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ABSTRACT 
For engineering drawings and CAD definitions, the problem 

of a suitable datum definition for datum features of circles, 

spheres, and cylinders has been sought by standards writers over 

decades. The maximum-inscribed and minimum-circumscribed 

definitions that have often been used have known problems 

relating to stability in many common, industrial cases. Examples 

of these problem cases include cylindrical datum features having 

an hourglass shape, barrel shape, or the shape of a tapered shaft 

and circular or spherical datum features that are dimpled. For 

these problematic cases, many resort to using a least-squares fit 

whose diameter is scaled to be just inside (or just outside) the 

datum feature. However, we show this shifted least-squares 

solution has its own drawbacks. 

This paper investigates a new datum definition based on a 

constrained least-squares criterion. The use of this definition for 

datum planes has already elegantly solved the problem of 

providing a full contact solution when that solution is stable, 

while providing a balanced, stable solution in the case of rocker 

conditions. With that success as motivation, we now investigate 

using this definition for circles, spheres, and cylinders. 

We demonstrate that the constrained least-squares is an 

excellent choice for several known problematic cases. This 

datum definition maintains stability in cases where the 

maximum-inscribed fits are not unique and thus not stable. Yet 

they also maintain close adherence to the maximum-inscribed 

solution when such solutions are stable. We also show that the 

constrained least-squares solution has clear benefits over the 

shifted least squares solution. 

This is the first computational investigation into the 

behavior of the constrained least-squares as a possible datum 

definition for these features. While not being fully 

comprehensive, these initial findings indicate that the 

constrained least-squares appears to be a safe and advantageous 

datum definition choice and provide substantial optimism that 

results in future investigated cases will be pleasing as well. 

 

1.  BACKGROUND AND INTRODUCTION 
In the world of Geometric Dimensioning and Tolerancing 

(GD&T), datums are used extensively to locate and orient 

tolerance zones [1-7]. Given an (imperfect) datum feature on a 

real workpiece, a datum is a mathematically perfect geometry 

associated with that datum feature. An example of a datum plane 

associated with a datum feature is shown in Fig. 1. Some 

commonly used datums are planes, circles, cylinders, and 

spheres.  

 

 

 
Fig. 1. Deriving a datum plane from a datum feature. 

 

 

A decades-old problem in the field is creating rigorous 

definitions that determine which datums should be associated 
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with given datum features [8]. Apart from standardization, there 

are several different yet reasonable approaches by which a datum 

can be established from a datum feature. For example, given a 

planar feature, one could associate a least-squares planar datum 

(which in the case of Fig. 1 would pass through the material), or 

a least-squares plane shifted to be just outside the material 

(which in the case of Fig. 1 would contact the datum feature at 

one point), or a one-sided, full-contact fit, which corresponds to 

the datum shown in Fig. 1. For planes, the full-contact fit is 

described primarily in [9] (but one can also see [10-11]). 

But a datum definition that is perhaps the most sought has 

also historically been most elusive to define mathematically. In 

fact, it has been difficult to define just in words, but is somewhat 

captured by the following properties: 

1) The datum should lie outside the material 

2) The datum should contact the datum feature fully 

(unless that datum is not stable) 

3) The datum should be stable in the sense that two 

datum features that are nearly the same should produce 

datums that are nearly the same. 

It is the tension between (2) and (3) that produce the 

difficulty. In the case of datum planes, the ASME Y14.5 Standard 

[4-5] defines the datum plane as the full-contacting plane (as a 

planar surface resting on a surface plate) unless it is a “rocker” 

condition, which is handled separately. Another example of 

wording seeking to balance (2) and (3) is that some editions of 

ISO 5459 [6] indicate that a cylindrical datum given a datum 

feature is the maximum-inscribed (or minimum circumscribed) 

cylinder unless that is unstable, in which case the mobility is to 

be equalized to the surface. An example case is shown in Fig. 2.  

 

 

 
 

Fig. 2. The maximum-inscribed cylinder (2D cross section 

shown) is not stable for the hourglass shape, since both 

inscribed cylinders shown have nearly the same diameter. 
 

 

                                                           
1 The ISO 5459 revision Draft International Standard (DIS) has included 

the constrained least-squares definition as its default datum definition for all 

geometries. 

The difficulty of defining the desired datum is seen in the 

fact that when a threshold is given to define an unstable case, 

property (3) ends up being violated, because two similar datum 

features could be produced, each on other sides of the threshold, 

producing very different datums. 

In the case of planes, a mathematical datum definition has 

recently been found that pleasingly solves the problem [12-13]. 

It is based on a constrained least-squares datum definition. This 

is different from a shifted least-squares solution and has the 

property that it makes full three-point contact with the surface 

when such full contact is not a rocker condition. When a rocker 

condition exists, the solution balances the rock, contacting only 

two points or one point as needed. In the case of Fig. 1, for 

example, the datum definition would provide the full contact 

datum shown. However, if the datum feature (in 3D) resembled 

and inverted pyramid, the datum feature would balance at only 

one point, the apex. If the datum feature were a concave, 

rectangular shape, meaning only the four corners are points of 

possible contact, the datum would make two diagonal points of 

contact and balance between the other two (like a four legged 

chair that rocks on two legs). In summary, a planar datum 

definition has been recently found that elegantly solves the 

elusive, decades-old datum problem. 

The success of the planar problem has naturally led to 

questions about applying such a definition to other geometries. 

In this paper we investigate—largely through computational 

solutions—the behavior of applying a constrained least-squares 

definition to circles, spheres, and cylinders1.  

 

 

2. PROBLEMS WITH THE FULL-CONTACT SOLUTION 
 
For the planar case, the full contact solution has been 

rigorously defined by using a constrained 𝐿1 association [9]. The 

definition produces a pleasing result in cases like Fig. 1, but is 

unstable and undesirable for the cases of a “V”, as shown in 

Fig. 3. 

 

 
Fig. 3. The full-contact (𝐿1) planar datum will not balance 

with one point of contact as shown, but will coincide with 

the longer edge or the other of the datum feature, making it 

unstable. 

 

For the cases of circles, spheres, and cylinders, the full 

contact solution corresponds to the maximum-inscribed or 

minimum-circumscribed definitions. For example, in the case of 

a circle, given a 2D set of data points, it is readily seen that the 

maximum-inscribed circle must contact at least three points. (If 

it did not, and only contacted two points, then another circle must 
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exist having greater diameter that is still inscribed, which can be 

seen by shifting the two-contact point circle’s center 

perpendicular to the line connecting the two contact points.) In 

the continuous case, the full contact solution can contact two 

points—consider the maximum-inscribed circle of an ellipse. 

The same full contact applies to the cases of spheres and 

cylinders. However, just as in the planar case, these full contact 

solutions are unstable. Take, for example, the case of fitting a 

maximum-inscribed circle to the shape shown in Fig. 4.  

 

 
Fig. 4. A shape having two maximum-inscribed circles, one 

centered at 𝒑 and one at 𝒒. 

 

The case of Fig. 4 is unstable in that the slightest change of 

shape can alter the center of the solution between the two centers 

shown. This has similarities to the planar datum case, where the 

full-contact solution varied in orientation between the two edges 

with slight changes of the datum feature (Fig. 3). 

 This problem with maximum-inscribed circles occurs more 

often in practice than a reader might realize. First, it can arise as 

a result of a simple combination of a two- and four-lobed form. 

For instance, the polar equation 

           𝑟(𝜃) = 10 + (0.02)sin(4𝜃) + (0.01)sin(2𝜃)  

has two maximum-inscribed circles. 

For another case, imagine a workpiece where the primary 

datum feature is a plane and the secondary datum feature is a 

cylinder nominally perpendicular to the plane. Then the 

secondary datum problem is actually a circular datum problem 

arising from projecting the cylinder into the primary datum 

plane. If the datum feature were sampled poorly, the following 

case would arise (shown in Fig. 5) where two centers of 

maximum inscribed circles exist. Interestingly, neither center is 

the one desired. 

 

 
 

Fig. 5. A practical, unstable case showing two center 

locations possible. The misalignment of the cylinder 

projected into the plane is exaggerated for clarity. 

 

Another example where the case of Fig. 4 can be seen is with 

discrete sampling. Imagine sampling a perfect circle except that 

two points on opposite sides of the center are slightly closer to 

the center than the others. This dimpled effect also creates an 

instability in the solution similar to what is depicted in Fig. 4. 

This effect can also occur with spheres. 

The issue for cylinders is even more problematic and more 

common. The reason is that the instability shown in Fig. 2 did 

not arise as a result of non-uniqueness. Mathematically, the 

unique maximum-inscribed fit is shown on the left. But the 

inscribed cylinder on the right has a significantly different 

orientation with almost no change in diameter, causing 

computational instability. This instability has plagued coordinate 

metrology software as documented in [14] and it continues to the 

present time. 

Other cases of instability are seen in the minimum-

circumscribed cylinder of a barrel shaped datum feature (Fig. 6) 

and either the minimum-circumscribed or maximum-inscribed 

cylinders of a taper-shaped datum feature (Fig. 7 shows the 

inscribed case). 

 

 
 

Fig. 6. The minimum-circumscribed cylinder (2D cross 

section shown) is not stable for the barrel shape, since both 
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circumscribed cylinders shown have nearly the same 

diameter. 

 

 
 

Fig. 7. The maximum-inscribed cylinder (2D cross section 

shown) is not stable for the taper shape, since rotating the 

axis as shown changes the diameter very little. 
 

 

3. THE CONSTRAINED LEAST-SQUARES DEFINITION 
FOR THE PLANAR DATUM CASE 

 
The problems that arise from the full contact solution were 

elegantly solved in [12, 13] by using the definition of a 

constrained least squares (called a constrained 𝐿2 association in 

[12]). Figure 8 shows two typical cases where, on the left, one 

would seek to balance the rocking condition, and on the right, 

one would seek for the datum plane to be stably flush with the 

edge of the datum feature. This is what the constrained least-

squares solution does automatically. 

 

 
 

Fig. 8. Two typical cases of datum features with the 

associated constrained 𝐿2 datums shown. The balanced 

rocking case is on the left and the stable, flush case is on the 

right. 

 

For the rocker condition pictured on the left side of Fig. 8, 

if the line segment on the right were made longer, the constrained 

𝐿2 datum plane would roll to the right smoothly. For the stable 

case pictured on the right side of Fig. 8, if the line segment on 

the right were made somewhat longer, the 𝐿2 constrained datum 

plane would not move from its stable state. It would remain flush 

with the edge of the datum feature until the line segment on the 

right grew long enough to make a rocker condition, at which 

point the 𝐿2 constrained datum would smoothly begin to roll to 

the right to balance the rocker. 

In contrast, the shifted least-squares solution would achieve 

a flush mating with the datum feature (as pictured on the right of 

Fig. 8) for only an instant. That is, as the line segment on the 

right began to be extended, there would only be one length that 

resulted in a flush mating. This contrast shows the fascinating 

feature of the constrained 𝐿2, which stays flush with the datum 

feature—even while the line segment extends—until it reaches 

such a length that a rocking condition exists, like shown in Fig. 9. 

 
 

Fig. 9. The line segment on the right is long enough for the 

constrained 𝐿2 datum to treat it as a rocking condition and 

separate from the flush contact it had in the right hand 

picture of Fig. 8. 

 

The constrained least-squares definition in this 2D case 

automatically chose between one and two points of contact in 

keeping the three properties desired as listed in Section 1. Similar 

behavior occurs in the 3D case where the datum plane makes 

one, two, or three points of contact with the datum feature, 

automatically and smoothly transitioning between these cases for 

varying datum features. 

Since the instabilities that exist with the full contact 

solutions for the circle, sphere, and cylinder cases bear some 

similarity to the planar case, the hope is that the constrained 

least-squares criterion would also solve the problem of meeting 

all three desired properties for these cases as well. 

 

4. THE CONSTRAINED LEAST-SQUARES DEFINITION 
FOR CIRCULAR DATUMS 

 
Given an approximately circular curve, 𝐶, and a circle 

centered at (𝑥0, 𝑦0) with radius, 𝑟, then the least-squares 

objective function is given by ∫ 𝑑2(𝒑) 𝑑𝑐
 

𝐶
, where 𝑑(𝒑) 

represents the distance from point 𝒑 (on 𝐶) to the circle (Fig. 10). 

With discrete sampling of points, we approximate the objective 

function 

∫ 𝑑2(𝒑) 𝑑𝑐
 

𝐶

≈ ∑ 𝑑2(𝒑𝑖)∆𝐿𝑖

𝑁

𝑖=1

, 

where 𝒑𝑖 are the 𝑁 sampled points, one in each subdivision of 

length ∆𝐿𝑖. If 𝑑 represents the signed distance to the circle 

(positive indicating that the point is outside the circle) then the 

constraint can be written—for the maximum-inscribed case—as 

𝑑(𝒑) ≥ 0, for all points 𝒑. 

The objective functions for the minimum-circumscribed 

case, as well as for cases of spheres and cylinders are similar. 
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Formulas for the distance calculations can be found in [14]. In 

this paper, our sampling was always uniform to allow the 

removal of the weighting factor ∆𝐿𝑖 from the objective function. 

 

 
Fig. 10.  Defining the objective function for fitting a circle to 

a curve, C. 

 

 

We developed maximum-inscribed and constrained least-

squares algorithms in order to investigate the behavior of the 

constrained least-squares in contrast to the maximum-inscribed 

fits. We begin with the “peanut shaped” case pictured in Fig. 11, 

where the maximum-inscribed fit skips from side to side 

depending on the slightest random perturbation. One such 

solution is shown on the left side of Fig. 11. In contrast, the 

constrained least-squares solution remained near the center as 

shown on the right side of Fig.11. 

   
 

 
Fig. 11. The same set of data points fit with a maximum-

inscribed fit (left) and a constrained least-squares fit (right). 

 

To give a quantitative feel for the behavior of these two fits, 

we used the dimpled problem mentioned in Section 2, for which 

the fits behave similarly to that shown in Fig. 11. We generated 

40 uniformly spaced data points on a 20 mm diameter circle 

centered at the origin and allowed those points to vary in the 

radial direction uniformly randomly up to ± 10 µm. For each data 

set we also added two dimple points at (0.0, 9.97) and (0.0, -9.97) 

(i.e., 30 µm dimples) and fit the resulting data sets with both the 

maximum-inscribed and constrained least-squares functions. 

This procedure was repeated 500 times and the histograms for 

the x-coordinate of both fits are shown in Fig. 12. 

 

 

 

 
 
Fig. 12. Histograms showing the x-coordinate of the center 

location of fit circles (top) for the constrained least-squares 

fit and (bottom) for the maximum-inscribed fit. Units are 

mm, but the horizontal scale differs by a factor of 10 

between the histograms. 

 

As expected, the maximum-inscribed fit has a bimodal 

distribution for the x-coordinate while the constrained least-

squares does not. But quantitatively, the standard deviation of the 

x-coordinate for the constrained least-squares is 1.3 µm vs. 

25 µm for the maximum-inscribed fit, making them differ by a 

factor of nearly 20. The important lesson is not the precise 

numbers themselves, for different contrived cases would yield 

different numbers, except to note that the constrained least-

squares is simply much more stable (by more than an order 

magnitude in the case shown here). 

But one might then ask what is sacrificed with regard to the 

diameter of the fits. Interestingly, the mean diameter for the 

maximum-inscribed fit was 19.94006 mm vs. 19.94000 mm for 

the constrained least-squares. This means that the remarkable 

increase in stability came at the diameter “cost” of only 60 

nanometers—an amount certainly negligible in light of the size 

of form deviations in this example case. 

Before moving on to other geometries, we will make one 

observation about the constrained least-squares vs. the often-

used shifted least squares. For datum features having symmetric 

deviations (like shown in Fig. 11) the shifted least squares may 

work reasonably well. But for nonsymmetrical cases the shifted 

least squares can significantly underperform the constrained 

least squares.  

Take, for example, eight uniformly spaced points on the 

20 mm circle we have been considering. Assume all the points 

lie exactly on the circle except for the topmost point, which has 

coordinates (0.0, 10.01), meaning that for some reason this point 

1.0 0.5 0.5 1.0

1.0

0.5

0.5
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is off the circle by 10 µm. Clearly this point will not affect the 

maximum-inscribed circle, which will be centered at the origin 

and have diameter 20 mm. However, the shifted least-squares fit 

has its center at (0, 0.0025) and a diameter of 19.9965—thus a 

2.5 µm shift in the center and a 3.5 µm decrease in the diameter. 

By contrast, the constrained least-squares fit is centered at 

(0, 0.00037) with a diameter of 19.9995, making only a 0.37 µm 

shift in center and a 0.5 µm decrease in diameter. These 

differences from the maximum-inscribed fit are lower by a factor 

of about seven from the shifted least squares fit. While shifted 

least-squares is often used in practice due to its stability in some 

cases, it seems evident thus far that excellent stability can be 

achieved without such departure from the full-contact solution.  

Lastly we note that given a set of data points, the shifted 

least-squares fit generally contacts only one point. This alone 

implies an inefficiency. For this inscribed circle case, the full 

contact (i.e., maximum-inscribed) solution always contacts three 

points, even at the cost of sacrificing stability. The constrained 

least-squares contacts three points or sometimes two, depending 

on the nature of the form deviations, allowing it to maintain 

stability. 

 

5. THE CONSTRAINED LEAST-SQUARES DEFINITION 
FOR SPHERICAL DATUMS 

 
The case of spheres is very much like that of circles, 

extended by one dimension. We do not show numerical results, 

which are similar to those shown in Fig. 12. But we do take time 

to note some differences that the extra dimension brings. First, 

the dimpled problem considered in the case of circles also exists 

in the case of spheres, but with some extra possibilities. When 

two dimples are present, the maximum inscribed sphere’s center 

shifts away from the nominal center (similar to Fig. 11) but 

instead of shifting only left or right as in Fig. 11, it can shift at 

any angle within the plane perpendicular to the line formed by 

the dimples. It is also possible to have three dimples (say, on a 

great circle) that force the full contact solution to one of two 

sides. 

Given a set of data points for this inscribed sphere case, the 

full contact (i.e., maximum-inscribed) solution always contacts 

four points, even at the cost of sacrificing stability. The 

constrained least-squares contacts four points or sometimes three 

or sometimes even two, depending on the nature of the form 

deviations, allowing it to maintain stability. And similar to the 

2D case, stability is gained with minimal cost to the diameter of 

the constrained least-squares fit. 

The drawbacks that existed with the shifted least-squares on 

circles are present with similar magnitude in the case of spheres. 

Again, the constrained least-squares solution significantly 

mitigates these effects. Similar to the eight data point case with 

circles, a set of 14 points was created on a 20 mm sphere: six 

points were located at ± 10 mm on the axes and eight were 

located at (10 mm) (±
√3

3
, ±

√3

3
, ±

√3

3
). The exception was that 

the “north pole” point was shifted up 10 µm, making that point 

(0, 0, 10.01).  

The maximum inscribed fit was unaffected by the shifted 

point. Its center was (0, 0, 0) and its diameter was 20 mm. The 

shifted least squares fit was centered at (0, 0, 0.0021) with a 

diameter of 19.9975 mm—thus a 2.1 µm shift in the center and 

a 2.5 µm decrease in the diameter. By contrast, the constrained 

least-squares fit was centered at (0, 0, 0.00004) with a diameter 

of 19.9995, making only a 0.4 µm shift in center and a 0.5 µm 

decrease in diameter. These differences from the maximum-

inscribed fit are lower by a factor of more than five from the 

shifted least squares fit. 

 

6. THE CONSTRAINED LEAST-SQUARES DEFINITION 
FOR CYLINDRICAL DATUMS 

As discussed earlier and as shown in Figs. 2, 6, and 7, the 

maximum inscribed and minimum circumscribed cylindrical 

functions suffer from instabilities for cases that are quite 

common. Besides the examples shown, a few individual discrete 

points that are located closer to the axis than the others can cause 

similar dimpling effects as discussed in the case of circles. This 

means that instabilities can arise from the actual form of the 

workpieces or from measurement errors affecting individual 

points.  

In 2002 it was shown that some commercial software has 

had problems in the past with maximum-inscribed and 

minimum-circumscribed fits for cylinders [15]. Anecdotal 

evidence suggests some of the problems persist. A contributing 

factor to this problem may be the objective function. 

To illustrate the problem and to show why the constrained 

least-squares fit is so much more stable in this case, we will 

graph the objective functions for the maximum-inscribed tapered 

case (Fig. 7), the other unstable cases being similar. 

We consider a cylindrical bore 20 mm in diameter and 

100 mm in length. We will impose a tapered form such that the 

top of the cylinder is exactly 20 mm in diameter and the bottom 

is 20.1 mm in diameter. For simplicity we sample only two rings 

of points—one at the top and one at the bottom (the results being 

similar if more rings were sampled). We will graph the objective 

functions for the maximum-inscribed and constrained least-

squares cases. If the axis of the tapered cylinder were along the 

z-axis, we will view the objective functions for inscribed 

cylinders having axes that pass through (0, 0, 100) and (x, 0) 

where x runs from -0.1 to 0.1 (see Fig. 13). 
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Fig. 13. The setup for the investigation into the objective 

functions for maximum-inscribed and constrained least-

squares. All units in mm. 

  

The optimal solution for both objective functions occurs 

when x = 0. The radius of the cylinder is 10 mm at that point. To 

illustrate the difference in the objective functions, we graph them 

together. We have scaled the constrained least-squares objective 

function to have the same value (of 10.0 mm) for the optimal 

case of x = 0. We also plot the square root of the sum-of-squares 

instead of the sum-of-squares to properly make the results have 

the same units and thus be a fair comparison. The results are 

shown in Fig. 14. 

 

 
 
Fig.14. The maximum-inscribed objective function (nearly 

horizontal) and the constrained least-squares objective 

function (appearing parabolic) plotted for values of x ranging 

from -0.1 mm to 0.1 mm. All units are mm. 

 

As seen in the graph, the objective function for the 

maximum-inscribed cylinder is extremely shallow (and looks 

flat to the eye). An algorithm searching for a minimum would 

have to distinguish between objective function values that differ 

by extremely small amounts even for significant changes in 

orientation.  

We note an important distinction between this type of 

instability and those discussed in the circle and sphere cases. In 

those cases, the instabilities described would have existed even 

if computations were made with arbitrarily high precision. In this 

case, the instability arises as a result of numerical issues. 

Nonetheless, even the effects of these instabilities are 

significantly diminished by the use of the constrained least-

squares objective function. 

The constrained least-squares datum definition easily 

computed the desired solution in all of the example cases 

depicted in Figs. 2, 6, and 7. 

 

7. CONCLUSIONS 
Given the pleasing results of the constrained least-squares 

datum definition in the planar case, we were compelled to look 

at the behavior of this datum definition for other cases, namely 

of circles, spheres, and cylinders. Since this is the first 

investigation (e.g., little was mentioned for instance about 

minimum circumscribed cases) we recognize that the 

investigation is not finished. However, we investigated many of 

the known, major problem areas of instabilities of some other 

datum definitions, and the constrained least-squares definition 

has been shown to perform excellently in all of them. It seems to 

agree very closely with the full contact solution when that fit is 

stable, and it also maintains desired stability with little cost (i.e., 

with little change of diameter compared to the full contact fit). 

These initial findings indicate that the constrained least-squares 

appears to be a safe datum definition choice and provide 

substantial optimism that results in future investigated cases will 

be pleasing as well.  
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