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Abstract 

When two players achieve a superclassical score at a nonlocal game, their outputs must contain 
intrinsic randomness. This fact has many useful implications for quantum cryptography. Recently it has 
been observed (C. Miller, Y. Shi, Quant. Inf. & Comp. 17, pp. 0595-0610, 2017) that such scores also 
imply the existence of local randomness — that is, randomness known to one player but not to the other. 
This has potential implications for cryptographic tasks between two cooperating but mistrustful players. 
In the current paper we bring this notion toward practical realization, by offering a near-optimal bound 
on local randomness for the CHSH game, and also proving the security of a cryptographic application of 
local randomness (single-bit certified deletion). 

Device-independent quantum cryptography [8, 10] is based on the observation that any Bell inequality 
violation guarantees the existence of intrinsic randomness. In particular, the outputs of such an inequality 
are known to be unpredictable to an arbitrary adversary. Work in this field over more than a decade has 
culminated in recent proofs of security for quantum key distribution and randomness expansion that are 
immune to any errors in quantum hardware [22, 23, 11, 13, 7, 5]. 
It has more recently been observed [12] that when two spatially separated parties violate a Bell inequality, 

then the outputs of either player must contain some unpredictability to the other player. Whereas global 
randomness (randomness possessed by both parties) is useful in cryptographic tasks in which two players are 
cooperating, local randomness (randomness possessed by one party and unknown to the other) is potentially 
useful in cryptographic settings where the parties are interacting but do not trust one another. This invites 
an exploration of quantum cryptographic protocols that are immunized both against imperfections in the 
quantum hardware and (possibly coordinated) cheating by one of the players. 
Suppose that a nonlocal game G with complete support1 is played by two players, Alice and Bob, where 

Alice’s input and output alphabets are A and X , respectively, and Bob’s input and output alphabets are B 
and Y, respectively. A referee chooses an input pair (a, b) according to a fixed distribution and distributes 
a to Alice and b to Bob, who return x and y respectively. The results of [12] assert that if the expected 
score of Alice and Bob’s strategy exceeds the best possible classical score by �, then Bob will not be able to 
guess Alice’s output with probability better than (1 − ΩG(�

2)), even if he were given Alice’s input. In other 
words, the pair (a, x) is necessarily more random to Bob than the input letter a alone. This is an example of 
blind randomness expansion, where the word “blind” is used because one player is blind to the randomness 
generated by the other. (This can be compared to the notion of “bound randomness” in the three-party 
setting of [1].) 
The results of [12] are highly general but numerically weak. The goals of the current paper are (1) to 

demonstrate techniques that prove numerically strong bounds on local randomness, and (2) to demonstrate 

∗This work was supported by NSF grant 1526928. 
1A nonlocal game G has complete support if the input distribution is nonzero on all elements of A× B. 
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the power of local randomness by proving security for a specific application (one-shot certified deletion). Our 
study is focused on two example games, the CHSH game and the Magic Square game. 
Sections 1–3 review some necessary background and then outline the Navascues-Pironio-Acin (NPA) 

hierarchy [14], which has been previously used to prove lower bounds on global randomness [15]. The key 
difference in the case of local randomness is that we must bound the behavior of a party (Bob) who is making 
two sequential measurements on a single system, rather than a single measurements on two separated systems 
as in the case of global randomness. Fortunately, the NPA hierarchy can be adapted to handle sequential 
measurements, as observed in [6, 16]. Using such an adapted approach, we compute a function F such that 
any superclassical score of s at the CHSH game guarantees that Bob cannot recover Alice’s output with 
probability greater than F (s). The function F that we obtain is shown to be optimal within a margin of 
0.02. (See Figure 1). 
A downside of the CHSH game is that, even when a perfectly optimal strategy is used by Alice and Bob, 

Bob still has approximately an 85% chance of guessing Alice’s output bit. For some cryptographic purposes 
it is more useful for the player to have a bit that approximates a perfect coin flip. In Section 4 we study the 
Magic Square game. This game is large enough that is computationally difficult to apply the methods from 
Sections 2–3, and so instead we apply the notion of quantum rigidity, which asserts that certain nonlocal 
games have unique winning strategies. It was recently shown that the Magic Square game [25] is rigid. We 
build off of the proof in [25] to show that in any strategy for Magic Square which achieves an expected √ 
score of 1 − �, Alice obtains a bit that Bob cannot guess with probability greater than 1/2 + O( �). (See 
Corollary 3.) 
Lastly, in Section 5 we provide an initial application of device-independent local randomness by showing 

that it enables single-bit certified deletion. In this cryptographic problem, Bob possesses an encrypted bit 
m which could be read with a key, k, possessed only by Alice, and the goal is for Alice and Bob to interact 
through classical communication only so that Bob can certifiably delete his copy of m . The resulting 
deleted state must be unreadable even if Bob were to later learn k. We prove that any multi-use device that 
performs well at the Magic Square game can be used for certified deletion. A formal statement is given in 
Theorem 4. Roughly, the probability that Bob can recover the bit m after deletion is shown to be no more 
than 1 + O( 

√ 
�), where � denotes the average probability that the device loses the Magic Square game, and 2 

the probability that Bob can recover m before deletion is 1 − O(�). 
Our result can be compared to other cryptographic tasks for mistrustful parties in the device-independent 

setting. Coin-flipping and bit commitment have been proven in the device-independent setting [19, 4, 3] 
with constant (rather than vanishing) bias. Also, strong cryptographic primitives have been proven under 
additional assumptions such as limited quantum storage [9, 18, 17] and relativistic assumptions [2]. Exploring 
the upper limits of device-independence in the mistrustful setting appears to be an interesting open problem. 

1 Preliminaries 

In this section, we introduce the concepts that formally define nonlocal games and related notations used 
through out this paper, starting with the definition of a 2-player correlation. 
Our notation follows [12]. A 2-player (input-output) correlation is a vector (P (xy|ab)) of nonnegative P 

reals, indexed by a, b, x, y ∈ A × B × X × Y, satisfying P (xy|ab) = 1 for all pairs (a, b). We denote by xy 
A the set of all inputs to Alice and by B the set of all inputs to Bob. The output sets are denoted by X and 
Y for Alice and Bob, respectively. The correlation should satisfy the no-signaling condition, which is that 
the quantities P P 

P (x|a) := y P (xy|ab), P (y|b) := x P (xy|ab) (1) 

are independent of b and a, respectively. 
A 2-player game is a pair (q, H) where 

q : A× B → [0, 1] (2) 
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is a probability distribution and 

H : A× B × X × Y → [0, 1] (3) 

is a function. If q(a, b) =6 0 for all a ∈ A and b ∈ B, the game is said to have a complete support. The 
expected score associated to such a game for a 2-player correlation (P (xy|ab)) is X 

q(a, b)H(a, b, x, y)P (xy|ab). (4) 
a,b,x,y P P 

We extend the notation by writing q(a) = b q(a, b), q(b) = q(a, b).a 
A 2-player strategy is a 5-tuple 

Γ = (D, E, {{Aax}x}a, {{Bby}y}b, Ψ) (5) 

such that D, E are finite dimensional Hilbert spaces, {{Aax}x}a is a family of X -valued positive operator 
valued measures (POVMs) on D (indexed by A), {{Bby}y}b is a family of Y-valued positive operator valued 
measures on E, and Ψ is a density operator on D ⊗ E. In this paper, we assume without loss of generality 
that Ψ is pure, written as Ψ = |ψi hψ|, and that the operators Aax and Bby are all projectors. We say that 
the strategy Γ achieves the 2-player correlation (P (xy|ab)) if P (xy|ab) = Tr[Ψ(Aax ⊗ Bby)] for all a, b, x, y. 

Navascues-Pironio-Acin hierarchy 

The Navascues-Pironio-Acin hierarchy, or NPA hierarchy, was introduced to characterize quantum correla-
tions. We briefly sketch the idea behind the hierarchy and refer the reader to [14] for the formal treatment. 
The NPA hierarchy is an infinite series of conditions which must be satisfied by any quantum correlation. 
In the measurement scenario, we assume Alice and Bob share state |ψi and will apply some measurements 

determined by the inputs. For compatibility with [14], we use a different notation in this section and assume 
that each output letter is associated to a unique input letter — i.e., each output letter x ∈ X is uniquely 
associated to a single input A(x). If Alice is given input a, then her only valid outputs are those for which 
A(x) = a. 
A behavior P in this measurement scenario is a set of nonnegative values P = {P (x, y) : x ∈ X , y ∈ Y} P 

such that P (x, y) = 1 for any a ∈ A, b ∈ B. (This is essentially the same as a correlation, x∈A−1(a),y∈B−1(b) 

but more simply expressed.) The definition of a quantum behavior is as follows. 

Definition 1. A behavior P is a quantum behavior if there exists a pure state |ψi in a Hilbert space H, a 
set of measurement operators {Ex : x ∈ X} for Alice, and a set of measurement operators {Ey : y ∈ Y} for 
Bob, such that ∀x ∈ X and ∀y ∈ Y 

P (x, y) = hψ|ExEy |ψi, (6) 

with the measurement operators E satisfying 

1. E† = Ex and E† = Ey,x y 

2. ExEx̄ = δxx̄Ex if A(x) = A(x̄) and Ey Eȳ = δyȳEy if B(y) = B(ȳ), P P 
3. x∈A−1(a) Ex = I and y∈B−1(b) Ey = I for all a, and 

4. [Ex, Ey] = 0. 

The set of all the quantum behaviors is denoted by Q. 
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The first three properties ensure that the operators Ex and Ey are projectors and define proper mea-
surements. The fourth property ensures that the measurements by Alice and Bob do not interfere with one 
another. This definition is similar to the definition of a quantum correlation, but is based on commutativity 
rather than bipartiteness. Under these definitions, every quantum correlation yields a quantum behavior 
(i.e., by setting Ex = Aax ⊗ I, Ey = I ⊗ Bby) but not necessarily vice versa [20]. 
The idea of the hierarchy is that if we let O be any finite set of operators that can be expressed as finite 

products of elements of the set {Ex}x ∪ {Ey}y (for example, Ex or ExEy Ey0 ), then the matrix Γ given by 

†Γij = hψ|O Oj |ψi (7)i 

where Oi, Oj vary over the elements of O, must be positive semidefinite. Additionally, there are some 
independent equalities (which depend on the setting) which must be satisfied by the entries of Γ. 
We define a sequence of such matrices (certificates) as follows. Since some of the Oi’s can be expressed 

in multiple ways as products of operators from {Ex}x ∪ {Ey}y , we define the length of the operator to be 
the minimum number of projectors needed to generate it. For any k ≥ 1, the kth certificate matrix Γ(k) 

is the matrix associated to the set O of all operators of length at most k. The fact that Γ(k) must be 
positive semidefinite constrains the possible entries in Γ(k), and in particular constrains the values P (x, y) = 
hψ | ExEy | ψi which can occur in a quantum behavior. Thus we obtain a hierarchy of constraints on the 
set of all quantum behaviors. 
Measuring the amount of local randomness after a nonlocal game is not as simple as constraining quantum 

behaviors (Definition 1) since in particular, measurements that Bob uses to guess Alice’s output may not 
commute with the the measurements he used to play the game. Fortunately, the NPA hierarchy can also 
be adapted to scenarios which involve sequential measurements [6, 16]. In the next section, we apply an 
adaptation of the NPA hierarchy to study local randomness for the CHSH game. 

Local randomness from the NPA hierarchy 

The goal of this section is to derive an upper bound on Bob’s probability of guessing Alice’s after playing 
the CHSH game with her. First, Alice gets input a ∈ A and outputs x ∈ X . Bob gets input b ∈ B and 
outputs y ∈ Y. Then, Bob gets Alice’s input a and outputs x0 ∈ X . 
As usual, we assume that Alice and Bob share some pure state |ψi. Alice’s projective measurement for 

input a and output x is Aax. Similarly, the projective measurement operator for input b and output y is 
Bby. 
The winning probability of the CHSH game is 

P1 = 1/4(Pr(00|00) + Pr(11|00) + Pr(00|01) + Pr(11|01) 
+Pr(00|10) + Pr(11|10) + Pr(01|11) + Pr(10|11)), 

(8) 

where Pr(xy|ab) = hψ|AaxBby|ψi. Since for any input a and b, Aa1 = I − Aa0 and Bb1 = I − Bb0, we can 
express P1 in terms of the projectors as � � 

3 1 1 1 1 1 1 
P1 = hψ| − A00 − B00 + A00B00 + A00B10 + A10B00 − |ψi. (9)A10B10

4 2 2 2 2 2 2 

When Bob wants to guess Alice’s output x given a and b, the probability that he can guess correctly is X 
P2 = 1/4 (Pr(0y0|0b) + Pr(1y1|0b) + Pr(0y0|1b) + Pr(1y1|1b)) (10) 

b,y 

where 
0††Pr(xyx 0|ab) = hψ|A† Bby Babx0 B

0 |ψiax abx0 Bby Aax
(11)

† = hψ|A† B B0 ax by abx0 Bby|ψi. 
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The measurement {{B0 2 The two measurements abx0 }x0 }ab is a set of measurements indexed by (a, b) ∈ A×B, 
{{Bby}y }b and {{B0 0 }ab commute with {{Aax}x}a.abx0 }x
The probability P2 can be expressed in terms of the projectors as 

1 
P2 = hψ|S|ψi (12)

4 

where 

1 1 1 
(B0S =I − (A00 + A10) − 000 + B0 100 + B0 010 + B0 110)4 2 4

+
1
(A00B

0 
010 + A10B

0 
110)2 000 + A00B

0 
100 + A10B

0 

+
1
(B00B

0 
010B10 + B00B

0 
100B00 + B10B

0 
110B10)000 + B000

0 B00 + B10B010 
0 + B0 100 + B0 110 + B0 

4 (13) 

− 
1
(A00B00B

0 1
(A00B10B

0 
2 000 + A00B000

0 B00 + B00B000
0 B00) − 

2 010B10 + B10B
0 

010 + A00B
0 

010B10) 

− 
1
(A10B00B

0 1
(A10B10B

0 
2 100 + A10B100

0 B00 + B00B100
0 B00) − 

2 110B10 + B10B
0 

110 + A10B
0 

110B10) 

+A00B00B
0 

010B10 + A10B00B
0 

110B10.000B00 + A00B10B
0 

100B00 + A10B10B
0 

Here we use the relation B0 = I − B0 as well. ab1 ab0 
To derive the semidefinite programming instance, the constraints include the expression of P1 and the 

commutation relations. We use the third-order certificate to maximize P2 for a given P1 and get the following 
plot. 

Figure 1: Plot of the upper bound of P2 against P1 ∈ (0.75, 0.85). 

The data points from left to right are 1.0115, 0.995645, 0.977018, 0.95783, 0.938371, 0.918742, 0.898992, 
0.879149 and 0.859229. The plot above is an upper bound on Bob’s guessing probability. In order to 
determine how close it is to the actual guessing probability, we will next find a lower bound of the guessing 
probability. 

2Note that it not necessary to make Bob’s second measurement depend on the outcome of his first measurement, since that 
outcome (y) is recoverable from the postmeasurement state of his first measurement. 
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First note that the optimal strategy for CHSH involves Alice and Bob sharing a Bell state |Φ+i = 
1√ (|00i + |11i), and Alice performing the X or Z measurement when her input is 0 or 1, respectively, and 
2 √ √ 
Bob performing the (X + Z)/ 2 or (X − Z)/ 2 measurement when his input is 0 or 1, respectively. This √ 

1 2strategy achieves a score of + at CHSH, and moreover Bob can guess Alice’s output given her input 2 4 
2 

√ 
with probability 1 + , by simply guessing x ⊕ (a ∧ b).2 4 
Consider the scenario where Alice and Bob share a random coin R. With probability r or 1 − r, the coin 

R has value 0 or 1, respectively. If R = 0, then Alice and Bob always output 0, and if R = 1, then Alice 
and Bob play the optimal CHSH strategy. In the former case, Bob can perfectly guess Alice’s output, while √ 

2in the latter case, he can guess her output with probability 1 + .2 4 
Therefore, the expressions of P1 and P2 in terms of r for this strategy are 

√ 
3 2 + 2 

P1(r) = r + (1 − r) (14)
4 4 

and 
√ 

2 + 2 
P2(r) = 1 · r + (1 − r). (15)

4 

Then the expression of P2 in terms of P1 is 
√ √3 2 

P2 = 1 + − 2P1. (16)
4 

Combining the lower and upper bound, we get the plot in Figure 2. 

Figure 2: Plot of the lower and upper bounds of P2 against P1 ∈ (0.75, 0.85). 

The optimal (blind) rate curve for CHSH must lie in between the red and blue curves in Figure 2. 

Local randomness from rigidity 

For games with larger alphabets than the CHSH game, using the above adaptation of the NPA hierarchy is 
more difficult because of the size of the certificates. In the current section we explore how techniques from 
quantum rigidity can be used to prove blind rate curves. The approach in the current section requires less 
computation than the NPA hierachy approach, and although the rate curve we achieve lacks the near-optimal 
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properties of our rate curve for CHSH (Figure 1), it is still optimal as the score threshold approaches the 
optimal quantum score. 
We study the Magic Square game, which, like CHSH, is a game with two players, Alice and Bob. The 

input alphabets for Alice and Bob are A = B = {0, 1, 2}, and the output alphabets are the sets of bit strings 
X = {000, 011, 101, 110} for Alice and Y = {100, 010, 001, 111} for Bob. The game is won if the inputs a, b 
and outputs x, y satisfy xb = ya, meaning that the b-th bit of x equals the a-th bit of y. 
A strategy for the Magic Square game consists of a pure state |ψi ∈ HA ⊗HB , and projective measurement 

families {{Aax}x} on HA and {Bby} on HB . Note that we can let 
a y 

b 

on 

X 
F z 
ab = Aax (17) 

xb =z X 
Gz 

ab = Bby (18) 
ya =z 

Fab = F 0 
ab − F 1 

ab (19) 

Gab = G0 
ab − G1 

ab, (20) Q
Magic Square game. 

measures with Ga0b0 , with a 6= a0, b 6= b0, then the outcome of Alice’s measurement is nearly undetectable to 

Q
{ } { }and B can be recovered from F G , and thus to specify a strategy it by ab , ab

| i { } { } | i { } { }suffices to specify ψ F G We refer to the triple ( ψ F G ) as a reflection strategy for the , , . , ,ab ab ab ab

The next proposition asserts that in a high-performing strategy, if Alice measures with F and Bob ab 

Bob. The proof builds on the recent rigidity proof for the Magic Square game [25]. 

0 0 0 0∈ { } ∈ { } 6 6 | i { } { }Proposition 2. Let , b, b 0 1 2 0 1 be such that , b b Let ( ψ F G )a, a z a = a =, , , , . , ,ab ab

−be a reflection strategy for the Magic Square game which achieves an expected score of 1 δ Then, the . 
post-measurement states 

and then the measurements will satisfy Fab = I, Gab −I, [Fab, Fab0 ] 0, [Gab, Ga0b] = 0. The= = b a 
measurement operators Aax 

� � 
(F 0 

a0b0 )|ψihψ|(F 0 
ab ⊗ Gz 

ab ⊗ Gz
a0b0 )TrA (21) 

and � � 
(F 1 

a0b0 )|ψihψ|(F 1 
ab ⊗ Gz 

ab ⊗ Gz
a0b0 )TrA (22) 

√ 
are separated by trace distance at most O( δ). 

0Proof. By symmetry, it suffices to address the single case where a = b = 0, a = b0 = 1, z = 0, so we will 
assume those values from now on. From Appendix C in [25], we have the following inequalities: 

√ 
kF00 ⊗ G00 |ψi − |ψik ≤ O( δ) (23)

√ 
kF11 ⊗ G11 |ψi − |ψik ≤ O( δ) (24)

√ 
kF00 ⊗ G11 |ψi + F11 ⊗ G00 |ψik ≤ O( δ) (25) P P 

Let |ψi = ψij |iji and let R : HA → HB be defined by R = ψij |ji hi|. Our goal then translates ij ij 
into the following: we wish to show that 

√ G0 
11RF 0 

11RF 1 
00R ∗ G0

11 − G0 
00R ∗ G0 

11 ≤ O( δ), (26)
1 

or equivalently,  

 

��� � √G11 + I G11 + I 
RF00R ∗ ≤ O( δ), (27)

2 2 1 
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Observe the following inequalities, where we use inequalities (23)–(25) and the Cauchy-Schwarz inequality 
kBCk ≤ kBk kCk combined with the fact that kRk = 1. Let the expression S T denote1 2 2, 2 = O( 

√ 
�)√ 

kS − T k ≤ O( �).1 ���� 
G11 + I G11 + I 1 

RF00R ∗ = (G11RF00R ∗ G11 + G11RF00R ∗ + RF00R ∗ G11 + RF00R ∗ )
2 2 4 

√= O � 
1
(G11RF00R ∗ G11 − G00RF11R ∗ − RF11R ∗ G00 + RF00R ∗ )

4 

√= O � 
1
(G11RF00R ∗ G11 − G00RR ∗ G11 − G11RR ∗ G00 + RF00R ∗ )

4 

√= O � 
1
(G11RF00R ∗ G11 − RF00R ∗ G11 − G11RF00R ∗ + RF00R ∗ )

4� ��� 
√ 

I − G11 I − G11 
.= O � 2 

RF00R ∗ 

2 

Since the operator in the first term in this chain of approximations has orthogonal support from the operator 
in the last chain, we therefore have  

��� � 
√ 

≤ O( �), (28) 
G11 + I G11 + I 

RF00R ∗ 

2 2 1 

as desired. 

The next corollary follows easily. �on� 
Corollary 3. Let |ψi, {{Aax} } , {Bby} be a strategy for the Magic Square game which achieves an x a y 

b 
expected score of 1 − δ. Let a, b, b0 ∈ {1, 2, 3} be such that b 6= b0, and suppose that the strategy is executed 
on inputs a, b and outputs x, y are obtained. Then the probability that Bob can subsequently guess xb0 given√ 
b0 1is no more than + O( δ).2 

The deletion certification protocol 

We next focus on the problem of certified deletion, which we describe as follows. Alice wishes to interact 
with an untrusted device (Da) and a second party (Bob) so as to prepare for herself a random bit m and a 
classical string k, such that after the interaction is complete the following conditions hold: 

(A) If Alice were to give k to Bob immediately, then Bob could recover the bit m. 

(B) There is a deletion procedure that Alice and Bob can carry out, involving classical communication only, 
such that after the protocol is over Bob will not be able to recover m even if he were given k. 

Note that this procedure can be used as a form of encryption: if Alice has a predetermined secret message 
bit y ∈ {0, 1} which she wishes to encrypt, then she can execute the same preparation procedure and then 
transmit the XOR bit y ⊕ m to Bob. Recovering or deleting y is then equivalent to recovering or deleting m. 
Variants of this problem have been studied in other settings (e.g., [21] in a computational setting, [18, 9] 

in a bounded storage model). Our setting is the device-independent setting, where the honest user Alice does 
not trust the quantum processes used in the protocol. Our protocol is based on the Magic Square game. We 
make the following assumptions: 

1. Alice and Bob possess an untrusted 2-part device D = (Da, Db) which is compatible with the Magic 
Square game. 

2. Alice has the ability to generate private (trusted) randomness. 
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3. Alice’s device Da does not communicate information to Bob or to Db once the protocol is underway. 

4. Alice and Bob have the ability to communicate classically. 

No assumptions are made about Bob’s behavior — in particular, he may perform arbitrary operations on 
any quantum information that is contained inside of the device Db that he possesses.3 

It is helpful to change notation from the previous section. The protocol will contain a sequence of inputs 

1 , v1, . . . , v
). The initial preparation protocol is given 

ba b
nto the Magic Square game which will be denoted by vvv = (v1, v2, . . . . , vn) = (v a

n ). The sequence, v
of the outputs will be hhh = (h1, h2, . . . , hn) = (h1 , h1, . . . , h

ba a
n, h

b
n

Figure 3. 

a
t

a
N

b

a 

Participants: Alice, Bob 
Equipment: A 2-part untrusted device D = (Da, Db) which is compatible with the Magic Square game. 
Parameters: N ∈ N, � ∈ [0, 1/9]. 

1. Alice generates uniformly random sequences vvv ,vvv ∈ {0, 1, 2}N and chooses a random round t ∈ 
{1, 2, . . . , N}. She chooses r ∈ {0, 1, 2} r {v } at random. 

b

2. Alice gives inputs sequentially to her device and records outputs h , . . . , hv , . . . , v .1 1 

a

3. Alice sets m to be equal to the rth bit of h and sets k be equal to the 4-tuple (vvv , t, r, v ). 

b
t

a
t

a
N

a 

Figure 3: The preparation protocol (P REP ) 

We wish to show first that it is possible for Bob to determine m if he were given k. This is straightforward: 
if the device D = (Da, Db) were such that it wins the Magic Square game with probability 1 − � at each use, 
then the protocol in Figure 4 successfully determines m with probability 1 − �. 

b
N

b
t

b
t

a
t

b
t

b 

4. Alice sends k to Bob. 

5. Bob gives the inputs v1, . . . , v −1, r, v +1, . . . , v in sequence to his device and records outputs 
b
Nh1, . . . , h . 

6. Bob sets m0 to be equal to the (v )th bit of h . 

b 

Figure 4: The recovery protocol (REC) 

Next we wish to show that there is a protocol which makes m unrecoverable for Bob (even while it allows 
Bob to know the key k after the protocol is completed, and allows him to have access to all remaining 
quantum information in the device Db). We use the protocol DEL in Figure 5, which is also meant to follow 
the protocol P REP in Figure 3. The protocol has Bob play his side of the Magic Square game and then 
has Alice check the resulting score. Then at the conclusion of the protocol, Alice reveals the key k to Bob 
(which is merely a convenience for stating the security of the protocol). 

3We could model Bob’s behavior simply by allowing him to possess a quantum system Q and to perform arbitrary operations 
on it. We have chosen to allow him to have a device because it is easier to express his behavior in the case where he is honest. 
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b4. For i = 1, 2, . . . , N , Alice sends Bob the input v and Bob sends back an output hbi .i 

5. Alice computes the average score at the Magic Square game (across N rounds) achieved by the 
ainput sequences vvv ,vvvb and output sequences hhha,hhhb . If this average is greater than or equal to 1−�, 

she accepts Bob’s responses; otherwise, she aborts the protocol. 

6. Alice sends k to Bob. 

Figure 5: The deletion protocol (DEL) 

Note that at step 4 in Figure 5, the interactions must be done in sequence (i.e., Alice waits to receive hb 
i 

bbefore revealing v ). Bob can use his device Db to obtain his outputs, but we do not require that.i+1

The following theorem asserts the security of the deletion protocol DEL. Let SUCC denote the event 
that Alice “accepts” at step 5 in Figure 5. 

Theorem 4. Assume that P (SUCC) > 0 in protocol DEL. Then, the probability that Bob can guess m at 
the conclusion of the protocol, conditioned on SUCC, is upper bounded by 

√ p −Ω( N)1 e
+ O( � + N−1/4) + . (29)

2 P (SUCC) 

For the proof of Theorem 4, we will need the following lemma. 

Lemma 5. Let Ii denote indicator variable for the event that the ith round is won. Let 

= · · (30)Ii 
0 E(Ii | Ii−1Ii−2 · I1), 

0 P 
and let I = ( I 0)/N . Then for any µ > 0,i i 

0 − Nµ2 

2Pr(SUCC ∧ (I < 1 − � − µ)) ≤ e . (31) P 
Proof. Let I = ( Ii)/N . Leti 

iX 
Zi = (Ij − Ij 

0 ). (32) 
j=1 

Then {Z0, Z1, . . . , ZN } is a martingale: 

E(Zi+1|Zi, . . . , Z1) = Zi + E(Ii+1|Ii · · · I1) − I 0 = Zi. (33)i+1 P − Nµ2 

Therefore by Azuma’s inequality, the probability of the event (Zi) > µ is upper bounded by e . TheP i
2 

event in inequality (31) implies (Zi) > µ, and the desired result follows.i

Now we can prove the main theorem of this section. 

bProof of Theorem 4. By Corollary 3, for any i and any c ∈ {0, 1, 2} r v , the probability that Bob can guessp i 
the cth bit of hai is upper bounded by 1 + O( 1 − I 0). Therefore, the probability that Bob can guess m at2 i

the conclusion of the protocol DEL is no more than " � �# 
NX p1

+ O( 1 − I 0) /N, (34)i2 
i=1 
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which by the concavity of the square root function is upper bounded by q
1 0 
+ O( 1 − I ), (35)

2 

For any µ > 0, we have by Lemma 5, 

−Nµ2/20 e
Pr[I ≥ 1 − � − µ | SUCC] ≥ 1 − , (36)

Pr(SUCC) 

and therefore, conditioned on SUCC, Bob’s probability of guessing m is upper bounded by 

−Nµ2/21 √ e
+ O( � + µ) + . (37)

2 Pr(SUCC) 

Setting µ = N−1/4 yields the desired result. 
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