Our 

abstraction of them appear in the left-hand column of Table 1. A process making system calls 

creates dependencies between itself and other processes, files, or sockets for network connection. We 

model these dependencies as graphs that we call object dependency graphs (ODGs), formalized in 

Definition 3. 

Definition 3 Object Dependency Graph-ODG: 

The reflexive transitive closure of → defined in Table 1 is an object dependency graph. We use the 

notation ODG=(VO, VE , E) to represent an object dependency graph, where VO is the set of vertexes 

that are composed of objects including Processes P, Files F or Sockets S; VE is the set of textual event 

descriptions listed in the middle column; and E is the set of dependency edges listed in the left-hand 

column of Table 1. 

3.4 The Mapping between the Three Layers 

The left-hand and right-hand columns in Figure 1 show the system resource mapping and graph 

mapping of our model. We use the resource mapping obtained from the infrastructure configuration 

and software deployment to map graphs. To do so, we map attacked services in corresponding vertices 

in BPDs, LEGs and ODGs so that the source graphs can be mapped to the destination graphs. A LEG 

is easily mapped to a BPD by matching the attacked services to the corresponding tasks supported 

by the services. We use depth first search (DFS) method to map an ODG to a LEG, which is shown 

in Algorithm 1. 

In Algorithm 1, all object nodes in an ODG are initially marked as having not been checked by 

using color white as shown in the for loop between Line 2 and 4. Then, for each given unchecked 

object node VO (Line 6 and 7), the algorithm repeatedly calls F ind(VO, LEG) function (calls from 

Line 13, and the function itself is between Line 36 and Line 50), attempting to find the matching 

post-attack status node in the LEG by checking if the attacked service in the LEG is equal to the 

attacked service in the ODG. If such a post-attack status node, say Nc1, is found (Line 15), then, 

Algorithm 1 checks if the attack step between Node VO and its parent node parent(VO) in the ODG 

has a mapping attack step between Node Nc1 and its parent node(s) parent(Nc1) in the LEG (Line 

19). If there is no such a matching attack step, one is added to the LEG (Line 22 to 25). If there 
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Input: An ODG=(V, VE , E) and a LEG=(Nr, Nf , Nc, E, L, G). 
Output: A LEG integrated with attack paths from the ODG. 
//Color all nodes in ODG WHITE 
for each node VO in ODG do 

color[VO] ← WHITE 
end 
//Go through each object in ODG 
for each node VO in ODG do 

if VO == WHITE then 
//Initialize all nodes in LEG white 
for each node Nc in LEG do 

color[Nc] ← WHITE 
end 
//Search for the corresponding Nc1 in LEG 
Nc1 = Find(VO, LEG) 
//If there is such a matching Nc1 

if Nc1 6= ∅ then 
color(VO) ← BLACK 
//See if the object’s parent matches 
//corresponding Nc1’ s parent 
Nc2=Find(parent(VO), LEG) 
//If not matching parents, 
//add the missing attack step from ODG to LEG 
if Nc2 6= parent(NC1) then 

LEG ← Flow(Nc1, VE ) 
LEG ← Flow(VE , Nc2) 

end 
end 
else 

//If there is no such a matching Nc1 in LEG 
//Add the new object to LEG 
LEG ← VO 

color [VO]=GRAY 
end 
VO =child(VO) 

end 
end 
Function Find(VO, LEG) 

//Go through each Nc in LEG 
for each post attack status Nc from LEG do 

//Check if there is any matching Nc for VO 

if (Nc.service == VO.service AND 
color[Nc] == white then 

color[Nc] ← BLACK 
return Nc 

end 
else 

color[Nc] ← GRAY 
Nc ← the child post attack status node of Nc 

end 
end 
return ∅ 
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isn’t a mapping post-attack status Node Nc1 in the LEG for Node VO (Line 27) in the ODG, one is 

added to the LEG (Line 27 to 32), and the search continues (Line 33) until all nodes in the ODG are 

checked (i.e. colored). 

3.5 Computing Mission Impact 

We propose to use the interval [0,1] to quantify a mission impact of an attack, computed by using 

the following steps. 

3.5.1 Compute the impact scores of attacks in LEGs 

In a LEG, we use P (a) to represent the impact of attacks on services deployed on host computers. 

NIST’s NVD-CVSS published reported vulnerabilities with assigned impact scores, which we propose 

to use for each P(a) if an attack a can be found in NIST’s NVD. If the attack a cannot be found 

in NIST’s NVD, we suggest using expert knowledge to assign an impact score to P (a). We use our 

previous work [9] to compute a cumulative impact score of attacks on the same service as follows. 

P (a) = P (a1) ∪ P (a2) (1) 

In Equation 1, a1 and a2 are two attacks on the same service. P (a1) ∪ P (a2) = P (a1) + P (a2) − 

P (a1) × P (a2). 

3.5.2 Assign weight to tasks/missions 

A value between [0,1] is proposed as the weight of mission impact of attacks on a task, indicating the 

importance of the corresponding task to the mission of a business process. 

3.5.3 Compute mission attack impacts in BPDs 

We map LEGs to BPDs so that the mission impact of attacks I(T) on a task T is computed using 

Equation 2. 

I(T ) = weight × P (T ) (2) 

P (T ) = P (a) (3) 

P (T ) = P (a1) ∪ P (a2) (4) 

In Equation 2, P(T) is the impact of attacks on a task T in a BPD. Depending on the mapping 

relationship from the attacked service(s) (represented by a, a1, a2) in a LEG to a task (represented 
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by T ) in a BPD, P(T) is computed by using Equation 3(one-to-one mapping relationship) and Equa-

tion 4(many-to-one mapping relationship) respectively. 

3.5.4 Compute the cumulative mission impact 

Mission impact of attacks on each task can be computed using Equation 2, Equation 3 and Equation 4. 

However, in some cases, the cumulative mission attack impact for the final mission is required to esti-

mate the overall damage, which we compute as the maximum. We use M to represent the cumulative 

mission impact. Correspondingly, for the four kinds of relationships between tasks composing of a 

business process, M is computed using the following equations, explained below. 

M(B) = Max{I(T1), I(T2), . . . , I(Tn)} (5) 

M(B) = Max{I(T1), I(T2), I(T4) . . . , I(Tn)} (6) 

M(B) = Max{I(T1), I(T3), I(T4) . . . , I(Tn)} (7) 

M(B) = Max{M(Bbefore), I(T20)} (8) 

1. If the tasks T1, T2, . . . , Tn composing of the final mission B have a sequential relationship with 

each other, or among them, there are tasks, say T2, T3 that have a parallel fork relationships 

with the predecessor task T1 and a parallel merge relationships with the successor tasks T4, 

M(B) is computed as shown in Equation 5. 

2. Among tasks T1, T2, . . . , Tn that compose of the final mission B, if there are tasks, say T2, T3, 

which have an exclusive decision relationship with the predecessor task T1 and the successor 

tasks T4, and all other tasks including T4, . . . , Tn have a sequential relationship with each other, 

depending on which task (either T2 or T3) the business process chooses, either Equation 6 or 

Equation 7 is used to compute M(B). 

3. Suppose tasks T1, T2, . . . , Tn compose of the final mission B in Pool 1. We use M(Bbefore) to 

represent the cumulative mission attack impact of B without any message passing from other 

pools. If there is message passing relationship between a task T20 from Pool 2 to T2 in Pool 1, 

Equation 8 is used to compute M(B). 

4 The Case Study 

This section describes our case study used to show the utility of our model. 
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(a) The Experimental Network 
(b) VM1 and VM2 

Figure 2: The experimental network and attacks using cloud services 

4.1 The experimental network and attacks 

Figure 2a shows our experimental network configured to manage the customers’ medical records and 

their health insurance policy files. These records and files are stored on two separate VMs in a private 

cloud set up by using OpenStack (we used the version Juno 2014.2.3 ). OpenStack is a collection 

of python-based software projects that manage access to pooled storage, computing and network 

resources that reside in one or many machines of a cloud system [17]. These projects include Neutron 

(Networking), Nova (Compute), Glance (Image Management), Swift (Object Storage), Cinder (Block 

Storage) and Keystone (Authorization and Authentication). OpenStack can be used to deploy SaaS, 

PaaS and IaaS cloud models, but is mostly deployed as an IaaS cloud. Authenticated users can 

access the file server to retrieve policy files using ssh and query the medical database stored in the 

database server using MySQL queries through a web application. 

We assume that the attacker’s objective is to steal customers’ medical records, prevent the medical 

records’ availability and modify the health insurance policies. By probing the deployed web and cloud 

services, as the attacker, we launched the following attacks. 

The SQL injection attack: Because our web application did not sanitize user input, the attacker 

could use it to create a SQL injection attack (CWE-89) to access customers’ medical records. By 

using the query select * from profile where name=’Alice’ and (password=’alice’ or ’1’ = ’1’), where 

profile was the database name, and ’1’=’1’ was the payload that made the query bypass the password 

check, we retrieved all customer medical records. 

The DoS attack: According to NIST’s NVD, the vulnerability CVE-2015–3241 that is in Open-

Stack Compute (Nova) versions 2015.1 through 2015.1.1, 2014.2.3 and earlier allows authenticated 

users to cause Denial of Services (DoS) by re-sizing and then deleting an instance (VM). The pro-

cess of resizing and deleting an instance is also called an instance migration. The migration process 
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does not terminate when an instance is deleted with CVE-2015-3241, so an authenticated user could 

bypass user quota enforcement to deplete all available disk space by repeatedly performing instance 

migration. By using this vulnerability, playing a privileged IaaS malicious user, we launched the DoS 

attack toward the database server by repeatedly re-sizing and deleting VM2 that co-resided in the 

same physical machine as the medical database server(VM1). 

The cross-VM side-channel attack: Side-channel attacks can be used to extract fine grain 

information across VMs that reside on the same hypervisor [18]. 

In our experimental network, we simulated Yarom’s cache side-channel attack [19] shown in Fig-

ure 2b on our two VMs that co-reside in the same multi-core processor (an Intel quad-core i7). In this 

attack, the cache shared between the victim and attacking VMs can be used to fill with data from 

the attacking machine. Each time when an encryption occurs, the processor evicts one or more lines 

of the attacker’s memory from the shared cache, causing timing variation. By measuring the timing, 

we can obtain the information to hijack the encryption key being used with the GNU Privacy Guard 

(GnuPG) application in the victim VM. Because Yarom’s attack uses the implementation weakness 

existing in GnuPG 1.x before 1.4.16 versions to obtain the information used to extract the private 

encryption key, we installed GnuPG 1.4.12 in our VM1 (the medical database server), and executed 

the attack from the VM2. 

The social engineering attack: We simulated a social engineering attack toward the file server. 

Assuming that the attacker obtained a legitimate user’s (username, password) credentials, the attacker 

could easily log into the file server, using the user’s privilege to modify corresponding insurance policy 

files in the file server. 

To capture attacks, in our experimental network, we deployed snort as the IDS, installed Wireshark 

to monitor network traffic, and configured all servers to log users’ access. Also, in order to obtain 

evidence for those attacks that are missed by the IDS alerts and service logs, we intercepted system 

calls from the users’ processes in the cloud. 

4.2 The three levels of graphs 

By using the network configuration, service deployment and captured evidence, we constructed the 

three levels of graphs, including a BPD, two LEGs and two ODGs, described as follows. 

1. The Business Process Diagram 

Figure 3 shows our BPD with 3 pools. They are Pool 1 (Web Interface), Pool 2 (Public Cloud 

Service) and Pool 3 (IaaS User Service). The business process in Pool 1 is the web interface for 

the clients(medical customers), which is composed of start/end events, two consecutive tasks 

enter username/password, send out request and an exclusive gateway for tasks review policy file 
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and review medical records that depends on the client’s request. The business process in Pool 2 

is composed of start/end events, a task check user request followed by an exclusive gateway that 

directs to two tasks request policy files and request customer databases, which depends on the 

message passed from the task send out request in pool 1. In each of the decision task branch, 

there is an exclusion decision gateway(named file available and data available respectively) 

followed by tasks that either send the data(policy file or customer medical records through the 

message passing) back to the clients or reject the customer’s requests otherwise. Pool 3 is a 

business process used to describe IaaS user services, which is mainly composed of three tasks 

encrypt data in VM1, resize VM2, and install and run program in VM2 that are the exclusive 

decisions of the task check IaaS user request. For each of the three business processes in the 

three pools, we consider the last task(s) before the end event as the business process mission(s). 

Figure 3: The BPD of the experimental network 

2. The Logical Evidence Graph 

Table 2 shows evidence of the SQL injection attack with Snort alerts and database access logs. 

Using timestamps, corresponding alert content and MySQL general query logs, we asserted that 

the attacker used a typical SQL injection with payload ’1’=’1’ to attack the customers’ database 
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Table 2: The snort alert and database server log of SQL injection attack 

Time Stamp Machine IP Address/Port Snort Alert and Database Server Access Log 

Attacker 129.174.124.122 

06/13-14:37:27 web server 129.174.124.184 SQL injection attack(CWE-89) 

13/Jun/2017:14:37:34 Database server 129.174.124.35 Access from 129.174.124.184 

in the database server. Our IDS failed in capturing the DoS attack launched by exploiting 

the vulnerability CVE-2015-3241 in OpenStack Nova services. Because OpenStack application 

programing interface (API) logs provide users’ operations of running instances (we illustrate 

some of these API logs in Figure 4, where we use bold font to show the users’ operations), we 

used them to conclude that the IaaS user in VM2 (the attacker in our experiment) kept re-sizing 

and deleting the instance VM2 that co-resided in the same physical machine as the database 

server (VM1), which caused the DoS attack toward the database server. 

2017-07-18 07:52:00.237 DEBUG oslo concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-0ae0a487c0f7 
admin admin] Running cmd (subprocess): mv /opt/stack/data/nova/instances/bd1dac18-
1c e2-44b5-93ee-967fec640ff3= /opt/stack/data/nova/instances/bd1dac18-1ce2-
44b5-93ee-967fec640ff3 resize from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo concurrency/processutils.py:344 

2017-07-18 07:52:00.253 DEBUG oslo concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-
0ae0a487c0f7 admin admin] CMD “mv /opt/stack/data/nova/instances/bd1dac18-1ce2-
44b5-93ee-967fec640ff3 /opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-
967fec640ff3 resize” returned: 0 in 0.016s from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo concurrency/processutils.py:374 

2017-07-18 07:52:00.254 DEBUG oslo concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-0ae0a487c0f7 
admin admin] Running cmd (subprocess): mkdir –p /opt/stack/data/nova/instances/bd1dac18-
1ce2-44b5-93ee-967fec640ff3 from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo concurrency/processutils.py:344 

Figure 4: OpenStack Nova API call logs 

/* the initial attack location and final attack status*/ 
attackerLocated(internet). 
attackGoal(execCode(database,user)). 
/* the network access configuration*/ 
hacl(internet, webServer, tcp, 80). 
hacl(webServer, database, tcp, 3306). 
/* configuration information of webServer */ 
vulExists(webServer, ’directAccess’, httpd). 
vulProperty(’directAccess’, remoteExploit, privEscalation). 
networkServiceInfo(webServer , httpd, tcp , 80 , apache). 
/* the vulnerability of the web application */ 
vulExists(database, ’CWE-89’, httpd). 
vulProperty(’CWE-89’, remoteExploit, privEscalation). 
networkServiceInfo(database , httpd, tcp , 3306, user). 

Figure 5: Prolog predicates for SQL injection 

In order to use the forensic analysis tool mentioned in Section 3.2, we converted system configu-
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/* the initial attack status of being an iaas user and the final attack status*/ 
attackerLocated(iaas). 
attackGoal(execCode(nova,admin)). 
/*the cloud configuration, the “ ” represents any protocol and port*/ 
hacl(iaas,nova, , ). 
/* the vulnerability in nova */ 
vulExists(nova, ’CVE-2015-3241’, ’REST’). 
vulProperty(’CVE-2015-3241’,remoteExploit, privEscalation). 
networkServiceInfo(nova , ’REST’, http, , admin). 

Figure 6: Prolog predicates for DoS attack 

rations and the evidence for the SQL injection attack and DoS attack to Prolog predicates shown 

in Figures 5, 6. The output LEGs produced by the tool are shown in Figure 7 and Figure 8 

respectively with node names in Tables 3, 4. The two LEGs are not grouped together due to dis-

tinct attacker locations and privileges. Consider an example attack step (Nodes 3, 7, 8 → 2 → 1 

in Figure 8). Facts of LEGs are shown in Nodes 7, 8, modeling pre-attack configurations and 

vulnerabilities. The consequence fact node (Node 1) shows post-attack evidence derived by 

applying a rule (an ellipse Node 2 connecting Nodes 3, 7, 8 to the post attack status, Node 1) 

to the parent facts (Nodes 7, 8) and parent consequence fact (Node 3 that is obtained from a 

prior stepping stone step). 

Figure 7: The LEG of SQL 
injection attack toward the 
database 

Figure 8: The LEG of DoS 
attack toward the database 
server 
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Table 3: Names of nodes in Figure 7 

No. Notation of all nodes 

1 execCode(database, ) 

2 RULE 2 (remote exploit of a server program) 

3 netAccess(database,tcp,3306) 

4 RULE 5 (multi-hop access) 

5 hacl(webServer,database,tcp,3306) 

6 execCode(webServer,apache) 

7 RULE 2 (remote exploit of a server program) 

8 netAccess(webServer,tcp,80) 

9 RULE 6 (direct network access) 

10 hacl(internet,webServer,tcp,80) 

11 attackerLocated(internet) 

12 networkServiceInfo(webServer,httpd,tcp,80,apache) 

13 vulExists(webServer,’directAccess’,httpd, remoteExploit,privEscalation) 

14 networkServiceInfo(database,httpd,tcp,3306, ) 

15 vulExists(database,’CWE-89’,httpd,remoteExploit, privEscalation) 

Table 4: Names of nodes in Figure 8 

No. Notation of all nodes 

1 execCode(nova,admin) 

2 RULE 2 (remote exploit of a server program) 

3 netAccess(nova,http, ) 

4 RULE 6 (direct network access) 

5 hacl(cloud,nova,http, ) 

6 attackerLocated(cloud) 

7 networkServiceInfo(nova,’REST’,http, ,admin) 

8 vulExists(nova,’CVE-2015-3241’, ’REST’,remoteExploit,privEscalation) 

3. The Object Dependency Graph 

Due to the lack of IDS alerts and logs for the side-channel and social engineering attacks, we 

could not reconstruct the two attack scenarios in the form of LEGs as we did for the SQL 

injection and DoS attacks. Therefore, we turned to the corresponding system calls we captured 

during the attacks and used the method mentioned in Section 3.3 to construct ODGs for a 

forensic analysis. 

Figure 9 and Figure 10 are a fraction of the system calls captured from VM1 (the database 

server) and VM2 (the attacker’s VM) during the side-channel attack. The system call in Figure 9 

shows that a file from VM1 (named message.txt) was encrypted by using GnuPG 1.4.12. System 

calls in Figure 10 show that a probe program bin/probe (Line 1) in VM2 used mmap2 (Line 3) 

15 



to force the underlying system to share memory addresses (Lines 5, 6, 7...) with the probing 

process; hence the probing process could read data from the shared memory addresses between 

VM1 and VM2 for a later malicious analysis (Lines 10, 11, 12 and Line 1 show the data was 

written to a file named out.txt, and our continuous captured system calls show, later, a Python 

program was used to extract and analyze the information in out.txt). Figure 11 is a fraction 

of the system calls captured from the file server, where the read/write system call trace shows 

that the test.txt in FileServer has been modified. Because the corresponding sshd log in the 

FileServer recorded the users’ access, it was easy to judge that the attacker stole a legitimate 

user’s credentials to modify the policy file (the sshd log is omitted). 

Figure 9: Filtered system calls of the side-channel attack from VM1 

Figure 10: Filtered system calls of the side-channel attack from VM2 

Using the dependency rules listed in the left column of Table 1 and corresponding analysis 

on the system calls as shown in Figures 9, 10 and 11, we constructed two ODGs, showing 

the attacker from VM2 read the shared cache between VM1 and VM2, and the attacker from 

Internet used a legitimate user’s credentials to access the file server and modified a policy file. 

We mapped both ODGs to the LEGs in Figure 7 and Figure 8. The integrated LEGs show that: 

(1) the attacker from the Internet launched two attacks including using stolen credentials to 

modify a policy file and stealing all customers’ medical records by using a SQL injection attack; 

(2) the attacker who was an IaaS user launched two other attacks including a DoS attack and 

a side-channel attack to the database server. 
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write(9, “v”, 1) = 1 
read(11, “v”, 16384) = 1 
write(3, “\0\0\0\20\331\255\275\264c\2173)z2j\32\255n\2007d\366m\21\316 
\2648\240\207\31\211” . . . , 36) = 36 
read(3,“\0\0\0\20\240\253\341\227\321xU\305\347\226\246\361\316\242S = 
\30\341QT \231\n\343\314\343\307\f\361”. . . , 16384) = 36 
write(9, “i”, 1) = 1 
read(11, “i”, 16384) = 1 
write(3,“\0\0\0\20\177\352\313\332\373yjM\3416l\230\215\10\220p\252g\375\365 
\1\f\335\361\r\273\374\357”. . . , 36) = 36 
read(3,“\0\0\0\20\27\334?\201x\300\16\356\346, \0379\32\220{\372)\366\4\v\1 = 
\347\263\311\250k\353” . . . , 16384) = 36 
write(9, “ ”, 1) = 1 
read(11, “ ”, 16384) = 1 
write(3,“\0\0\0\200i\321\344\220\313\322\254S\252o\201\225; 6v\243\205\10gŝ  
\253\237\325\375\332v” . . . , 36) = 36 
read(3, “\0\0\0\20\5\27k; \254\301\24\n\\ZN\267\260\336\3230\323\32\345\2b\ 
226 − \271|[B\21” . . . , 16384) = 36 
write(9, “t”, 1) = 1 
read(11, “t”, 16384) = 1 
read(3,“\0\0\0\20\325\261\7\254\211(\201\331\272\344[\355\200\\u4\357G\347 
\232\276 : \201\376\342\202\201.” . . . , 16384) = 36 
write(3,“\0\0\0\20\320\254\#\312\211 \3022\n\227u\16I\372\202\347\37\252T 
\257\220 
\210E\343\222\342\24S” . . . , 36) = 36 
write(9, “e”, 1) = 1 
read(11, “e”, 16384) = 1 
... 
write(9, “\t”, 1) = 1 
read(11, “st.txt ”, 16384) = 7 
. . . 

Figure 11: Filtered system calls of modifying a file from the file server 

Table 5: The CVSS impact scores 

Attack Name CVE Entry Symbol Representation Attack Impact 

SQL injection CWE-89 N1 0.9 

DoS attack CVE-2015-3241 N10 0.69 

Social Engineering Ns 0.5 

side-channel attack CVE-2013-4576 Nsc 0.29 

4.3 Mission impact computation in our case study 

The impact score of each attack step in all LEGs and ODGs is shown in Table 5, where the three 

impact scores of CWE-89, CVE-2015-3241, CVE-2013-4576 were obtained from NIST’s NVD-CVSS 

and the impact score of the social engineering attack was from our expert knowledge. The impact 

scores in NIST’s NVD-CVSS are based on a [0, 10] scale, which we converted to a [0,1] interval scale. 

We mapped all attacks from LEGs and ODGs to the BPD in Figure 3 and computed the mission 

impacts of the four attacks as shown in Table 6. Based on Table 6 and the BPD in Figure 3, the 

cumulative mission impacts are computed and listed in Table 7. 
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Table 6: The mission impact scores 

Pool Task Mapping Attack Weight Mission Impact 

Pool 1 Check username and password CWE-89 1 I1 = 1 × P (N1) = 1 × 0.9 = 0.9 

Pool 2 Data available CVE-2015-3241 0.9 I2 = 0.9 × P (N10) = 0.9 × 0.69 = 0.621 

Pool 2 Request policy files Social Engineering 1 I3 = 1 × P (Ns) = 1 × 0.5 = 0.5 

Pool 3 Encrypt data in VM1 CVE-2013-4576 1 I4 = 1 × P (Nsc) = 1 × 0.29 = 0.29 

Table 7: The cumulative mission impact 

Pool Mission Cumulative Mission Impact 

Pool 1 Review policy file M =Max(I3) = Max(0.5) = 0.5 

Pool 1 Review medical records M = Max(I1, I2) = Max(0.9, 0.621) = 0.9 

Pool 3 Encrypt data in VM1 M = Max(I4) = Max(0.29) = 0.29 

4.4 Using mission impacts to reduce attack risks 

In a complex infrastructure, different missions use connections and combinations of multiple services. 

Each service is supported by software and hardware assets that are usually the target of attackers. 

In such cases, a tool can determine the impacts of cyber-attacks on the missions. By correlating the 

attacks on lower level assets to the higher level business process diagram and using mission impact 

scores of those attacks provided by NIST’s NVD-CVSS, our model shows attacks and computes their 

impacts on complex missions. The information provided by such an analysis can be used by forensic 

investigators and infrastructure system planners. 

As an example, we show how the mission impacts can be used by the system planners to enhance 

our experimental network. First, the cumulative impact scores in Table 7 show that the attacks on 

the mission of review medical records have a higher impact because the customers’ medical records 

could be stolen by using a SQL injection attack. This suggests the user input sanitization should be 

implemented to defeat SQL injections. Second, the attacks and their impact scores shown in Table 6 

show the two attacks (a DoS attack and a side-channel attack) were caused by cloud services that 

have vulnerabilities; hence the corresponding services should be moved to a more stable cloud that 

has countermeasures to attacks that can be launched through the shared hypervisor or host. Third, 

Table 6 shows, though the mission impact on the insurance policy stored in the file sever might not 

be as bad as the SQL injection attack on the database server, it has a score “0.5” that can not be 

neglected. An easy solution would be limiting the file write/modify right to only administrators with 

local access. 
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5 Conclusion 

We proposed a three-layered graphical model to quantify mission impacts of cyber-attacks in this 

work. We did so by reconstructing attacks based on available evidence from attack logs and system 

call sequences when logs missed requisite evidence to reconstruct attack steps. We used impact scores 

published in the NIST’s NVD-CVSS and expert opinions when such numbers are unavailable as a base 

line to estimate attack impacts. We then mapped the attacks to higher-level business processes and 

considered their importance weight for business processes to compute the impacts of cyber-attacks 

on missions. Our case study showed that this model can be used to mitigate the impacts of cyber-

attacks in a network. In the future, we will conduct more experiments using attacks on the cloud 

infrastructure to determine how our framework should be used in order to help enterprises to reduce 

the security risks of their infrastructures. 

DISCLAIMER 

This paper is not subject to copyright in the United States. Commercial products are identified 

in order to adequately specify certain procedures. In no case does such an identification imply a 

recommendation or endorsement by the National Institute of Standards and Technology, nor does it 

imply that the identified products are necessarily the best available for the purpose. 

References 

[1] S. Musman and A. Temin, A cyber mission impact assessment tool, In Technologies for Homeland 
Security (HST), 2015 IEEE International Symposium on 2015 Apr 14 (pp. 1-7). 

[2] NIST National Vulnerability Database Common Vulnerability Scoring System, available at 
https://nvd.nist.gov/vuln-metrics/cvss. 

[3] P. Mell and T. Grance. “NIST definition of cloud computing”. National Institute of Standards 
and Technology. October 7, 2009. 

[4] K. Ruan, J. Carthy, T. Kechadi, and M. Crosbie. “Cloud forensics”. In IFIP International Con-
ference on Digital Forensics, pp. 35-46. Springer Berlin Heidelberg, 2011. 

[5] S. Noel, J. Ludwig, P. Jain, D. Johnson, R. K. Thomas, J. McFarland, B. King, S. Webster and 
B. Tello, Analyzing mission impacts of cyber actions (AMICA), In NATO IST-128 Workshop on 
Cyber Attack Detection, Forensics and Attribution for Assessment of Mission Impact, Istanbul, 
Turkey, 2015. 

[6] X. Sun, A. Singhal, P. Liu, Towards Actionable Mission Impact Assessment in the Context of 
Cloud Computing, In Livraga G., Zhu S. (eds) Data and Applications Security and Privacy 
XXXI. DBSec 2017. Lecture Notes in Computer Science, vol 10359. 

[7] C. Liu, A. Singhal and D. Wijesekara, A logic-based network forensic model for evidence analysis, 
in Advances in Digital Forensics XI, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg, 
Germany, pp. 129-145, 2015. 

[8] X. Sun, J. Dai, A. Singhal, P. Liu and J. Yen, Towards Probabilistic Identification of Zero-day 
Attack Paths, Accepted for IEEE Conference on Communication and Network Security, Philadel-
phia, October 17th 19th, 2016. 

[9] C. Liu, A. Singhal and D. Wijesekera, Mapping evidence graphs to attack graphs, In Information 
Forensics and Security (WIFS), 2012 IEEE International Workshop on (pp. 121-126). IEEE. 

19 

https://nvd.nist.gov/vuln-metrics/cvss


[10] Y. Sun, T. Y. Wu, X. Liu, X. and M.S. Obaidat, Multilayered Impact Evaluation Model for 
Attacking Missions, IEEE Systems Journal, 10(4), pp.1304-1315, 2016. 

[11] X. Ou, S. Govindavajhala, S. and A. W. Appel, MulVAL: A Logic-based Network Security 
Analyzer, In USENIX Security Symposium (pp. 8-8), July 2005. 

[12] S. Jajodia and S. Noel, Topological vulnerability analysis, In Cyber situational awareness, pp. 
139-154. Springer US, 2010. 

[13] W. Wang, E.D. Thomas, A graph based approach toward network forensics analysis, ACM 
Transactions on Information and Systems Security 12 (1) 2008. 

[14] C. Liu, A. Singhal and D. Wijesekera, A Probabilistic Network Forensic Model for Evidence 
Analysis, IFIP International Conference on Digital Forensics. Springer International Publishing, 
2016. 

[15] Online Resource for Markup Language Technologies, retrieved from 
http://xml.coverpages.org/bpm.html#bpmi. 

[16] L. Herbert, Specification, Verification and Optimization of Business Processes, A Unified Frame-
work, Technical University of Denmark (2014). 

[17] OpenStack Open Source Cloud Computing Software. Retrieved from https://www.openstack.org. 

[18] Y. Zhang, A. Juels, M. K. Reiter and T. Ristenpart, Cross-vm side channels and their use to ex-
tract private keys, In Proceedings of the 2012 ACM Conference on Computer and Communications 
Security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 305–316. 

[19] Yarom, Yuval, and Katrina Falkner. ”FLUSH+ RELOAD: A High Resolution, Low Noise, L3 
Cache Side-Channel Attack.” In USENIX Security Symposium, pp. 719-732. 2014. 

20 

http:https://www.openstack.org
http://xml.coverpages.org/bpm.html#bpmi

	Structure Bookmarks
	Figure 7: The LEG of SQL injection attack toward the database 
	Figure 8: The LEG of DoS attack toward the database server 
	Figure 10: Filtered system calls of the side-channel attack from VM2 


