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Abstract— The existence of tactile afferents sensitive to slip-
related mechanical transients in the human hand augments
the robustness of grasping through secondary force modulation
protocols. Despite this knowledge and the fact that tactile-
based slip detection has been researched for decades, robust
slip detection is still not an out-of-the-box capability for any
commercially available tactile sensor. This research seeks to
bridge this gap with a comprehensive study addressing several
aspects of slip detection. In particular, key developments include
a systematic data collection process yielding millions of sensory
data points, a spectral analysis of sensory responses providing
insight into sensor behavior, and the application of Long
Short-Term Memory (LSTM) neural networks to produce
robust slip detectors from three commercially available sensors
capable of tactile sensing. The sensing mechanics behind these
sensors are all fundamentally different and leverage principles
in electro-mechanical resistance, optics, and hydro-acoustics.
Critically, slip detection performance of the tactile technologies
is quantified through a measurement methodology that unveils
the effects of data window size, sampling rate, material type, slip
speed, and sensor manufacturing variability. Results indicate
that the investigated commercial tactile sensors are inherently
capable of high-quality slip detection.

Index Terms— tactile sensors, slip detection, neural networks,
deep learning.

I. INTRODUCTION

Neurophysiological research reveals the existence of four

distinct types of tactile afferents in the human hand: fast-

adapting type I (FA-I), slow-adapting type I (SA-I), fast-

adapting type II (FA-II), and slow-adapting type II (SA-

II) [1]. This variety of tactile afferents affords a spectrum

of sensitivity to various mechanical stimuli, an arrangement

determined critical for proper sensorimotor control of the

hand. Among the many functional modalities these afferents

impart, one of particular interest is the sensing of high-

frequency mechanical transients (5 Hz - 400 Hz) via FA-I

and FA-II type afferents. For example, these vibrations can

emanate from surfaces in sliding contact that undergo quick

transitions among friction states, also known as the ”catch

and snap” effect [2]. Naturally, humans possess the ability

to detect object slip, and, in fact, humans actively exploit

slip detection by applying secondary force modulation efforts

in response to slip events with a reflex time of less than

100 msec [3]. In essence, this sensorimotor response acts
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as a ‘fail-safe’ in the event that primary force modulation

protocols do not suffice. Therefore, imbuing robotic hands

and grippers with tactile-enabled slip detection behaviors is

one logical avenue for elevating the robustness of robotic

grasping.

The calibration of tactile sensors for slip detection is

not a novel concept; investigative efforts started in the late

1980s and continue to the modern day. To date, researchers

have produced slip detectors from wildly different sensors

including accelerometers [2], force transducers [4], pressure-

sensitive tactile arrays [5], [6], piezoelectric polymer films

[7]–[9], elastomer-embedded cameras [10], carbon nanotube-

polymer composites [11], pressure transducers [12], capaci-

tance arrays [9], and strain gauges [13]. The majority of slip

detector algorithms are at least partially composed of spectral

analyses from Fourier and wavelet transforms, to extract

relevant features for slip classification [5], [9], [13]. Other

approaches apply optical flow algorithms [6], band-pass

filters [12], or contact force cone and force measurements

to predict slip [14]. Reported slip classification accuracies

were above 90 % in [12] and above 85 % in [9].

Despite such a rich variety of sensor designs and al-

gorithmic approaches for slip detection, commercial tactile

sensors are still devoid of this capability. The resulting

implication is that slip-detecting tactile sensors have not

yet approached readiness levels for commercialization. In

particular, the calibration of tactile sensors for truly robust
slip detection across all relevant factors (including slip speed,

contacting materials, latent vibrations, and contact force) has

not yet been demonstrated. This result is likely due to both

methodological and algorithmic inadequacies. Methodolog-

ically, slip detection research rarely investigates detection

performance across even a subset of the previously listed

factors. Algorithmically, subsequent slip detection accuracies

are purely insufficient for applied controls. The former issue

can be resolved by a thorough design of experiments across

all relevant factors in order to systematically hone and test

slip detector quality. The latter issue can be addressed with

the application of more powerful algorithms capable of

analyzing sequences of sensor data for classifying slip events

with a high degree of accuracy.

In the era of high performing neural networks in chal-

lenging problem domains, strategies for producing highly

robust slip detection for tactile sensors should include neural

networks and automated data acquisition of large datasets.

Coupling deep neural networks and extensive datasets with

contemporary computational power have led to significant

performance gains in computer vision [15], language model-

ing [16], language translation [17], artificial gaming agents

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

U.S. Government work not protected by
U.S. copyright

2744



[18], bin picking [19], and speech synthesis [20]. Depending

on the problem domain, some neural architectures prove

advantageous over others. Since slip detection is primarily

imparted through temporal signatures of tactile data, the most

promising neural architecture for slip detection is recurrent
neural networks.

By design, recurrent neural networks excel at processing

sequences of data through the existence of internal neuronal

states in the hidden layers that integrate input data over

the entire input sequence. Recurrent networks have been

notoriously difficult to train in the past due to their exploding

or vanishing gradients. However, this issue has been largely

resolved by Long Short-Term Memory (LSTM) recurrent

networks [21]. LSTM networks circumvent these numerical

issues during the training process through their intrinsic

dynamics, and excel at finding patterns in data separated

by large time intervals - an attractive trait for slip detection

where several hundred sensor readings may be necessary for

maximizing accuracy.

This research is the first to apply LSTM networks to

large datasets gathered over the previously listed factors to

create robust slip detectors. The main contributions include:

1) a systematic design of experiments for collecting millions

of data points for training slip detectors; 2) an in-depth,

comparative spectral analysis of each sensor, yielding insight

on the most significant frequencies for slip detection; 3)

preprocessing and application of LSTM networks for cali-

brating a sensor for slip detection; and 4) a measurement

methodology that analyzes windows size, sampling rate,

material, slip speed, and manufacturing variability effects on

slip detection accuracy.

II. EXPERIMENTATION

A. Hardware

The main hardware components (existing commercial

products) included a seven degree-of-freedom (DoF) robotic

arm; a fully actuated, sixteen DoF robotic hand (individ-

ual torque control and angle sensing per joint); and three

tactile sensor technologies. The arm was Cartesian position

controlled, and the hand was joint impedance controlled

(proportional-derivative controller with gravity model) with a

joint stiffness of 3 Nm/rad, joint damping of 0.075 Nm·s/rad,

and torque saturation limits of ±0.42 Nm. Each set of tactile

sensors was mounted as the fingertips (i.e., index, middle,

little) of a robotic hand attached to the arm as depicted in Fig.

1. Sensor 1 (three-count) was a six-axis, silicon strain gauge-

based force-torque transducer with a 3D printed, rubber-

coated fingertip and a force sensitivity of 6 mN. Sensor 2

(three-count) was a three-axis force sensor that used optics to

measure mechanical deformation of the outer rubber dome

with a force sensitivity of 2.5 mN. Sensor 3 (two-count)

was a biomimetic sensor with a fluid-filled rubber membrane

encapsulating a rigid core that housed multiple electrodes, a

pressure transducer, and a thermistor with a force sensitivity

of at least 10 mN. Data was collected from all analog signals

at 1000 Hz from Sensor 1 and Sensor 2 and from the high-

pass filtered pressure transducer signal at 850 Hz for Sensor

3 (the manufacturer-specified signal specifically designed for

applications of high-frequency sensory transients).

B. Factors

In order to train a robust slip detector with LSTM net-

works, a large, highly representative dataset was necessary.

Specifically, relevant factors that affect a candidate sensor’s

response in both slip and non-slip events must be known.

These factors include sensor force sensitivity, sampling rate,

tribological properties of both sensor surface and extrinsic

surface, speed of slip between sensor and extrinsic surface,

ambient vibration from the sensor’s connecting structure or

extrinsic surface, and the sensor’s force-loading profile.

C. Data Collection

In order to cover all controllable factors, the data col-

lection process was designed to sample both non-slipping

and slipping types of data under different scenarios. This

process was consistently applied across all three types of

tactile sensors (see Fig. 1).

1) Non-Slipping Data: Two scenarios were engaged to

collect non-slipping tactile data. The first scenario involved

repositioning the arm and hand to 36 different joint config-

urations in free space (see Fig. 1f) at three different speed

settings, yielding average end-of-arm speeds of 25 mm/s,

50 mm/s, and 75 mm/s. Each speed setting was sequentially

applied to the same set of 36 joint configurations. Finger joint

configurations were generated via the Latin Hypercube sam-

pler with joint velocities pseudo-randomly sampled between

2 deg/s and 10 deg/s. The data generated for this scenario

were labeled as non-slipping data since the tactile sensors

did not make surface contact. This data aided in training a

slip detector that did not issue false-positive slip detection

from the idling vibration or motion of the connecting electro-

mechanical structures (i.e., arm and hand).

Another case of non-slipping data included force modulat-

ing the sensors at varying frequencies and magnitudes with

a prospective surface in order to emulate scenarios in which

the robotic hand or gripper readjusted its grasp or performed

in-hand manipulation on an object without slipping. The

robotic arm positioned the robotic hand within reach of

five different material sheets: aluminum, polyvinyl chloride

(PVC), neoprene, cardboard, and plywood. The fingers were

commanded to initiate contact and palpate the materials at

various force levels and frequencies by commanding the

fingers into the working surface at 100 different inwardly-

curled joint angle configurations and speeds sampled from

the Latin Hypercube sampler (see Fig. 1(a-e)). Each joint

angle configuration was issued as a change in joint angle

per joint across all three contacting fingers ranging from 0

deg to 70 deg (per joint). Joint speeds ranged from 0.125

deg/s to 25 deg/s.

2) Slipping Data: In order to capture the tactile sensory

response to slipping events, variations in slip speed, material,

and contacting force must be represented. Accordingly, the

robotic arm was commanded to drag the hand with tactile-

surface contact across various material types 32 times at
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Fig. 1: Gathering tactile data on (a) aluminum, (b) PVC, (c) neoprene, (d) cardboard, (e) plywood, and in (f) free-space.

four speed settings, yielding average end-of-arm speeds of

5 mm/s, 25 mm/s, 50 mm/s, and 75 mm/s (see Fig 1(a-e)).

Although only four arm speed settings were used, controller

design requires smooth motion trajectories, which generated

a continuous spectrum of slip speeds up to the maximum

speed setting. Joint angles to the hand were held constant

per set of tactile sensors that yielded appreciable contact

with the materials. Deviations in hand joint angles were not

issued in order to prevent accidental fingertip-surface lift and

to reduce wear on the sensor surfaces from excessive contact

forces. However, contact force was inherently modified by

the natural oscillation of the moving arm along its planned

motion path.

D. Data Balancing

After acquisition, the data was balanced and split into

training and testing datasets. To prevent a classifier from

exhibiting biases towards more frequently represented pat-

terns in the data, non-slipping and slipping data, and sources

thereof, were equally represented. Overall, a representative

dataset consisted of a 50-50 % split of non-slipping and

slipping data. With five materials and four speed settings,

each material yielded 20 % of the slipping data, and each

slip speed setting yielded 25 % of each material. Moreover,

pushing data and free-space data constituted 50 % of non-

slipping data, each. Each material yielded 20 % of the

pushing data. Each speed setting yielded 33 % of free-

space data. To enforce these proportions, the original datasets

were trimmed from the end, shuffled based on a pre-selected

window size (i.e., the number of sequential sample readings),

concatenated based on type (e.g., slipping or non-slipping),

and shuffled again based on a pre-selected window size.

This process yielded approximately eight million data points

(single sensor samples) for every individual sensor – half for

training and half for testing the slip detectors.

E. Data Preprocessing

A unified approach was taken to produce a single, high-

frequency data stream from a sensor’s raw tactile data. Since

a general force-sensitive tactile sensor may have multiple

data outputs, a formula for obtaining a single data stream

from all relevant sensor outputs involves calculating the lag-

one finite difference of the l2-norm of the sensor vector data,

st = ||at||2 − ||at−1||2 (1)

where st ∈ R is the preprocessed sensor signal at timestep t;
at,at−1 ∈ R

m are the m-dimensional sensor vector data at

timestep t and t− 1, respectively; and || · ||2 denotes the l2-

norm. This formulation effectively pools the full magnitude

of the sensor’s response to changes in force during tactile

experiences, regardless of contact location. Furthermore, the

lag-one difference produces a data stream centered around

zero that signals changes in force loading while removing the

absolute readings. The inspiration for this formulation comes

from the fast-acting tactile afferents in the human hand that

are only receptive to mechanical transients.

III. SPECTRAL ANALYSIS

While LSTM networks are used to perform slip detection,

an in-depth spectral analysis of the gathered sensor data

was conducted in order to characterize sensory response and

provide insight into the feasibility of calibrating a sensor

for slip detection. Effectively quantifying any frequency

bands that yield statistically significant differences in sensory

response between non-slipping and slipping data is useful in

determining the feasibility for slip calibration and guiding

sensor sampling rates.

After data balancing and preprocessing, the collected data

for each sensor was pooled into one of two categories: non-

slipping and slipping. Next, both non-slipping and slipping

datasets were bootstrap-sampled 100 times, wherein each

sample consisted of a sequence of sensor data of equal

length to the maximum sampling rate of the sensor (e.g.,

1000 data points per sequence for Sensor 1 and Sensor 2).

Each non-slipping and slipping sequence was analyzed by

the Fast Fourier Transform, yielding a single-sided amplitude

spectrum at 1 Hz resolution over a frequency range of zero

to one-half the maximum sensor sampling rate. The returned

amplitudes per frequency for each set of bootstrapped sam-

ples were analyzed by the two-sample Kolmogorov-Smirnov

(KS) algorithm between non-slipping and slipping data. The

KS algorithm is a statistical, non-parametric distribution test
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for continuous data that determines whether or not two sam-

ple sets belong to the same population [22]. By comparing

100 samples of non-slipping and slipping amplitudes per

frequency, the KS algorithm exposed those frequencies for

which the sensor data was the most distinguished between

non-slipping and slipping events. This bootstrap sampling

process and statistical test was repeated 200 times, yielding

200 KS tests per frequency. A single KS test either accepted

or rejected the null hypothesis by returning a value of 0

or 1, respectively. Averaging the 200 KS test verdicts per

frequency yielded a stable significance signal as shown in

Fig. 2. Also shown are the mean and 95 % confidence

bands of the amplitudes, indicating the variability in sensory

response during non-slipping and slipping events.

There are a number of important results evident in Fig. 2.

In particular, every sensor type exhibited contrasting features

for non-slipping and slipping data. Sensors 1 and 2 yielded

significant differences in signal amplitudes across the entire

range of frequencies (0 Hz - 500 Hz). In contrast, Sensor

3 expressed two significant bands of frequencies including

0 Hz through 75 Hz and 175 Hz through 225 Hz. These

frequencies fall directly within the sensing realm of FA-I

afferents (5 Hz - 50 Hz) and FA-II afferents (40 Hz - 400 Hz).

At approximately 200 Hz, both Sensors 1 and 3 experienced

spikes in amplitudes for non-slipping data, the known idling

vibration of the robotic arm. Sensor 2 appeared completely

insensitive to the arm’s idling vibration (likely due to the

mechanical isolation and compliance of the sensor’s air-filled

rubber dome with only perimeter connections to the sensor

base). Additionally, the most significant frequency band (∼1

significance) that generally contains the largest separation in

amplitude means is 0 Hz - 100 Hz for Sensors 1 and 2, and

0 Hz - 50 Hz for Sensor 3. Generally, both Sensors 1 and 2

experienced peak separation in mean curves at approximately

60-70 Hz, the dominant frequency of the catch-and-snap

effect [5]. Unlike Sensor 1, the slip state bands for both

Sensors 2 and 3 experienced increasing overlap beyond

approximately 250 Hz. This effect was likely due to their

thicker outer contacting rubber surfaces acting as mechanical

low-pass filters to these very high frequency signals. Sensor

1 did not exhibit this behavior likely due to its higher overall

rigidity and a rubber coating less than 0.2 mm thick.

Overall, these plots provided strong evidence that simply

setting amplitude thresholds from FFT analyses of sensor

data could result in a brittle slip detection strategy since

major overlaps in amplitudes existed across the full fre-

quency range between non-slipping and slipping data for

all sensor types. Moreover, large data collection is still

necessary to create these high-fidelity spectral plots to guide

a thresholding technique. Regardless, such a technique was

briefly investigated in Section V-A which confirmed a major

loss in slip classification accuracy when compared with that

of LSTM networks.

IV. CALIBRATION FOR SLIP DETECTION

Many existing approaches seek to extract relevant features

from spectral algorithms that are either used directly to

predict slip or to train a separate classifier to predict slip.

Although these approaches have produced worthwhile results

in the past, the feature extraction process may have failed to

produce all relevant features in the data. Instead, this new

approach passes minimally processed sensor data streams

directly to the LSTM networks such that they are less likely

to exclude obscured, yet relevant information for training a

robust slip detector.

A. LSTM Architecture

The governing equations for the binary classification

LSTM model (refer to [21], [23] for more details regarding

LSTM cells) used for slip detection are:

zt = g(Wzx
t +Rzy

t−1 + bz) (2)

it = σ(Wix
t +Riy

t−1 + bi) (3)

f t = σ(Wfx
t +Rfy

t−1 + bf ) (4)

ct = zt � it + ct−1 � f t (5)

ot = σ(Wox
t +Roy

t−1 + bo) (6)

yt = h(ct)� ot (7)

ytp = σ(Wyy
t + by), (8)

where Wz , Wi, Wf , Wo ∈ R
N×M are the inputs weights;

Rz , Ri, Rf , Ro ∈ R
N×N are the recurrent weights; bz , bi,

bf , bo ∈ R
N×1 are the hidden bias weights; Wy ∈ R

K×N

is the output weights; and by ∈ R
K×1 is the output bias

weights. Furthermore, xt ∈ R
M×1 is the input vector;

zt ∈ R
N×1 is the block input; it ∈ R

N×1 is the input

gate; f t ∈ R
N×1 is the forget gate; ct ∈ R

N×1 is the cell

state; ot ∈ R
N×1 is the output gate; yt ∈ R

N×1 is the

block output; and ytp ∈ R
K×1 is the network output. Finally,

σ(·) is the logistic sigmoid function; both g(·) and h(·) are

the hyperbolic tangent function; and � is the element-wise

vector product. For binary classification, K = 2, and each

output is a number between 0 and 1, which is interpreted as

the likelihood of belonging to that output’s class (i.e., either

non-slipping or slipping). For a single, preprocessed sensory

signal, M = 1. The number of hidden LSTM units, N , is

determined below.

B. LSTM Network Parameters and Optimization

Through trial and error, the network parameters were

fixed at values that produced relatively well-functioning

slip detectors across all investigated sensors on the training

datasets. The hidden layer size was fixed at 20 LSTM

neurons, which yielded useful classification rates while min-

imizing training time and without overfitting. Momentum

was held constant at 0.125. Mimicking a cooling schedule,

four learning rates of 0.01, 0.001, 0.0001, and 0.00001

were applied sequentially for up to 100 training epochs,

or until no measurable progress was demonstrated for 10

consecutive epochs. Optimization was conducted via full

back-propagation through time (BPTT) by calculating the

network gradients of a fully unfolded network. The typical
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Fig. 2: Spectral plots of index and middle (a) Sensor 1, (b) Sensor 2, and (c) Sensor 3 indicating the mean amplitude (solid

lines), 95 % confidence bands (faded areas), and significance (green line). Blue is non-slipping data, red is slipping data.

cross-entropy loss function was used for optimization. The

input data stream to the networks were normalized by the

2.5th and 97.5th percentiles of the training datasets rather

than the minimum and maximum values in order to reduce

detrimental squashing of input data from the extreme outliers

in the data. Training and testing models were conducted on

a commodity laptop with a CPU core speed of 2.8 GHz.

Training time took less than 23 μs per sensor sample, e.g.,

about 100 s per epoch for a dataset of 4.4 million sensor

samples. Training time was invariant of model window size

since scaling window size reciprocally scaled the number of

unique sensor sequences from a fixed dataset (see Section V

on window size). Inference took less than 5 μs per sensor

sample, e.g., less than 0.3 ms for a window size of 50

samples.

Since this study investigated slip detection performance

over a variety of factors and sensors, the network sizes

were intentionally kept small to reduce computational cost.

Although the subsequently trained networks were not fully

optimized, they yielded reasonable performances and served

as a point of comparison across the investigated sensors. For

further network refinement, larger hidden layers and stacking

LSTM layers could improve detection performance.

V. SENSOR PARAMETERS

For any tactile sensor, there are typically two controllable

parameters of interest: window size and sampling rate. Win-

dow size dictates the number of sequential sensor readings

that are passed to a classifier before a prediction is made.

This parameter is particularly relevant for slip detection since

stick-slip events across a tactile sensor are captured over

a sequence of readings. Therefore, window sizes must be

sufficiently large to capture the slip phenomenon. However,

window size also directly inflates slip reaction time. As such,

a minimized window size that affords high slip detection

accuracy rates is crucial to improving slip reflexive behaviors

during grasping or manipulation processes. Sensor sampling

rates are often user-selectable and dictate how many sensor

readings occur per second. High sampling rates are generally

required for quality slip detection. However, minimizing

sampling rates while preserving slip detection accuracy is

pertinent to minimizing data acquisition resources and will

assist tactile sensors with large numbers of sensory signals

that cannot be sampled at excessively high sampling rates

(e.g., pressure arrays) [6], [9], [13].

A. Window Size

LSTM networks were trained on the balanced datasets

shuffled at six different window sizes – 5, 10, 25, 50, 100,

and 200 – for data collected at the maximum sensor sampling

rate. Overall, Sensors 1 and 2 exhibited the highest slip

classification accuracies of over 90 % after 200 consecutive

sensor samples were passed to the LSTM networks. In

contrast, Sensor 3 yielded over 85 % slip classification rates1.

The elevated classification performance for Sensors 1 and 2

(when compared to Sensor 3) correlated to both the larger

disparities in slip state bands as discussed in Section III

and their finer sensory resolution. Across all sensors, it is

unclear whether the classification accuracies obtained from

1These classification rates are competitive with those of prior research.
However, direct comparisons would be misleading since the datasets and
manner of data collection are different.
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TABLE I: Slip state classification accuracy at various win-

dow sizes across three types of sensors and fingers.

Sensor Finger Classification Accuracy (%) at Window Size

5 10 25 50 100 200

1
Index 74.7 80.9 85.5 88.0 89.6 90.4

Middle 80.3 86.2 91.0 89.9 91.5 94.2
Little 84.3 86.4 91.4 91.5 92.6 92.0

2
Index 80.3 86.0 90.3 91.3 91.0 91.7

Middle 82.5 87.1 91.0 91.0 92.1 91.0
Little 73.0 79.4 85.8 87.2 90.1 91.6

3
Index 66.4 74.8 82.5 86.5 86.1 86.2

Middle 68.3 73.4 80.9 85.1 88.1 85.1

a window size above 50 samples yielded statistically signif-

icant improvements. However, accuracy generally decreased

with window sizes below 50 samples. With as few as five

samples, accuracy dropped by 15 % for Sensors 1 and 2 and

20 % for Sensor 3. Therefore, to decrease slip prediction time

and maintain near-maximum accuracy, a window size of 50

samples yielding a slip detection time of 0.05 sec for Sensors

1 and 2 and 0.06 sec for Sensor 3 may prove adequate as

these times are similar to human slip reflexes [3].

As a reference point, Holweg’s thresholding technique [5],

applied across Sensors 1-3 for a window size of 50 samples,

yielded classification accuracies of 71.4 %, 80.9 %, and

76.4 %, respectively. Threshold values were determined in

two steps: 1) the sum of signal amplitudes (from spectral

analysis) over the most significant frequency band (identified

in Section III) was calculated for every window of data in

the non-slipping and slipping datasets; and 2) the location

of largest separation in the empirical cumulative distribution

functions of these sums from non-slipping and slipping

data constituted the threshold value. Threshold values were

0.0015 N, 3.5 units, and 25 units for Sensors 1-3. Although

simpler, this approach yielded classification accuracies that

are 10 % to 20 % less than that of LSTMs.

B. Sampling Rate

The LSTM networks were trained with various data sam-

pling rates to measure the impact on classification accuracy.

Since the datasets can be sequentially downsampled by a

factor of two by omitting every other sensor reading within

a sample sequence, five additional sampling rates were

investigated as shown in Table II. The datasets with a window

size of 200 samples were chosen for downsampling such that

the number of samples per sequence at the lowest sampling

rate was greater than five (i.e., a sequence of appreciable

length).

Classification accuracy is highly sensitive with respect

to sampling rate. For Sensors 1 and 2, every increase in

sampling rate by a factor of two yielded an approximate 2

% to 4 % gain in classification accuracy. This consistent

and steady ascent in accuracy is explained by Fig. 2. Both

Sensors 1 and 2 had significant disparities in spectral content

between non-slipping and slipping data across the full range

of available frequencies. Consequently, heightened sampling

rates resulted in the continual acquisition of relevant features

TABLE II: Slip state classification accuracy at various

sampling rates across three types of sensors and fingers.

*Superscripts indicate associated sensor type for selected

sampling rate.

Sensor Finger Classification Accuracy (%) at Sampling Rate

31.251,2

26.563
62.51,2

53.1253
1251,2

106.253
2501,2

212.53
5001,2

4253

1
Index 71.6 75.2 80.0 81.6 81.6

Middle 75.8 79.7 82.2 86.6 88.6
Little 80.0 85.1 89.1 87.6 89.6

2
Index 80.2 83.0 85.7 87.3 88.5

Middle 83.1 85.8 87.8 89.0 89.4
Little 71.4 74.7 78.2 81.0 83.8

3
Index 57.6 58.6 60.7 64.4 81.0

Middle 58.1 59.9 63.1 66.7 78.4

at higher frequencies in the signal. Notably, the largest gains

in accuracy were achieved within a sampling rate of 125

Hz. At this Nyquist frequency, signals with frequencies at

approximately 62.5 Hz could be discerned without aliasing

effects. Both Sensors 1 and 2 experienced the clearest dispar-

ity in signal amplitudes at precisely this frequency. Overall,

Sensors 1 and 2 still yielded useful accuracies above 80 %,

even with a factor of ten reduction in maximum sampling

rate (i.e., at 125 Hz). This indicated that useful slip detection

accuracies were still tenable at relatively low frequencies,

an attractive trait for tactile sensors with a large number of

sensory outputs.

For Sensor 3, significant increases in accuracy were

achieved when moving from a sampling rate of 250 Hz to

500 Hz. Referring to Fig. 2, Sensor 3 yielded a significant

difference in spectral content between 175 Hz and 225 Hz.

With a Nyquist frequency of 500 Hz, signals with frequencies

up to 250 Hz could be seen without aliasing effects. However,

at a sampling rate of 250 Hz, the significant signal content

within 175 Hz and 225 Hz led to the approximate 15 %

loss in classification accuracy. Again, steady increases in

classification accuracy of 2 % to 4 % were sustained for

every increase in sampling rate by a factor of two. This trend

is logical, considering the first significant band of frequencies

spanned 0 Hz to 75 Hz. In contrast to Sensors 1 and 2, Sensor

3 required sampling at rates greater than 500 Hz in order to

achieve reasonable slip detection accuracies.

VI. EXOGENOUS EFFECTS

A truly robust tactile sensor should yield minimally vary-

ing slip detection accuracies regardless of material and slip

speed effects. However, different materials possess differing

tribological properties and slip speed is known to positively

correlate with increasing signal amplitude [2]. Therefore, the

previously calibrated slip detectors trained with a window

size of 50 samples and at the sensors’ maximum sampling

rate (settings determined to yield maximum classification

accuracy with quickest detection time) were tested against

these factors.
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TABLE III: Slip state classification accuracy with five dif-

ferent materials across three types of sensors and fingers.

Sensor Finger Classification Accuracy (%) with Material
Alu-

minum
PVC

Neo-
prene

Card-
board

Ply-
wood

1
Index 90.9 87.1 76.1 91.1 81.2

Middle 92.8 88.6 79.6 92.2 90.9
Little 90.7 89.3 86.0 90.4 91.4

2
Index 86.5 89.5 91.9 77.0 86.9

Middle 93.7 92.7 92.1 67.9 90.0
Little 90.5 86.0 88.9 86.6 80.6

3
Index 81.1 83.2 84.6 79.3 79.6

Middle 81.1 80.8 80.9 79.4 81.1

A. Material

Both slipping data collected at the four speed settings and

non-slipping data for each of the five material types were

pooled per material. The trained slip detectors were tested

on these material-centric datasets to measure material sensi-

tivity (see Table III). Sensor 1 experienced relatively minor

fluctuations in slip classification accuracy among all material

types except for neoprene, which had multiple accuracy rates

below 80 %. Thus, Sensor 1 less accurately predicted slip on

a softer material. Similarly, Sensor 2 was mostly invariant

to material type except for cardboard, which had multiple

accuracy rates below 80 %. During data collection, Sensor

2 noticeably gathered cardboard fibers on its rubberized

contact surfaces, which likely negatively impacted its tactile

sensations for predicting slip. Sensor 3 appeared to be the

most invariant to material type, with small fluctuations in

accuracy around a nominal of 80 %. Overall, slip detection

accuracy was fairly consistent across all three sensor types.

Collecting data from a greater variety of softer materials may

improve the classification performance of Sensor 1. Periodic

cleaning of outer surfaces of tactile sensors may also improve

the classification performance of Sensor 2 with shedding

materials.

B. Slip Speed

Both non-slipping and slipping data collected across the

five materials were pooled for each of the four arm speed

settings. The previously trained slip detectors were tested on

these speed-centric datasets to measure their performance

sensitivity to slip speed effects. Table IV illustrates that

the greatest loss in slip classification accuracy across all

sensor types was experienced at the smallest slip speeds (5

mm/s). Classification accuracy remained relatively consistent

at the remaining three arm speeds. This result confirms that

classification accuracy is indeed a function of slip speed.

Specifically, accuracy increases with increasing slip speed.

Overall, Sensor 1 was the most robust to slip speed effects,

with slip classification accuracies above 80 %. Sensor 2

behaved similarly with the exception of one sensor, which

achieved a classification accuracy below 80 %. Sensor 3 was

the most sensitive to slip speed with a classification accuracy

as low as 67 %.

TABLE IV: Slip state classification accuracy at four arm

speed settings across three types of sensors and fingers.

Sensor Finger Classification Accuracy (%) at Speed
5 mm/s 25 mm/s 50 mm/s 75 mm/s

1
Index 80.8 86.7 86.6 87.1

Middle 82.6 89.8 91.0 91.6
Little 82.5 90.6 91.7 92.5

2
Index 80.1 87.6 88.8 88.9

Middle 82.6 87.8 88.8 89.2
Little 75.3 88.6 91.1 91.5

3
Index 71.4 84.1 85.5 85.2

Middle 67.6 83.8 86.1 86.1

VII. MANUFACTURING VARIABILITY

The effect of manufacturing variability directly impacts the

cost of calibrating a sensor for robust slip detection. Calibra-

tion costs are drastically reduced if the calibration models

of one sensor can be directly re-applied to another sensor

of the same type without any additional data collection.

To quantify the impact of manufacturing variability, a slip

detection model trained using data gathered from a sensor

on one finger was applied to data of the same sensor type on

another finger. The models used were again those previously

trained with a window size of 50 samples and at the sensors’

maximum sampling rate. Additionally, a new model was

trained per sensor type on data acquired from all instances

of that sensor type (a “combined” dataset). Evaluating this

model on both the individual and combined datasets provided

insight on performance gains from batching sensory data

acquired across multiple instances of the same sensor type.

Tables V-VII show the results for all sensor types.

Encouragingly, all sensor types exhibited a relatively high

level of model transference. Loss in classification accuracy

remained below 11 % for Sensor 1, 21 % for Sensor 2,

and 3 % for Sensor 3. This result appears to indicate

that Sensor 3 had the highest level of model transference,

followed by Sensor 1 and Sensor 2. However, confidence

in this assessment concerning Sensor 3 is diminished since

only two sensors of this type were available. Regardless,

training on data collected by all instances of a particular

sensor type facilitated the equalization of the classification

accuracy. Sensors 1, 2, and 3 exhibited a classification

difference within 5 %, 3 %, and 2 %, respectively, among

all sensor instances. Conclusively, immediate model transfer

among sensors within a sensor type is possible. However,

classification accuracy can be further equalized by training

with data collected by a batch of sensors. This action will

help reduce performance bias towards a particular sensor,

and will likely generalize the model more accurately to all

future instances of sensors for that particular type.

VIII. CONCLUSION

Slip detection as a sensing modality for tactile sensors was

motivated by existing neurophysiological research of human

hands. Extensive data collection captured the response sig-

nals of three completely different, commercial tactile sensors

across various factors including slip speed, material type,
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TABLE V: Slip classification accuracy for Sensor 1 with

LSTMs trained and tested on data from one or all fingers.

Testing Data
Index Middle Little Combined

Tr
ai

ni
ng

D
at

a Index 88.0 89.5 84.7 87.5

Middle 82.5 89.9 86.1 86.2

Little 80.5 83.7 91.5 85.2

Combined 84.8 89.1 89.1 87.8

TABLE VI: Slip classification accuracy for Sensor 2 with

LSTMs trained and tested on data from one or all fingers.

Testing Data
Index Middle Little Combined

Tr
ai

ni
ng

D
at

a Index 91.3 89.9 73.0 84.8

Middle 87.7 91.0 70.4 83.2

Little 85.3 87.6 87.2 86.7

Combined 91.5 92.2 89.4 91.0

TABLE VII: Slip classification accuracy for Sensor 3 with

LSTMs trained and tested on data from one or all fingers.

Testing Data
Index Middle Combined

Tr
ai

ni
ng

D
at

a Index 86.5 83.5 85.1

Middle 86.0 85.1 85.7

Combined 86.9 85.4 86.3

contact force, and free-space motion. Spectral analysis and

statistical testing of captured data yielded valuable insight

into sensor behavior such as highlighting the most significant

frequency bands for discriminating non-slipping and slipping

events. LSTM networks were trained to analyze sequences of

sensor data to predict the state of slip. The performance mea-

surement methodology uncovered that larger window sizes

and higher sampling frequencies improved slip detection

accuracies. Moreover, sensors exhibited robustness to slip

speed, material types, and manufacturing variability with the

exception of a few edge cases. Future work includes injecting

the trained slip detectors in a grasp reflex and quantifying

the performance thereof.

REFERENCES

[1] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals
from the fingertips in object manipulation tasks,” Nature reviews.
Neuroscience, vol. 10, no. 5, p. 345, 2009.

[2] R. D. Howe and M. R. Cutkosky, “Sensing skin acceleration for
slip and texture perception,” in Robotics and Automation, 1989.
Proceedings., 1989 IEEE International Conference on. IEEE, 1989,
pp. 145–150.

[3] R. S. Johansson and G. Westling, “Roles of glabrous skin receptors
and sensorimotor memory in automatic control of precision grip
when lifting rougher or more slippery objects,” in Experimental Brain
Research, vol. 56, no. 3, 1984, pp. 550–564.

[4] Y. Yamada and M. R. Cutkosky, “Tactile sensor with 3-axis force
and vibration sensing functions and its application to detect rotational
slip,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE
International Conference on. IEEE, 1994, pp. 3550–3557.

[5] E. Holweg, H. Hoeve, W. Jongkind, L. Marconi, C. Melchiorri, and
C. Bonivento, “Slip detection by tactile sensors: Algorithms and ex-
perimental results,” in Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, vol. 4. IEEE, 1996, pp.
3234–3239.

[6] J. A. Alcazar and L. G. Barajas, “Estimating object grasp sliding via
pressure array sensing,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. IEEE, 2012, pp. 1740–1746.

[7] J. S. Son, E. A. Monteverde, and R. D. Howe, “A tactile sensor
for localizing transient events in manipulation,” in Robotics and
Automation, 1994. Proceedings., 1994 IEEE International Conference
on. IEEE, 1994, pp. 471–476.

[8] D. Goger, N. Gorges, and H. Worn, “Tactile sensing for an anthropo-
morphic robotic hand: Hardware and signal processing,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 895–901.

[9] B. Heyneman and M. R. Cutkosky, “Slip classification for dynamic
tactile array sensors,” The International Journal of Robotics Research,
vol. 35, no. 4, pp. 404–421, 2016.

[10] W. Yuan, R. Li, M. A. Srinivasan, and E. H. Adelson, “Measurement
of shear and slip with a gelsight tactile sensor,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 304–311.

[11] M. Vatani, E. D. Engeberg, and J.-W. Choi, “Force and slip detection
with direct-write compliant tactile sensors using multi-walled carbon
nanotube/polymer composites,” Sensors and Actuators A: physical,
vol. 195, pp. 90–97, 2013.

[12] Z. Su, K. Hausman, Y. Chebotar, A. Molchanov, G. E. Loeb,
G. S. Sukhatme, and S. Schaal, “Force estimation and slip detec-
tion/classification for grip control using a biomimetic tactile sensor,”
in Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International
Conference on. IEEE, 2015, pp. 297–303.

[13] R. Fernandez, I. Payo, A. S. Vazquez, and J. Becedas, “Micro-
vibration-based slip detection in tactile force sensors,” Sensors, vol. 14,
no. 1, pp. 709–730, 2014.

[14] J. Reinecke, A. Dietrich, F. Schmidt, and M. Chalon, “Experimental
comparison of slip detection strategies by tactile sensing with the
biotac R© on the dlr hand arm system,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp.
2742–2748.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[16] G. Melis, C. Dyer, and P. Blunsom, “On the state of the art of eval-
uation in neural language models,” arXiv preprint arXiv:1707.05589,
2017.

[17] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[19] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International Journal of Robotics
Research, p. 0278364917710318, 2016.

[20] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[22] M. A. Stephens, “Edf statistics for goodness of fit and some compar-
isons,” Journal of the American statistical Association, vol. 69, no.
347, pp. 730–737, 1974.

[23] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and
J. Schmidhuber, “Lstm: A search space odyssey,” IEEE transactions
on neural networks and learning systems, 2017.

2751


		2018-09-08T03:51:26-0400
	Preflight Ticket Signature




