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Abstract 
This paper addresses some important theoretical issues for 

constrained least-squares fitting of planes and parallel planes to 

a set of input points. In particular, it addresses the convexity of 

the objective function and the combinatorial characterizations 

of the optimality conditions. These problems arise in 

establishing planar datums and systems of planar datums in 

digital manufacturing. It is shown that even when the input 

points are in general position: (1) a primary planar datum can 

contact 1, 2, or 3 input points, (2) a secondary planar datum can 

contact 1 or 2 input points, and (3) two parallel planes can each 

contact 1, 2, or 3 input points, but there are some constraints to 

these combinatorial counts. In addition, it is shown that the 

objective functions are convex over the domains of interest. 

The optimality conditions and convexity of objective functions 

proved in this paper will enable one to verify whether a given 

solution is a feasible solution, and to design efficient algorithms 

to find the global optimum solution.   

1. Introduction 
 Planar datums and systems of planar datums arise 

frequently in the specification and verification of product 

geometries before, during, and after manufacturing [1-7]. 

Traditionally, such datum planes were established on a 

manufactured part using physical devices such as surface 

plates, angle blocks, and expanding and closing vises [8]. In the 

current era of digital manufacturing, one faces the task of 

establishing datums by fitting planes and lines to a cloud of 

points, which may number in the millions, sampled on a 

manufactured part using coordinate measuring systems (CMS). 

Standards development organizations such as ISO 

(International Organization for Standardization) and ASME are 

now responding to this trend by moving beyond supporting 

merely analog (i.e., physical) inspection devices to more 

general standards definitions that also support such digital (i.e., 

coordinate measurement) technologies. Experts in ISO/TC 213 

and ASME Y14 standards committees are now engaged in 

defining the proper fitting criteria that simulate in the digital 

world what has been practiced in the physical world thus far.   

Mathematically and computationally, fitting can be viewed 

as an optimization problem. Least-squares (including total 

least-squares) fitting of lines and planes has a long and colorful 

history over the past two centuries in many fields of science 

and engineering [9-11]. In computational coordinate metrology, 

least-squares fitting has enjoyed an enduring appeal [12, 13] 

that got a boost from recent interest in the form of constrained 

least-squares fitting to establish datums. Fueled by urgent 

requests from ISO and ASME standards committees, recent 

research has explored some of the theoretical and algorithmic 

issues of constrained least-squares fitting [14, 15]. These 

investigations were directed towards planar datums and systems 

of planar datums, which influenced the standards committees to 

consider constrained least-squares fitting as the default datum 

fitting criterion.    

This paper consolidates earlier theoretical results for 

constrained least-squares fitting of planes, completes them with 

formal proofs, and extends the results to parallel planes and 

intersecting planes. It will address only the combinatorial 

characterizations of the optimality conditions and the convexity 

of objective functions, leaving the algorithmic details to other 

published sources and future research. However, the theoretical 

results reported this paper form the basis for much of the 

algorithm design and analysis.   

The rest of the paper is organized as follows. Section 2 

provides some motivating examples for planar datums. The 

optimization problem for plane fitting is then formulated in 

Section 3. A convex hull filter is introduced in Section 4, 

wherein a summary of combinatorial characterizations of 
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optimality conditions for various choices of objective functions 

is also provided. Section 5 gives brief descriptions of Gauss 

maps and linear maps that will be exploited later in this paper. 

Section 6 proves the optimality conditions for fitting lines and 

planes to establish datums. Convexity of the objective functions 

is the subject of Section 7. Thus the major contributions of this 

paper are contained in Sections 6 and 7. Finally, Section 8 

summarizes the results of the paper and offers some directions 

for future research.  

2. Motivating Examples 
 Consider the problem of specification and verification 

involving datum planes. Figure 1(a) shows how a designer may 

graphically present the specification of position tolerancing of a 

cylindrical hole in a part with respect to a system of primary 

and secondary planar datums. Figure 1(b) illustrates how such a 

system of primary and secondary datum planes may be 

established on a manufactured instance of the part. 
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(b) 

Figure 1. A simple example of (a) specification during design 

of a part, and (b) establishment of a system of primary and 

secondary datum planes on a manufactured instance of the part. 

The secondary datum plane B is required to be perpendicular to 

the primary datum plane A. 

In the current era of digital manufacturing, a manufactured 

part, such as the one shown in Fig. 1(b), can be scanned by a 

CMS to generate a large number of discrete points, each with 

three-dimensional Cartesian coordinates. Those points 

corresponding to the datum feature A can then be processed to 

fit a primary datum plane A, and similarly for a secondary 

datum plane B. (For the sake of simplicity, a tertiary datum is 

not shown in Fig. 1.) The optimization problem for performing 

the plane fitting can be defined in several ways, depending on 

the choice of the objective function. In all cases, the datum 

planes are required to lie outside the material of the 

manufactured part while remaining as close to the part as 

possible (where ‘as close as possible’ is determined by the 

objective function). 

It is also possible to specify datum planes for slabs and 

slots, as indicated in Fig. 2. Here two sets of points, each 

measured on each of the two features that correspond to the 

parallel plane features, are subjected to fitting by two parallel 

planes; the datum plane is the median plane of the two parallel 

planes that are thus fitted. In both cases involving slabs and 

slots, the fitted parallel planes are required to lie outside the 

material of the manufactured part while remaining as close to 

the part as possible. These median planes can also be used as 

secondary (or tertiary) datums; in that case additional 

constraints, such as the secondary datum being perpendicular to 

a primary datum, will be enforced. 

 

 

 

 

 

 

 

 

 

 

 

 

                (a)                                                         (b) 

Figure 2. Specification of a datum plane for (a) a slab (external 

width) and (b) a slot (internal width). In each case, the datum is 

the median plane (indicated by dashes and dots) of two parallel 

planes that are fitted to two sets of points on two planar surface 

features (indicated by extension lines) on a manufactured 

instance of the part. 

When a datum plane is a primary datum, the fitting is an 

optimization problem involving input points in space. This will 

also be referred to as a 3D (three-dimensional) problem in this 

paper. When a datum plane is a secondary datum, as datum B 

shown in Fig. 1, the fitting may be reduced (by projecting input 

points onto the primary datum plane) to an optimization 

problem involving points that lie on a (primary datum) plane; in 

this case, it is a line fitting problem for a set of input points in a 

plane. This will be referred to as a 2D (two-dimensional) 

problem in this paper. So in Fig. 1(b), the set of points 

measured on a manufactured part that correspond to the datum 

feature B are projected perpendicularly onto the datum plane A, 

to provide the input set of points for fitting a line. 

A similar situation arises for establishing secondary datums 

involving slabs and slots. Here again, measured points on a 

manufactured part can be projected perpendicularly to a 
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primary datum plane, and parallel lines will be fitted to the two 

sets of input points in a plane. Therefore, the 2D problems of 

fitting lines and parallel lines to input points in a plane will be 

treated as equally important as 3D problems in the rest of the 

paper. In fact, several illustrations will deal with such line 

fittings in 2D while paying careful attention to the extendibility 

of the ideas to plane fittings in 3D. 

3. Formulation of the Problem 
Consider an arbitrary, continuous surface patch S in space 

and a plane P as shown in Fig. 3(a). Here d(p,P) indicates the 

perpendicular distance of any point p in S to P. An infinitesimal 

area element around p is indicated as dA. Similar notations for 

an arbitrary, continuous curve C and a line L in a plane are 

shown in Fig. 3(b). Here d(p,L) indicates the perpendicular 

distance of any point p in C to L. An infinitesimal line element 

around p is indicated as dl. It is assumed that the material of a 

manufactured part under consideration lies to one side of the 

surface patch S (and, similarly, to one side of the curve C). So 

when the plane P (or line L) is said to lie outside of the 

material, it should be apparent which side of S (or C) the plane 

P (or line L) should lie. 
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Figure 3. Notations for (a) fitting a plane, and (b) fitting a line.  

A similar set of notations can be defined for parallel planes 

and parallel lines. For the sake of simplicity, only the case of 

parallel lines in a plane is illustrated in Fig. 4; the notations for 

the case of parallel planes in space can be inferred easily from 

this figure. Referring to Fig. 4, d(p1,L1) denotes the 

perpendicular distance of any point p1 in C1 to line L1, and 

d(p2,L2) denotes the perpendicular distance of any point p2 in C2 

to line L2. 

 

 

 

 

Figure 4. Notations for fitting parallel lines. 

With these notations, and referring to Fig. 3(a), the 

constrained least-squares plane fitting problem can be posed as 

the following optimization problem: 

   
 

          
 

 

 

subject to P lying outside the material.  

 

 

(1) 

Similarly, referring to Fig. 3(b), the constrained least-squares 

line fitting problem can be posed as 

   
 

          
 

 

 

subject to L lying outside the material.  

 

 

(2) 

Posing the optimization problems for constrained least-

squares fitting of parallel planes and parallel lines follows a 

similar pattern. For parallel planes P1 and P2, it is 

   
     

             
 

  

             
 

  

  

subject to P1 and P2 being parallel, and both P1 and P2 

lying outside the material.  

 

 

(3) 

For parallel lines L1 and L2, it is 

   
     

             
 

  

             
 

  

  

subject to L1 and L2 being parallel, and both L1 and L2 

lying outside the material. 

 

 

(4) 

The search space for planes and lines in the optimization 

problems posed in Eqs. (1) through (4) can be simplified 

considerably by the fact that the optimal planes and lines must 

contact at least one point of the input set of surface patches and 
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curves. For, if not, the plane (line) could be moved parallel to 

itself towards the input set while reducing the objective 

function of Eqs. (1) through (4), till it contacts at least one point 

of the input set. Such planes and lines have a special name. A 

plane (line) that contacts at least one point of an input set, 

which can be continuous or discrete, and keeps all the other 

points of the input set either on it or to one side of it, is called a 

supporting plane (line) of the input set [16]. Hence a simple 

result that gives a necessary condition for optimality follows: 

Lemma 0: Solutions to the optimization problems posed in 

Eqs. (1) through (4) must be supporting planes or supporting 

lines to the input set of surface patches or curves, respectively. 

Supporting lines and supporting planes generalize the 

concept of tangents to both discrete and continuous sets of 

points. The simple Lemma 0 also serves as the first 

combinatorial characterization of the optimality condition that 

reduces the search space. There is another subtle, but important, 

condition that can be associated with the supporting lines and 

planes. It is that the supporting line L (or supporting plane P) 

also keeps the immediate, infinitesimal material neighborhoods 

of the input curve (or surface patch) either on or to one side of 

L (or P). This removes any ambiguity as to which supporting 

lines and planes lie outside the material, and cuts down the 

search space of supporting lines and planes even further. 

4. Convex Hull Filters and Comparison of Various 
Objective Functions 
The optimization problems posed in Section 3 are quite 

appropriate for datum specification purposes during the design 

phase, when only perfect or imperfect continuous geometric 

entities are considered. When manufactured parts are measured 

using CMS for the purpose of verification, such lofty 

continuous objectives can seldom be realized. The output from 

CMS is usually a set of three-dimensional coordinates of 

discrete points, which may number in the millions. A practical 

and ingenious way to bridge the discrete world of CMS to the 

continuous world of surface patches and curves defined in 

Section 3 has been devised by the ISO and ASME standards 

committees using the convex hull filter. It is worth noting that 

the choice of convex hull for filtering is strongly motivated by 

Lemma 0. 

Let                be a set of input points from 

measurements made on a manufactured surface patch or a 

curve. For the sake of theoretical convenience, and without any 

loss of generality, let these input points lie ‘more or less’ on a 

horizontal plane or a horizontal line. Also let CH(S) be the 

convex hull of S. Depending on the dimension, CH(S) can be 

formed as either (in 3D) a convex polyhedron with triangular 

faces and hull edges that are line segments, or (in 2D) a convex 

polygon. If the input points are in general position, then CH(S) 

will consist of hull vertices, hull edges that are line segments, 

and hull faces that are triangles. (If the points are not in general 

position, then the hull edges and faces can be partitioned into 

line segments and triangles, respectively.) 

Consider the 2D problem first. If CH(S) is a convex 

polygon in a plane, then every point of a hull edge (besides the 

end points) has one and only one supporting line – namely the 

one that contains that edge. There can be an infinite number of 

supporting lines through a hull vertex; the outward-pointing 

unit normals to these supporting lines form a wedge (a two-

dimensional cone) with the hull vertex at the apex. However, 

not all the supporting lines will be candidates mentioned in 

Lemma 0. Only those supporting lines that lie outside the 

material will qualify for further consideration. This allows a 

partitioning of CH(S) into an outer part of the convex hull 

(which is simply referred to in this paper as the ‘outer convex 

hull’) and an inner part of the convex hull (‘inner convex hull’), 

with only the outer convex hull contributing to the search space 

of supporting lines referred to in Lemma 0. 

A similar observation can be made if CH(S) is a convex 

polyhedron in space. Every point in the interior of a triangular 

hull face has one and only one supporting plane – namely the 

one that contains that face. There can be an infinite number of 

supporting planes through a hull edge or hull vertex. In each 

case, the outward-pointing unit normals to these supporting 

planes form a wedge or a cone with the corresponding hull edge 

or hull vertex at the apex. Here again, using the material 

neighborhoods, a partitioning of CH(S) into an outer part of the 

convex hull and an inner part of the convex hull can be 

effected, with only the outer convex hull contributing the search 

space of supporting planes referred to in Lemma 0. 

The vertices of an outer convex hull of a given set of input 

set S of points form a subset of S. The rest of the points in S 

need not be considered further for the purpose of datum 

establishment. With this fact in mind, it is possible to compare 

the optimality conditions for various optimization criteria that 

have been studied in literature and practiced in industry. Table 1 

gives a summary of the combinatorial characterizations of the 

optimality conditions for fitting lines and parallel lines in terms 

of the minimum number of contact with the outer convex 

hull(s). Table 2 provides a similar summary for planes and 

parallel planes. In the case of parallel lines and parallel planes, 

they are ‘inscribed’ for slots and ‘circumscribed’ for slabs. 

In Tables 1 and 2, the indicated minimum contacts with the 

outer convex hulls occur when the input points are in general 

position. In degenerate cases, where the points are not in 

general position, more faces, edges, and vertices can contact the 

fitted planes. The utility of the results summarized in Tables 1 

and 2 lies in the fact that these results may significantly reduce 

the search space to find solutions to the optimization problems 

of Eqs. (1) through (4). So it is worth discussing these 

optimization problems in some detail. 

Various optimization problems shown in Tables 1 and 2 

have a long and colorful history in engineering practice. The 

optimality conditions displayed in these tables have been 

exploited in commercial software to deliver practical solutions 

to industry. The optimization problems designated as CL1P and 

CL1L provide solutions that are in harmony with the 3-2-1 

contacts for primary, secondary, and tertiary datum plane 

system, popularized in the engineering folklore [1]. Such 
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popularity is due to the apparent mechanical stability offered by 

the contacting planes to the manufactured parts. These plane 

and line fittings are also known as fitting under the L1-norm.  

Table 1. Comparison of optimality conditions for constrained 

least-squares fitting of lines and parallel lines to the outer 

convex hull(s). 

  

Designation 
 

Optimization 
problem 

Minimum 

contact with 
outer  convex 

hull(s) 

 

Select 
Ref. 

L
in

es
 

 

CL1L 

Minimize integral of the 

distances to the supporting 
line. 

 

edge 

 

[17] 

 

 
SL2L 

Minimize integral of the 

square of the distances to a 
line without any constraint, 

then shift the fitted line to 

the outermost point(s). 

 

 
vertex 

 

 
[13,18] 

 
MZL 

Minimize the maximum 
distance to the supporting 

line. 

 
vertex 

 
[19] 

 
CL2L 

Minimize integral of the 
square of the distances to 

the supporting line, per Eq. 

(2). 

 
vertex or 

edge 

 
[14,15,

*] 

P
ar

al
le

l 
li

n
es

 

 

MILL 

Maximize the distance 

between two parallel, 

inscribing lines. 

vertex on 

each line. 
 

[20] 

 
MCLL 

Minimize the distance 
between two parallel, 

circumscribing lines. 

vertex on one 
line and edge 

on the other 

line. 

 
[19] 

 

 

SL2LL 

Minimize the integral of 

squares of distances to two 

parallel lines, and shift 
them to the outermost 

point(s). 

 

vertex on 

each line. 

 

 

[13] 

 

 
CL2ILL 

Minimize the sum of 

integrals of squares of 
distances to two parallel, 

inscribing lines, per Eq. 

(4). 

(1) vertex on 

each line, or  
(2) vertex on 

one line and 

edge on the 
other line. 

 

 
[*] 

 

 
CL2CLL 

Minimize the sum of 

integrals of squares of 
distances to two parallel, 

circumscribing lines, per 

Eq. (4). 

(1) vertex on 

each line, or 
(2) vertex on 

one line and 

edge on the 
other line. 

 

 
[*] 

* indicates this paper. 

The optimization problems designated as MZP and MZL 

have been the default definitions for datum planes and lines in 

ISO standards. These plane and line fittings are also known as 

fitting under the L∞-norm [19]. SL2P and SL2L employ shifting 

a (total) least-squares fitting, also known as fitting under the L2-

norm, to the outermost point(s); these are well-known in 

research literature and lend themselves to elegant software 

implementations [13, 18]. Such least-squares fitting are also 

known for their numerical stability; that is, small changes in the 

input set of points result in only small changes in the fitted lines 

and planes. Their constrained counterparts, namely CL2P and 

CL2L, are relatively new and are the focus of recent research 

[14, 15] and this paper. These constrained least-squares fittings 

seem to combine the benefits of mechanical stability and 

numerical stability. 

Table 2. Comparison of optimality conditions for constrained 

least-squares fitting of planes and parallel planes to the outer 

convex hull(s). 

  

Designation 
 

Optimization 
problem 

Minimum 

contact with 
outer  convex 

hull(s) 

 

Select 
Ref. 

P
la

n
es

 

 

CL1P 

Minimize integral of the 

distances to the 
supporting plane. 

 

face 

 

[17] 

 

 
SL2P 

Minimize integral of the 

square of the distances to 
a plane without any 

constraint, then shift the 

fitted plane to the 
outermost point(s). 

 

 
vertex 

 

 
[13,18] 

 

MZP 

Minimize the maximum 

distance to the 

supporting plane. 

 

vertex or edge 

 

[19] 

 

CL2P 

Minimize integral of the 

square of the distances to 

the supporting plane, per 
Eq. (1). 

 

vertex, edge, 

or face 

 

[14,15,

*] 
P

ar
al

le
l 

p
la

n
es

 

 

MIPP 

Maximize the distance 

between two parallel, 
inscribing planes. 

vertex on each 

plane 
 

[20] 

 

 

MCPP 

 

Minimize the distance 

between two parallel, 
circumscribing planes. 

(1) vertex on 

one plane and 

face on the 
other plane, or 

(2) edge on 

each plane 

 

 

[19] 

 

 

SL2PP 

Minimize the integral of 

squares of distances to 

two parallel planes, and 
shift them to the 

outermost point(s). 

 

vertex on each 

plane 

 

 

[13] 

 

 
 

 

 
CL2IPP 

 

 
 

Minimize the sum of 

integrals of squares of 
distances to two parallel, 

inscribing planes, per Eq. 

(3). 

(1) vertex on 

each plane, or 
(2) edge on 

each plane, or 

(3) vertex on 
one plane and 

edge on the 

other plane, or 
(4) vertex on 

one plane and 
face on the 

other plane. 

 

 
 

 

 
[*] 

 

 
 

 

 
CL2CPP 

 

 
 

Minimize the sum of 

integrals of squares of 
distances to two parallel, 

circumscribing planes, 

per Eq. (3). 

(1) vertex on 

each plane, or 
(2) edge on 

each plane, or 

(3) vertex on 
one plane and 

edge on the 

other plane, or 
(4) vertex on 

one plane and 

face on the 
other plane. 

 

 
 

 

 
[*] 

* indicates this paper.    
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A similar comparison can be made for fitting parallel 

planes and lines, as shown in Tables 1 and 2. MIPP and MILL 

have been the default fitting for slots (as shown in Fig. 2(b) for 

internal widths) in ASME and ISO standards. These 

optimization problems can be posed as quadratic programming 

problems [20]. MCPP and MCLL have also enjoyed the default 

status for fitting in ASME and ISO standards for slabs (as 

shown in Fig. 2(a) for external widths); these optimization 

problems can be posed as computations of widths of sets and 

are well studied in research literature [19]. SL2PP and SL2LL 

are the shifted versions of least-squares (under L2-norm) fitting 

of parallel planes and parallel lines, which are otherwise 

unconstrained [13]. The problems designated as CL2IPP, 

CL2CPP, CL2ILL, and CL2CLL are relatively new, and are 

discussed in the rest of the paper along with CL2P and CL2L.             

   

5. Gauss Maps and Linear Maps 
Unconstrained (total) least-squares fitting of planes and 

lines to a set of discrete points or to an outer convex hull has 

been well explored in literature [13]. Results from these 

explorations can be extended to the constrained least-squares 

fitting of planes and lines, but these extensions require 

considerations of Gauss maps and linear maps, as described in 

Sections 5.1 and 5.2, respectively. These maps are combined to 

construct composite ellipsoids in Section 6 to provide the 

optimality conditions for constrained least-squares fitting. 

5.1 Gauss Maps 
Recall that supporting lines and supporting planes to the 

outer convex hulls form the feasible solutions to the 

optimization problems posed in Eqs. (1) through (4). There is a 

useful mapping, called the Gauss map, between these 

supporting planes (or lines) to points on a unit sphere (or circle) 

as shown in Fig. 5. Here, the outward-pointing unit normal of 

each supporting plane (or line) is mapped to a unique point on 

the unit sphere (or circle).  

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 

 

 

 

 

(d) 

Figure 5. Gauss map obtained by mapping each unit normal of 

a supporting plane of an outer convex hull in space in (a) to a 

point on a unit sphere in (b). A similar Gauss map is obtained 

by mapping each unit normal of a supporting line of an outer 

convex hull in a plane in (c) to a point on a unit circle in (d).  

For example, the outward-pointing unit normal v to a face 

of an outer convex hull in Fig. 5(a) is mapped to a point p on 

the unit sphere in Fig. 5(b), where the translated unit normal 

vector v starts at the center of the unit sphere and ends at the 

point p on the unit sphere. A similar mapping can be seen in 

Figs. 5(c) and 5(d), where an outward pointing unit normal v to 

an edge of an outer convex hull is mapped to a point p on a unit 

circle; the translated unit normal vector v starts at the center of 

the unit circle and ends at the point p on the unit circle.  

The Gauss map partitions the unit sphere in Fig. 5(b) into 

faces, edges, and vertices that are (graph theoretic) dual to the 

vertices, edges, and faces, respectively, of the outer convex hull 

in Fig. 5(a). Similarly, the Gauss map partitions the unit circle 

in Fig. 5(d) into edges and vertices that are dual to the vertices 

and edges, respectively, of the outer convex hull in Fig. 5(c). 

Invoking the analogy of a global map on a sphere, the Gauss 

map in Figs. 5(b) and 5(d) can be viewed as covering the 

‘southern hemisphere’ that includes the South Pole. If the outer 

convex hull in Figs. 5(a) and 5(c) were to be turned downside 

up, the Gauss map can be viewed as covering the ‘northern 

hemisphere’ that includes the North pole.   

The incidence and adjacency relationships of the vertex-

edge-face graph structure of the convex hull are preserved in 

the adjacency and incidence relationships of the face-edge-

vertex graph structure in the Gauss map. The Gauss map is 

unique (injective, that is, one-to-one) for convex hulls, and is a 

powerful conceptual and computation tool to discuss the 

optimization problem of constrained least-squares fitting. 

 The topic of Gauss map is general, and is well developed 

in the mathematical literature. The Gauss map as visualized on 

a unit sphere has an appealing geographical metaphor in the 

form of a globe partitioned into regions. Additional notions 

such as the equator, and the North and South Poles on the unit 

sphere help the conceptual development of solutions to the 

optimization problem later in this paper.   

5.2 Linear Maps 
A linear map M is a linear transformation of vectors from 

   to   . It can be represented by a matrix M      . Let 

    for the purpose of this paper. The singular value 

decomposition (SVD) of M is given by  

 

      , (5) 

 

where U       is a left singular matrix, Σ       is a 

diagonal matrix of singular values, and V       is a right 

singular matrix [21-23]. Both U and V are ortho-normal 

matrices. By convention, the n singular values              
occupy the diagonal of the top     block of Σ and the 

remaining cells of Σ are filled with zeros. Also, the right m-n 

columns of U are filled with arbitrary ortho-normal columns to 

maintain the relation      .  
The particular relationship between a left singular vector    

and a right singular vector    can be obtained from Eq. (5) as 

 

unit  

normal 

unit  

normal 
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          (6) 

  

The SVD of M is closely related to the eigenvalue problem of 

M
T
M. The eigenvalues of M

T
M are the squares of the singular 

values of M, and the eigenvectors of M
T
M are the right singular 

vectors of M. So it follows that 

 

          
     (7) 

 

A geometrical interpretation of the SVD in Eq. (5) is given 

by the following result [23]. 

Theorem 1: A linear map M       transforms a unit sphere 

in    to an ellipsoid in   . The principal axes of the ellipsoid 

are aligned with the left singular vectors in U and the intercepts 

(semi-axes) of the ellipsoid with the principal axes are given by 

the singular values in Σ. 

Figure 6 illustrates the geometric interpretation given by 

Theorem 1 when M is a     matrix. Under this linear map M 

a unit sphere (in this case, a unit circle) is mapped to an 

ellipsoid (in this case, an ellipse). The singular values and 

singular vectors of M are related by Eq. (6) as          and 

        . In general, the right singular vectors are the 

preimages of the principal semi-axes of the ellipsoid realized in 

the left singular vector space. 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 6. Geometrical illustration of the linear mapping M of 

(a) a unit circle to (b) an ellipse using the singular value 

decomposition of M. 

Although the ellipsoidal nature of the linear map in the left 

singular vector space, as illustrated in Fig. 6(b), is very 

appealing, the right singular vector space is more useful for 

further discussion. As Eq. (7) suggests, the eigenvectors of 

M
T
M live in the right singular vector space of M. A 

combination of Theorem 1 and Eq. (7) leads to the following 

important result for optimization. 

Theorem 2: The function        of unit vectors   on the 

unit sphere in    reaches a minimum value of   
  at     , 

where    is the smallest singular value of M and    is the 

corresponding right singular vector. 

An interesting and useful geometrical interpretation of 

Theorems 1 and 2 is provided by the following result in the 

right singular vector space. 

 

Theorem 3: The spherical plot of the function         of 

unit vectors   defined on the unit sphere in    is an ellipsoid in 

  , with the principal axes of the ellipsoid aligned with the 

right singular vectors of M and the semi-principal axes 

assuming the singular values of M. 

 

The ellipsoid (and its specialization to an ellipse in 2D) of 

Theorem 3 will play a very important role in the theoretical 

developments of this paper.  

All the results presented on linear maps in this section are 

general, and are well established in literature [21-23]. The main 

advantage of Theorem 3 is that all geometrical reasoning can be 

based on ellipses in 2D and ellipsoids in 3D for the constrained 

least-squares fitting problem addressed in the following section.     

 

6. Optimality Conditions 
The minimization achieved in Theorem 2 is made possible 

by analyzing a single ellipsoid described in Theorem 3. For the 

constrained minimization problems addressed in this paper, no 

single ellipsoid is sufficient. It is shown in this section that a 

composite ellipsoid, which is a continuous surface consisting of 

several ellipsoidal patches, is needed. The Gauss map and the 

linear map described in Section 5.1 and 5.2 will be used in 

constructing such a composite ellipsoid, based on some real 

matrices.  

The case of fitting single lines and planes will be discussed 

in Section 6.1. The results will be extended in Section 6.2 to the 

case of fitting of pairs of lines and pairs of planes, where the 

pairs may intersect or be parallel. From now on, it should be 

noted that the notion of ‘objective function’ will implicitly 

include the constraints as well. This is because Lemma 0 

enables automatic incorporation of the constraints by restricting 

the planes and lines in Eqs. (1) through (4) to be supporting 

planes and supporting lines, respectively.         

 

6.1 Single Lines and Planes  
The type of real matrix M dealt with in the rest of this 

paper will have two important features. First, it has either three 

columns (n = 3) when the fitting is done in three-dimensional 

space, or two columns (n = 2) when the fitting takes place in a 

plane. The second feature is that the origin of the coordinate 

system involved in defining the matrix M will be shifted, by 

pure translation, to a convenient point p for mathematical and 

computational purposes. To make this clear, the notation Mp 

will be used to indicate the point p that is used as the origin to 

construct that particular matrix Mp. 

With these preliminaries, the objective functions defined in 

Eqs. (1) and (2) can be obtained by integration over the outer 

convex hulls of Figs. 5(a) and 5(c) treated as a surface and as a 

curve, respectively. For this, consider the origin of the 

coordinate system of the CMS to be an arbitrary point O in 3D 

and a plane P (or line L in 2D case) through O that has a unit 

v1 v2 

σ1u1 

σ2u2 M 
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normal v. Then the integral of the square of the distance of a 

point on the outer convex hull from the plane P (or line L) can 

be expressed as the square of the second-norm of a linear map 

expanded as 

  

      
                   

    , (8) 

where    is a matrix that will be described in some detail in 

the following Eqs. (9) and (10). Note the striking similarity 

between the objective function expressed in Eq. (8) and the 

function whose spherical plot is described in Theorem 3. 

Mathematically speaking, minimizing an objective function (as 

in Eq. (8) and Theorem 2) is the same as minimizing its square-

root (as in Theorem 3).   

In three-dimensional cases, it has been shown [14] that an 

exact integration of the expression in Eq. (1) over an outer 

convex hull, such as the one in Fig. 5(a), can be carried out 

using the Simpson’s rule (over triangles in 3D) so that 

    
 

  

 
 
 
 
 
 
 
 
 
 
 
       

      

      

       

      

      

      

       

      

      

      

       
   

      

      

      

       

      

      

      

       

      

      

      

        
 
 
 
 
 
 
 
 
 
 
 

, 

 

 

 

 

 

(9) 

 

where the outer convex hull is comprised of N triangles Ti, each 

having area Ai and vertices (xiA, yiA, ziA), (xiB, yiB, ziB), and (xiC, 

yiC, ziC), their average being (   ,    ,    ).  
Similarly, in two-dimensional cases it has been shown [14] 

that the application of Simpson’s rule results in an exact 

integration of the expression in Eq. (2) over an outer convex 

hull, such as the one in Fig. 5(c), yielding the      matrix 

    
 

 

 
 
 
 
 
 
 
 
 
        

     
     

 
 

       

       

     
     

 
 

       

  

       

     
       

 
 

         

       

     
       

 
 

          
 
 
 
 
 
 
 
 
 

, 

 

 

 

 

(10) 

where the outer convex hull is comprised of N line segments 

each having length Li, and N+1 vertices each with coordinates 

(xi, yi). 

The matrices in Eqs. (9) and (10) can be used to construct 

composite ellipsoids in 3D and composite ellipses in 2D, 

respectively. For simplicity of exposition, the construction of a 

composite ellipse is described first in some detail. Figure 7 

illustrates an outer convex hull, its Gauss map, and a composite 

ellipse that consists of several elliptic arcs. Reference to Figs. 

5(c) and 5(d) can be made for comparison.  

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 7. Illustration of (a) an outer convex hull, and (b) a 

composite ellipse using polar plots over a Gauss map. 

The vertices of the outer convex hull in Fig. 7(a) are 

indicated as             . The Gauss map of the outer convex 

hull is shown in Fig. 7(b) on a unit sphere (in this case, a unit 

circle), where the three thick circular arcs correspond to the 

cones of normals at vertices        and   . Now consider the 

vertex    and the matrix    
 defined in Eq. (10). Here, note 

that the origin for the coordinate system is translated to the 

vertex    to compute the coordinates involved in    
. Then 

Theorem 3 defines an ellipse, and the elliptic arc E2 in Fig. 7(b) 

is the restriction of this ellipse to the Gauss map corresponding 

to the cone of outer normals at the vertex   . Note that the 

elliptic arc E2 is drawn as a polar plot of         
    

  as a 

function of the angle θ between the unit vector   and the 

horizontal axis, as shown in Fig. 7(b). The other elliptic arcs E3 

and E4 in Fig. 7(b) are constructed similarly using polar plots to 

obtain the composite ellipse. 

Once the composite ellipse is constructed, the optimization 

problem reduces to finding the unit vector v (or, equivalently, a 

point on the unit circle) in Fig. 7(b) that yields the smallest 

radius in the polar plot of the composite ellipse, and a 

corresponding point p on the outer convex hull in Fig. 7(a) for 

which v is the outer normal. Then, the constrained least-squares 

fitting line is uniquely found as the one passing through p and 

having v as its normal. 

This leads to only two possibilities for the optimality 

condition in 2D, as described in the following case analyses. 

Case 1: The minimum radius of the polar plot is realized at an 

interior point of an elliptic arc. In this case, the constrained 

least-squares line contacts only the vertex of the outer convex 

hull responsible for that elliptic arc.  

Case 2: The minimum radius of the polar plot occurs at the 

intersection of two adjacent elliptic arcs. In this case, the 

constrained least-squares line contacts the edge of the outer 

p1 

p2 p3 
p4 

p5 

E2 

E3 

E4 

θ 

r 
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convex hull that joints the two vertices that correspond to the 

two adjacent elliptic arcs.  

Thus, the optimality condition for the 2D problem is given by 

the following theorem. 

 

Theorem 4a: The constrained least-squares line for a set of 

input points in a plane can contact one or two points of the 

input set. These contact points correspond to a vertex or an 

edge of the outer convex hull. 

 

A similar characterization for fitting a plane to points in 

space can be obtained by constructing a composite ellipsoid as 

an extension of Fig. 7. Starting with an outer convex hull, such 

as the one in Fig. 5(a), the composite ellipsoid is constructed as 

a spherical plot using the unit sphere, the Gauss map, and 

Theorem 3. The composite ellipsoid consists of a continuous 

collection of ellipsoidal patches {Ei}, each Ei corresponding to 

a vertex pi on the outer convex hull in 3D. Here Ei arises from 

the ellipsoid of Theorem 3 constructed with the matrix    
  

from Eq. (9). The ellipsoid itself can be constructed as a 

spherical plot of the radius         
    

  as a function of 

two angles (say, the latitude θ and longitude φ) associated with 

the unit vector   in the unit sphere. Ei is then the restriction of 

this ellipsoid to the Gauss map corresponding to the cone of 

outer normals at the vertex   . 

  In seeking the minimum radius of the spherical plot that 

represents the composite ellipsoid, there are only three 

possibilities, as described in the following case analyses. 

Case 1: The minimum radius of the spherical plot is realized at 

an interior point of an ellipsoidal patch. In this case, the 

constrained least-squares plane contacts only the vertex of the 

outer convex hull responsible for that ellipsoidal patch.  

Case 2: The minimum radius of the spherical plot occurs at the 

intersection of two adjacent ellipsoidal patches. In this case, the 

constrained least-squares plane contacts the edge of the outer 

convex that joints the two vertices that correspond to the two 

adjacent ellipsoidal patches.  

Case 3: The minimum radius of the spherical plot occurs at the 

intersection of three adjacent ellipsoidal patches. In this case, 

the constrained least-squares line contacts the triangular face of 

the outer convex that is defined by the three vertices that 

correspond to the three adjacent ellipsoidal patches.   

Thus, the optimality condition for the 3D problem is given by 

the following theorem. 

Theorem 4b: The constrained least-squares plane for a set of 

input points in space can contact one, two, or three points of the 

input set. These contact points correspond to a vertex, an edge, 

or a face of the outer convex hull. 

Theorems 4(a) and 4(b) form the foundations for some of 

the optimality conditions enumerated in Tables 1 and 2. In 

particular, comparisons can be made between CL2L and all the 

other line fittings (CL1L, SL2L, and MZL) in Table 1. Similarly, 

comparisons can be made between CL2P and all the other plane 

fittings (CL1P, SL2P, and MZP) in Table 2. The advantage of the 

constrained least-squares fitting over the others is that it 

combines the benefits of mechanical stability (responsible for 

the popularity of CL1L and CL1P) and numerical stability 

(responsible for the popularity of SL2L and SL2P). This is 

perhaps the strongest reason for its attraction to the ASME and 

ISO standards community.  

The process of establishing the optimality conditions of 

Theorems 4(a) and 4(b) has also revealed some elegant 

algorithmic ideas that can be used to find the optimum solution. 

Construction of outer convex hulls, their Gauss maps, the linear 

maps of Eqs. (9) and (10), and the composite ellipsoids/ellipses 

can all be part of an algorithm to find the constrained least-

squares fitting solution.         

6.2 Pairs of Lines and Pairs of Planes  
The problem of fitting more than one single plane or one 

single line occurs while establishing datums for slabs and slots. 

Also, especially in ISO standards [3, 4], datums can be 

established for wedges and angular slots without regard to the 

included angle. To address these needs, Section 6.2.1 tackles 

the problem of fitting intersecting lines and intersecting planes. 

Section 6.2.2 takes up the problem of fitting parallel lines and 

parallel planes. 

6.2.1 Intersecting Lines and Intersecting Planes  
The constrained least-squares fitting of lines and planes 

can be used directly for establishing datum systems for wedges 

and angular slots. As shown in Fig. 8(a) for 2D cases, each 

curve of a solid wedge can be independently subjected to a 

constrained least-squares fitting of a line. The datum is then a 

system consisting of the median line (i.e., angle bisector) of the 

intersecting lines and a point (e.g., at the intersection of fitted 

lines) on the median line. A similar approach is illustrated in 

Fig. 8(b) for an angular slot. Note that such a datum system 

enables the establishment of a complete two-dimensional 

reference frame. 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

 

Figure 8. Illustration of datum for (a) a wedge, and (b) an 

angular slot. The datum is a system consisting of the median 

line indicated with dashes and dots, and a point indicated with a 

filled circle on the median line. 
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Extending these ideas to 3D cases of wedges and angular 

slots, a constrained least-squares plane can be fitted on each 

surface independently, resulting in intersecting planes. The 

datum is then a system consisting of the median plane (i.e., 

angle bisector) of the intersecting planes and a line (e.g., at the 

intersection of the fitted planes) on the median plane. Such a 

datum system will correspond to a prismatic class of datums [1, 

4]. 

6.2.2 Parallel Lines and Parallel Planes  
The constrained least-squares fitting of parallel lines and 

parallel planes can be treated in a manner similar to that of 

constrained least-squares fitting of single line and single plane. 

Starting with the optimization problems defined in Eqs. (3) and 

(4), the notions of outer convex hulls, Gauss maps, and linear 

maps can still be applied with the only additional constraint that 

the lines and planes be parallel. In addition, the Gauss map will 

have two connected components, one in the northern 

hemisphere and the other in the southern hemisphere of the unit 

sphere; also, the composite ellipsoid will have two connected 

components, one in each hemisphere. These two components 

correspond to the surfaces S1 and S2 in Eqn. (3), or to the curves 

C1 and C2 in Eqn. (4). 

For simplicity of exposition, the 2D problem is considered 

first in some detail. Figure 9 illustrates a simple 2D example 

involving an upper convex hull and a lower convex hull as in 

Fig. 9(a). Both are outer convex hulls for the respective set of 

input points. The unit circle and the composite ellipse are 

shown in Fig. 9(b). The composite ellipse consists of two 

connected components of elliptic arcs.    

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

  

Figure 9. (a) An example of upper and lower convex hulls, and 

(b) the unit circle and the corresponding composite ellipse 

consisting of two connected components. 

The two parallel supporting lines shown dotted in Fig. 9(a) 

define a normal direction along which two antipodal (that is, 

diametrically opposite) points    and    can be located on the 

composite ellipse as in Fig. 9(b). The corresponding radii of the 

composite ellipse are designated as    and   . The objective 

function of Eq. (4) is then given by   
    

 . This leads to only 

two possibilities for the optimality condition in 2D, as 

described in the following case analyses. 

Case 1: The minimum of   
    

  is realized when both the 

antipodal points    and    are at interiors of elliptic arcs. In this 

case, the constrained least-squares parallel lines contact a 

vertex from each of the outer convex hulls.  

Case 2: The minimum of   
    

  is realized when one 

antipodal point is at an interior of an elliptic arc and the other 

antipodal point is at the intersection of two adjacent elliptic 

arcs. In this case, the constrained least-squares parallel lines 

contact a vertex on one outer convex hull and an edge on the 

other outer convex hull. 

The possibility of realizing a minimum when both the 

antipodal points     and    are at the intersections of elliptic 

arcs is considered a special case, where the input points are in a 

degenerate position. Therefore, the edge-edge contact is not 

considered for the optimality conditions when the input points 

are in general position. Thus, the optimality condition for the 

2D problem is given by the following theorem. 

Theorem 5a: The constrained least-squares fitting of parallel 

lines to two sets of input points in a plane can have one contact 

point on each parallel line, or one contact point on one parallel 

line and two contact points on the other parallel line.  

These contact points on the two outer convex hulls correspond 

to a vertex on each parallel line, or a vertex on one parallel line 

and an edge on the other parallel line. Table 1 summarizes these 

optimality conditions for CL2ILL and CL2CLL. 

A similar set of case analyses can be conducted for the 3D 

problem of fitting parallel planes. Generalizing Fig. 9 to 3D 

results in a composite ellipsoid in 3D, with two connected 

components of ellipsoidal patches. Two parallel supporting 

planes, generalizing Fig. 9(a), will yield a common normal 

direction that defines two antipodal points    and    on the 

composite ellipsoid with two radii    and   . The objective 

function of Eq. (3) is then given by   
    

 . This leads to only 

four possibilities for the optimality condition in 3D, as 

described in the following case analyses. 

Case 1: The minimum of   
    

  is realized when both the 

antipodal points    and    are at interiors of ellipsoidal patches. 

In this case, the constrained least-squares parallel planes 

contact a vertex from each of the outer convex hulls. 

Case 2: The minimum of   
    

  is realized when both the 

antipodal points are at interiors of elliptic arcs (each being the 

intersection of two adjacent ellipsoidal patches). In this case, 

the constrained least-squares parallel planes contact an edge 

from each of the outer convex hulls. Note that these two edges 

will form two skew lines in space.  

 Case 3: The minimum of   
    

  is realized when one 

antipodal point is at the interior of an ellipsoidal patch and the 

other antipodal point is at the interior of an elliptic arc (being 

pu 

pl 

ru 

rl 
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the intersection of two adjacent ellipsoidal patches). In this 

case, the constrained least-squares parallel planes contact a 

vertex on one outer convex hull and an edge on the other outer 

convex hull. 

Case 4: The minimum of   
    

  is realized when one 

antipodal point is at the interior of an ellipsoidal patch and the 

other antipodal point at an ellipsoidal vertex (being the 

intersection of three adjacent ellipsoidal patches). In this case, 

the constrained least-squares parallel planes contact a vertex on 

one outer convex hull and a face on the other outer convex hull. 

The possibility of realizing a minimum when both the 

antipodal points     and    are at the (ellipsoidal) vertices of the 

composite ellipsoid is considered a special case, where the 

input points are in a degenerate position. Therefore, the face-

face contact is not considered for the optimality conditions 

when the input points are in general position. A similar 

consideration also rules out the edge-face contact. Thus, the 

optimality condition for the 3D problem is given by the 

following theorem. 

Theorem 5b: The constrained least-squares fitting of parallel 

planes to two sets of input points in space can have one contact 

point on each parallel plane, or two contact points on each 

parallel plane, or one contact points on one parallel plane and 

two contact points on the other parallel plane, or one contact 

point on one parallel plane and three contact points on the other 

parallel plane.  

These contact points on the two outer convex hulls correspond 

to a vertex on each parallel plane, or an edge on each parallel 

plane, or a vertex on one parallel plane and an edge on the other 

parallel plane, or a vertex on one parallel plane and a face on 

the other parallel plane. Table 2 summarizes these optimality 

conditions for CL2IPP and CL2CPP. 

 
7. Convexity of Objective Functions 

A blind application of the ideas outlined in Section 6 to 

find a global solution to the constrained least-squares fitting 

may lead to an exhaustive search over all the ellipsoidal patches 

of the composite ellipsoid. This can be avoided if the objective 

function is convex. Then only a local minimum is needed 

because it will also serve as the global minimum under 

convexity. This section shows that the objective functions are 

indeed convex even under the constraints of Eqs. (1) through 

(4). Convexity of the objective functions is indeed a critically 

important property for practical and efficient computation, 

especially in light of the numerous combinatorial conditions 

given by Theorems 4a, 4b, 5a and 5b, all of which would have 

be checked in an exhaustive search for a global minimum in the 

absence of convexity.  

The notions of composite ellipse and composite ellipsoid 

are central to further discussion. As noted earlier, there is an 

important one-to-one correspondence among the following 

three entities: (1) an outward pointing normal v of a supporting 

plane (or line), (2) a point on the Gauss map etched on a unit 

sphere (or unit circle), and (3) a point on a composite ellipsoid 

(or ellipse). Recall that the faces, edges, and vertices of a Gauss 

map are dual to the vertices, edges, and faces of an outer 

convex hull. So the ellipsoidal patches (or elliptic arcs), 

ellipsoidal edges, and ellipsoidal vertices (or vertices between 

elliptic arcs) are dual to the vertices, edges, and faces of an 

outer convex hull.  

While discussing the behavior of the objective function, 

frequent references will be made to points in the interior of an 

ellipsoidal patch and to points across (that is, at the intersection 

of) ellipsoidal patches to evoke a geometrical perception of the 

optimization problem. At those moments, imagining the 

correspondence of these points to the normals of supporting 

planes, or to points on Gauss map etched on a unit sphere, will 

greatly aid the comprehension of the theoretical arguments. In 

addition, references to the South Pole, southern hemisphere, 

and equatorial region will be made on the Gauss map on a unit 

sphere. Also, in much of the discussion, the relevant domain of 

interest for optimization will be a (fairly large) portion of the 

‘southern hemisphere’ near the South Pole because that is 

where the solution of interest lies.  

Armed with these observations, the objective functions will 

be shown to be convex by proving that they are convex in every 

neighborhood within the domain of interest. Section 7.1 

considers the neighborhoods in the interior of elliptic arcs and 

ellipsoidal patches. Section 7.2 examines the convexity along 

the edges of intersection of the ellipsoidal patches. Section 7.3 

then examines the neighborhoods across the elliptic arcs and 

ellipsoidal patches. Section 7.4 provides the convexity 

argument for fitting pairs of lines and pairs of planes. 

 

7.1 Convexity in the Interior of Patches 
Consider first the 2D problem of constrained least-squares 

fitting of lines in a plane. The composite ellipse shown in Fig. 

7(b) can then be used as an example. Figure 10(a) reproduces 

Fig. 7(b) for the polar plot of the composite ellipse. In Fig. 

10(b) a Cartesian plot of the integral of the squares of the 

distances (which is r
2
) is presented as a function of the single 

degree of freedom θ. The goal is to establish that this objective 

function in Fig. 10(b) is convex over the entire domain of 

interest. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

   
 

 

 

(b) 

 

 

 

   
 

 

 

(c) 

Figure 10. Illustrations of (a) a polar plot, (b) a Cartesian plot 

of the objective function as being convex, and (c) a non-convex 

objective function. 
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The elliptic arc E2 of Fig. 10(a) is mapped in the interval 

        in Fig. 10(b) after squaring the radius function. Similar 

mappings of E3 and E4 can be seen in Fig. 10(b) in the 

subsequent intervals. In the interior of each of these intervals, 

such as        , the radius r as a function of the angle θ can be 

seen to be convex because of the property of ellipse in the 

neighborhood of its minor axis (that is, near the South Pole of 

the unit circle in Fig. 10(a)). Since the square of a positive 

convex function is convex, the objective function r
2
 is also 

convex in the interior of the interval        . This result holds 

good in every one of the subsequent intervals shown in Fig. 

10(b), thus establishing the following fact.  

Lemma 1a: The objective function is convex at every 

neighborhood within each of the elliptic arcs in the composite 

ellipse over the domain of interest for the constrained least-

squares fitting of lines in a plane. 

The argument for the convexity of the objective function in 

the interior of the elliptic arcs can be extended to the convexity 

of the objective function in the interior of ellipsoidal patches in 

the 3D cases. Here again the radius r of an ellipsoid plotted as a 

Cartesian function of two degrees of freedom (say, the angles of 

longitude θ and latitude φ) is convex near the minor axis of the 

ellipsoid (that is, near the South Pole of the unit sphere). 

Therefore, the objective function r
2 

must be convex in the 

interior of the patches in the θ-φ domain that correspond to the 

interior of the ellipsoidal patches, leading to the following fact. 

 

Lemma 1b: The objective function is convex at every 

neighborhood within each of the ellipsoidal patches in the 

composite ellipsoid over the domain of interest for the 

constrained least-squares fitting of planes in space.     

 
7.2 Convexity Along Edges of Patches 

A composite ellipsoid will have elliptic arcs, with each arc 

as the intersection of two adjacent ellipsoidal patches. These 

intersection curves are pieces of planar curves (ellipses) and the 

radius function        is convex in the southern hemisphere 

near the South Pole. So r
2 

must also be convex in the domain of 

interest, leading to the following result.  

Lemma 1c: The objective function is convex along the interior 

of every edge (that is, excluding its end points) of intersection 

of the ellipsoidal patches in the composite ellipsoid over the 

domain of interest for the constrained least-squares fitting of 

planes in space. 

The objective function is convex even at the end points 

(that is, the vertices) of the edges of the ellipsoidal patches, as 

shown in the next section.     

 

7.3 Convexity Across Patches 
Again, consider the 2D problem first. Having established 

that the objective function is convex in the interiors of the 

elliptic arcs, it is now necessary to show that situations such as 

Fig. 10(c) do not occur across the elliptic arcs. For this, an 

interesting alternative expression of the objective function is 

helpful. This involves the consideration of the centroid   of the 

outer convex hull. Following the arguments presented in [14, 

15] it can be shown that in 2D cases  

 

    
         

                    (11) 

  

where L is the total length of the outer convex hull. Figure 11 

provides an illustration to give a geometrical interpretation of 

Eq. (11) in 2D.  

Consider the outer convex hull in Fig. 11 that is a 

reproduction of the one in Fig. 5(c). In Fig. 11 the centroid of 

the outer convex hull is indicated as  . Now consider a 

supporting line lp for the outer convex hull through a hull vertex 

p and a unit normal vector v, and a line lg that is parallel to lp 

and passing through  . Let h be the distance between these two 

parallel lines lp and lg. Then, according to Eq. (11), the integral 

of the square of the distances of the convex hull from lp is equal 

to the integral of the square of the distances of the convex hull 

from lg plus the length of the convex hull times the square of 

the distance h between these two parallel lines. This property is 

sometimes referred to as the ‘parallel axis theorem.’ The point p 

can be any point in the plane and does not have to be a convex 

hull vertex for Eq. (11) to be valid. 

 

 

 

 

 

 

 

 

 

 Figure 11. Illustration for the interpretation of Eq. (11). 

Since the sum of convex functions is convex, the convexity 

of the objective function in Eq. (11) across the elliptic arcs is 

proved if each of the two terms on the right side of Eq. (11) is 

proved to be a convex function. Consider the first term 

    
     in the right side of Eq. (11). According to Theorem 

3, the polar plot of its square-root is an ellipse, and its Cartesian 

plot with respect angle θ is convex and positive in the 

neighborhood of the minor axis (that is, near the South Pole). 

So its square is also convex even across the elliptic arcs of Fig. 

10(a). 

It then only remains to prove that the second term 

L             in the right side Eq. (11), which is the same as 

Lh
2
, is convex across the elliptic arcs. It is possible to show that 

h
2
 is a convex across the elliptic arcs (and thus Lh

2
 is a convex 

function of the angle θ) using case analyses as illustrated in Fig. 

12. In each of the three figures in the top row of Fig. 12, a 

continuous family of supporting lines passes through the vertex 

pi and similarly another continuous family of supporting lines 

  

p 

lp 

lg 
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passes through the vertex pj. The transition from one elliptic arc 

to another occurs at the instant when the pivot for the family of 

supporting lines switches from pi to pj. That moment of 

transition is captured in Fig. 12 using three case analyses.     

In particular, the case analyses of Fig. 12 involve the 

behavior of the perpendicular distance h from the centroid   to 

the supporting lines as a function of the rotation angle  . Since 

the search for the minimum takes place in the (fairly large) 

vicinity of the South Pole, it can be first observed from the top 

row of Fig. 12 that h varies as      in the domain of interest. 

Therefore, the   -  plots in the bottom row of Fig. 12 consist 

of pieces of cosine-square functions. 

 

 

 

 

 

 

 

 

(1a) 
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(3a) 

 

 

 

 

 

 

(1b) 
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(3b) 

 

Figure 12. Illustration of three cases of transition and the 

related objective functions. The perpendiculars h from the 

centroid   to the supporting lines are shown dotted in the top 

row. The transition neighborhoods are shown within dotted 

circles in the   -  plots in the bottom row. 

Even though the pieces of cosine-square functions in the 

bottom row of Fig. 12 are themselves not convex, they behave 

like convex functions in the transition neighborhoods indicated 

within dotted circles again in the bottom row of Fig. 12. The 

concept of local convexity of a function is illustrated in Fig. 13. 

For a function f(x) to be convex over an arbitrary (including 

vanishingly small) interval (x1, x2) in Fig. 13, it is sufficient to 

show that the line-segment connecting any two points, such as 

a and b, on the graph of the function within that interval lies 

entirely above the graph of that function. 

Figure 12 illustrates all the three cases of possible 

transitions. The first case illustrated in Figs. 12(1a) and 12(1b) 

shows how the perpendicular distance h from the centroid   to 

the supporting lines changes with respect to the rotation angle 

 . As shown in the   -  plot in Fig. 12(1b), the transition 

reaches a local minimum and is locally convex. The second 

case illustrated in Figs. 12(2a) and 12(2b) also shows that the 

transition in the   -  plot is kept locally convex. The third case 

shown in Figs. 12(3a) and 12(3b) is similar to the second case, 

except for the fact the   -  plot shows an increase in h
2
 with 

respect to   while still maintaining local convexity at the 

transition. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Illustration of local convexity of a function within 

an interval (x1, x2). The line-segment joining a and b (shown 

dotted) lies entirely above f(x). 

The behavior of the transition in the neighborhoods 

indicated within dotted circles in Fig. 12 can be verified by 

simple trigonometric calculations based on the figures shown in 

the top row of Fig. 12. It is worth noting that as   increases in 

each of these transitions, there is a jump from a lower value for 

the left derivative of the function to a higher value for the right 

derivative of the function. Thus situations such as the ones 

depicted in Fig. 10(c) are avoided, and the following fact is 

established. 

 

Lemma 2a: The objective function is convex at all transitions 

of the elliptic arcs in the composite ellipse over the domain of 

interest for the constrained least-squares fitting of lines in a 

plane. 

 

The arguments for the convexity of the objective function 

across the elliptic arcs can be extended to the convexity of the 

objective function across the ellipsoidal patches in the 3D 

cases. Following the arguments presented in [14, 15] it can be 

shown that the equivalent of Eq. (11) in 3D cases is the 

following ‘parallel plane theorem’ 

 

    
         

                    (12) 

where A is the total area of the outer convex hull. To establish 

local convexity of the objective function in Eq. (12) at a 

transition from one elliptic patch to an adjoining elliptic patch, 

consider any two supporting planes P1 and P2 each through one 

of any two adjacent vertices of the outer convex hull. These two 

planes will intersect at a line l. Now, transform the coordinate 

system so that the z-axis is aligned with l. Then the projections 

onto the new xy-plane of outer convex hull, the centroid, and 

the supporting planes P1 and P2 will yield case analyses that are 

identical to those shown in Fig. 12 thus establishing the local 

convexity of the objective function in that projected view. Since 

this true for any two supporting planes each through one of any 
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two adjacent vertices of the outer convex hull, the following 

fact is established. 

Lemma 2b: The objective function is convex at all transitions 

of the elliptic patches in the composite ellipsoid over the 

domain of interest for the constrained least-squares fitting of 

planes in space. 

The following theorems for convexity are then obtained by 

combining Lemmas 1a, 1b, 1c, 2a, and 2b. 

Theorem 6a: The objective function is convex in the domain of 

interest for the constrained least-squares fitting of lines in a 

plane. 

 

Theorem 6b: The objective function is convex in the domain of 

interest for the constrained least-squares fitting of planes in 

space. 

 

7.4 Convexity for Pairs of Lines and Pairs of Planes 
Consider the cases of wedges and angular slots shown in 

Fig. 8. Since the each of the intersecting lines or intersecting 

planes is fitted independently, the convexity proofs for 

objective functions provided thus far apply directly to these 

intersecting cases. 

The cases of slabs and slots need some additional 

argument. Fitting parallel planes and parallel lines requires the 

consideration of the optimization problems posed in Eqs. (3) 

and (4). Note that the objective function in each of these two 

equations is the sum of two objective functions, each of which 

has been shown to be convex by Theorems 6a and 6b. Also, 

note that the two parallel lines or parallel planes will have equal 

and opposing normals due to parallelism. So, with simple linear 

transformation, the sum of the two functions in Eq. (3) or Eq. 

(4) can be posed as the sum of two convex functions over the 

same domain (say, involving longitude θ and latitude φ in the 

3D case, and just one angle θ in the 2D case). Figure 14 

illustrates this using a 2D example previously seen in Fig. 9. 

Since the sum of convex functions that share the same domain 

is convex, the following facts are established. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

  

Figure 14. (a) An example of a composite ellipse in 2D, and (b) 

plot of the objective function   
    

  as a function of just one 

angle θ.  

Theorem 7a: The objective function is convex in the domain of 

interest for the constrained least-squares fitting of two parallel 

lines in a plane. 

 

Theorem 7b: The objective function is convex in the domain of 

interest for the constrained least-squares fitting of two parallel 

planes in space. 

8. Summary and Concluding Remarks 
This paper addressed the problem of establishing planar 

datums and systems of planar datums using constrained least-

squares fitting to input points sampled on single planar features, 

wedges, angular slots, slabs and parallel slots. Combinatorial 

characterizations of the optimality conditions for these 

constrained optimization problems were provided with rigorous 

proofs. In addition, convexity of the objective functions over 

the domain of interest was proved.  

These optimality conditions, in the form of the minimum 

number of points of contact, enable one to verify if a given 

solution is a feasible solution. In addition, the theoretical 

arguments that proved these optimality conditions and the 

proofs of convexity of the objective functions will inspire the 

design of new and efficient algorithms to find global optimum 

solutions, as demonstrated earlier using research software [14, 

15]. Algorithms that exploit the results of this paper may also 

employ GPUs (Graphics Processing Units) to speed up the 

search. Further research is necessary to investigate such 

hardware-assisted algorithmic issues.  

The constrained least-squares fitting has gained 

considerable support in the standards bodies owing to its 

theoretical advantage (as a combination of mechanical stability 

and numerical stability) and practical effectiveness (in software 

implementation). Robust implementations of constrained least-

squares fitting algorithms in commercial software will be 

important for their acceptance by industry. Preliminary 

response from leading CMS vendors indicates that they are 

indeed beginning to implement and test their software using the 

results of this paper.  
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