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A phase transition occurs when correlated regions of a new
phase grow to span the system and the fluctuations within the
correlated regions become long lived. Here, we present neu-
tron scattering measurements showing that this conventional
picture must be replaced in YFe2Al10, a compound that forms
naturally very close to a T = 0 quantum phase transition. Fully
quantum mechanical fluctuations of localized moments are found
to diverge at low energies and temperatures; however, the fluc-
tuating moments are entirely without spatial correlations. Zero
temperature order in YFe2Al10 is achieved by an entirely local type
of quantum phase transition that may originate with the creation
of the moments themselves.

magnetism | quantum matter | neutron scattering

Magnetic order arises from the growth of magnetic corre-
lations, which become increasingly long lived and extend

over longer distances as the phase transition to magnetic order
is approached. The magnetically ordered ground state can be
destabilized by pressure, composition, or magnetic field, and
there are extremal values of these nonthermal variables where
order occurs only at T = 0, the Quantum Critical Point (QCP).
It is the strong quantum fluctuations associated with low dimen-
sionality or alternatively, the frustration of competing inter-
actions on lattices with certain geometries that can suppress
magnetically ordered phases to produce these QCPs. Magnetic
order also requires magnetic moments, which in metals, can be
produced by different types of T = 0 instabilities. For spatially
localized f electrons, it is the Kondo compensation provided
by conduction electrons that determines whether a moment is
retained at T = 0. Mott physics governs the more delocalized d
electrons, where correlations among the mobile electrons may
produce a spatially localized moment with a magnitude that can
approach the large moments possible in insulators or alterna-
tively, correlations so weak that they cannot induce even a tiny
moment that could lead to magnetic order at a correspondingly
low but still nonzero temperature. Phase transitions leading to
moment formation at T = 0 are expected to have a very different
character than those that lead only to magnetic order.

It has proven difficult to make a clean experimental distinc-
tion between QCPs that are related to magnetic order, involving
a broken symmetry, and those that correspond to moment for-
mation. The conventional picture of classical phase transitions
can be extended in certain systems to T = 0, where neutron
scattering documents the growth of spatial and temporal corre-
lations that are related to fluctuations of the order parameter
(1, 2). Only mean field behavior (3–5) is observed, indicating
that these systems lack strong quantum fluctuations. In con-
trast, neutron scattering experiments on CeCu6−xC AuxC (6) and
BaFe1.85Co0.15As2 (7, 8) find strong quantum critical (QC) fluc-
tuations and the breakdown of conventional Fermi liquid (FL)
behavior near the wave vectors that will eventually become mag-
netic Bragg peaks in nearby antiferromagnetic (AF) phases. So
far, there is no case where the comparison of experimental and
theoretical QC phenomena definitively identifies QC fluctua-
tions of a T = 0 order parameter of any kind (9). Nonetheless,

there is mounting evidence that moment formation may play
an important role near QCPs. In the Kondo breakdown sce-
nario proposed for f electron heavy fermion compounds, the QC
fluctuations associated with magnetic order are strong enough
to localize a moment-bearing electron (10, 11). The collapse of
the Kondo effect may occur exactly at a magnetic QCP (12)
or simply close to one (13, 14). It is accompanied not by QC
order parameter fluctuations, as near a T = 0 magnetic phase
transition, but rather, by QC fluctuations between two Fermi sur-
faces, one containing the electron that will be localized and one
that does not. A very different T = 0 phase transition envisages
moment formation as the consequence of a topological insta-
bility in a metal with strong electronic correlations (15, 16). In
both of these cases, it is the dynamics of individual moments
that is QC, and the intersite interactions that would otherwise
lead to spatial correlations are presumed to be much weaker.
Particularly appropriate for d electron-based metals, the orbital
selective Mott transition (OSMT) provides a general theoretical
structure (17) for a phase transition where one or more orbitals
can transition from being localized and magnetic to delocalized
and nonmagnetic (18–20). Practically speaking, the emergence
of a magnetic moment in a metal, either by a topological insta-
bility or by Mott physics, is very likely to lead to magnetic
order, except in the most frustrated of systems. Magnetic phase
transitions at T = 0 do not require simultaneous moment for-
mation via electronic localization transitions; however, we lack
direct experimental evidence of the converse situation, where an
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electronic localization transition leading to moment formation
can exist independent of magnetic order. It is significant that the
neutron scattering results reported here show that YFe2Al10 is
an example of a metal on the verge of moment formation but
without any vestige of magnetic order (21, 22).

In materials that are magnetically ordered or nearly so, mag-
netic correlations depend strongly on wave vectors q that reflect
the spatial periodicity of the magnetic structure. Our inelastic
neutron scattering measurements show (Fig. 1 A and B) that the
magnetic fluctuations in YFe2Al10 are very different. Here, the
scattered intensity I (q) is dominated by a broad ridge of scatter-
ing along wave vectors q parallel to [0, 0, L], lying in the critical
ac plane defined by the Fe layers (Fig. 1D, Inset and SI Appendix)
(21, 23, 24). Consistent with the T/B0.6 scaling observed in the
magnetization and specific heat (25), the scattering is strongly
suppressed by magnetic fields B (Fig. 1A). The critical part of
I (q) can be exposed by using similar data obtained at 9 T (Fig.
1A, Right) as an improvised background for the B = 0 data (Fig.
1A, Left). Fig. 1B shows that the result is a weak and broad modu-
lation of the field-dependent component of the scattering in the
[0, K, 0] direction I (qK ) perpendicular to the Fe layers, with a
breadth that extends over more than the full Brillioun zone.

The neutron intensity I (q,E) is the product of the magnetic
form factor F 2(q), reflecting the spatial distribution of mag-
netization clouds associated with the fluctuating moments, and

A B

C D

Fig. 1. Spatially localized magnetic fluctuations in YFe2Al10. (A) The inten-
sity of neutrons scattered with energy transfer 0.5 meV in the [0, K, L] plane
at 0.07 K in fields of 0.025 T (Left) and 9 T (Right) and their difference
I(0 T)− I(9 T) (B). The tails of nuclear Bragg peaks are clearly observed in A
at integer values of K and L. A diffuse ridge of scattering is evident along [0,
0, L] at qK = 0 rlu. Data are monitor normalized. (C) Wave vector qK depen-
dence of the qL integrated intensity I(qK) is better described by the YFe2Al10

magnetic form factor F2
xz,yz(qK) from electronic structure calculations (black

line) (SI Appendix) than isotropic Fe2+ form factor (green line) (26). Both
form factors are scaled to the data. Strong anisotropy in the intensity indi-
cates that dxz,yz orbitals dominate. (D) The T = 0.07 K structure factor S(qK) is
isolated for different fixed energies by dividing I(qK) by F2

xz,yz(qK). Solid lines
are obtained by fitting I(qK) to a Lorentzian and dividing by the computed
F2

xz,yz(qK), showing that S(qK) is independent of wave vector qK . (Inset) The
correspondence between the scattering wave vectors qK and qL and the ac
planes containing the nearly square Fe nets in YFe2Al10. The magnetic field
is oriented in the critical ac plane along the (100) direction. All data were
measured on MACS (46). Error bars in each figure represent 1 SD.

the structure factor S(q,E), which probes correlations among
moments. The latter can be isolated (Fig. 1 C and D) by com-
paring I (qK ,E) with both the isotropic Fe2+ atomic form factor
(26) and the form factor F 2

xz ,yz (qK ) of the Fe dxz ,yz Wannier
orbitals obtained from a tight binding band structure calculation
(SI Appendix). I (qK ) falls off more quickly than the Fe2+ atomic
form factor, implying a minimal degree of Fe moment delocaliza-
tion in YFe2Al10 that is well-captured by the calculations. Unlike
the spherically symmetric Fe2+ atomic form factor, I (0, qK , qL)
is strikingly anisotropic, and the dominance near the Fermi level
of dxz ,yz orbitals provides a natural explanation (SI Appendix,
Fig. S3). After the computed form factor is removed from the
measured intensity I (qK ,E) =F 2

xz ,yz (qK )S(E), there is no fur-
ther wave vector dependence of the structure factor, which is
solely a function of energy E , S(q,E) =S(E) (Fig. 1D). Since
an atomic energy scale ∼1 eV controls the spatial distribution of
the moment density in the dxz orbital that is reflected in the form
factor, the wave vector modulation of I (qK ) is correspondingly
unaffected by temperatures from 0.07 to 20 K, magnetic fields as
large as 9 T , and excitation energies from 0.35− 1.5 meV (SI
Appendix, Fig. S6). Remarkably, the moments in YFe2Al10 are
highly localized in space and fluctuate independently, with no
sign of the spatial correlations that are a foundational element
of conventional phase transitions and their T = 0 analogs.

Despite the absence of spatial correlations among the fluctu-
ating moments in YFe2Al10, their dynamics are manifestly QC,
with the strongest scattering associated with fluctuations hav-
ing the lowest energies or longest lifetimes. Inelastic neutron
scattering experiments (Fig. 2A) reveal a gapless spectrum of
excitations, where the structure factor S(E), obtained from the
data in Fig. 1 by integrating over qK (SI Appendix), is expressed
in terms of the magnetization squared M 2. The critical behavior
of the energy dependence is determined by plotting the inverse
of M 2−C , where C is a small and energy-independent con-
tribution to the moment, as a function of E∆, and within their
accuracy, the neutron scattering data are consistent with ∆ =
1.4, which is the power law exponent that was previously reported
for the temperature divergence of the magnetic susceptibility
χ(T )∝ T−1.4. The QC dynamics are a continuum that extends
to the lowest energies probed in this experiment (Fig. 2B). Since
M 2 must remain finite, the QC energy dependence S(E)∼
E−1.4 cannot extend to E→ 0. The local QC behavior reported
here is likely a high-temperature phenomenon, and it will be
cut off at lower temperatures either by residual interactions that
lead to ordered states, like magnetic order or superconductiv-
ity, or perhaps, by interactions within the ordered lattice of Fe
moments that lead to a coherent ground state as in a Kondo
lattice. By expressing M 2 in absolute units, we see that the fluctu-
ating local moments responsible for the scattering in the energy
window of our experiment from 0.35 to 1.5 meV have magnitudes
of ∼ 0.3− 0.4 µB/Fe, similar to the local moment magnitude
deduced from fitting the Curie–Weiss law to the static suscep-
tibility χ0(T ) in the temperature range 100− 750 K (21). The
energy-independent scattering C likely reflects the presence of a
broad and weakly correlated band of quasiparticle excitations as
implied by the modest Pauli susceptibility and Sommerfeld coef-
ficient reported for YFe2Al10 (21). The breadth of this band is
estimated as ∼ 0.7 eV (Fig. 2A), which is the energy where the
integral of the fit to the experimental data reaches the square of
the full spin S = 2 Fe2+ moment M 2 = 24 µ2

B .
Conventionally, proximity to a phase transition results in

the transfer of spectral weight to lower energies. Something
very different occurs in YFe2Al10, where the qL integrated
scattering I (qK ,E) (Fig. 3A) as well as the associated S(E)
(Fig. 3B) are constant over almost three decades of tempera-
ture from 0.07 to 20 K. This simple observation has remark-
able consequences. Namely, the principle of detailed balance
gives S(E ,T )∼χ′′(E ,T )/(1− exp(−E/kBT )), where kB is
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Fig. 2. A quantum continuum in YFe2Al10. (A) The energy dependence of
the magnetization squared M2 of the fluctuating moments in YFe2Al10 at
0.07 K and B = 0.025 T . Details of the normalization are in SI Appendix.
The solid blue line is a fit to the data where M2(E) = C + aE−1.4, with C =

0.034 µ2
B/meV · Fe. The dashed red line is the integral over the measured QC

fluctuations aE−1.4, while the dashed blue line represents the integral over
the power law fit to M2(E) for E> kBT . (B) The inverse of M2− C is plotted
as a function of E1.4. The blue line indicates the best linear fit. Error bars in
both figures represent 1 SD.

Boltzmann’s constant. The detailed balance factor (1−
exp(−E/kBT )) is manifestly a function of E/kBT , and thus,
the imaginary part of the dynamical susceptibility χ′′(E ,T )
must also be a function of E/kBT that cancels the tempera-
ture dependence of the detailed balance factor. QC fluctuations
having no energy scale other than temperature itself are the hall-
mark of QC phase transitions (6–8, 27–32), and Fig. 3C shows
that χ′′=χ′′(E/T ) in YFe2Al10 as well. Because our measure-
ments in YFe2Al10 are carried out over such a broad range
of energies and temperatures, it is also possible to show that
these data collapse onto a single universal curve by plotting
χ′′T 1.4 as a function of (E/kBT ) (Fig. 3D), where the univer-
sal curve is well-reproduced by the expression χ′′(E ,T )T 1.4 ∝
x−∆ tanh(x ), with ∆ = 1.4. In previously investigated systems,
the E/T scaling is always associated with the collapse of mag-
netic order, and it is only observed over a limited range of wave
vectors that are associated with incipient magnetic order. In con-
trast, the E/T scaling of χ′′ in YFe2Al10 extends over the entire
range of wave vectors accessed in this experiment, amounting to
more than an entire Brillouin zone.

The energy and temperature dependencies of χ′′ provide
the needed connection between the neutron scattering mea-
surements and the previously reported temperature depen-
dence of the static susceptibility χ0(T )∼T−1.4 (25), since the
Kramers–Kronig relation gives

χ0(T ) =

∫
dE χ′′(E ,T )/E =T−∆

∫
dx tanh(x )/x1+∆,

[1]

where χ′′E1.4 ∝ tanh(x ) and x =E/kBT . Agreement between
these two independent determinations of χ0(T ) requires that
∆ = 1.4, a value that is wholly within the experimental bounds
of the neutron scattering experiment (Fig. 2B). In addition, the
integral itself must remain finite. The strong divergence of χ′′(E)
implies that it cannot extend to arbitrarily low energies and
temperatures, and a proposal for a particular energy and temper-
ature cutoff is compared with the scaled data in SI Appendix. For
the range of temperatures and energies accessed in our exper-
iments, the matching energy and temperature dependencies of
the neutron scattering and magnetic susceptibility measurements
imply that both measurements probe the same QC fluctuations.
It is worth pointing out that the strong energy and temperature
divergences of χ0 and χ′′ are inconsistent with an appreciable
role for disorder in the QC behavior of YFe2Al10 (33–37).

The structure, symmetries, and interactions present in a given
material determine the conditions under which a T = 0 phase
transition may occur, and therefore, modifications to these
quantities via pressure, stress, or composition will affect the
tendency to order. Increasing temperature weakens QC fluc-
tuations as would magnetic fields if the QCP corresponds to
the onset of magnetism. Scaling analyses of the static suscep-
tibility χ0∼T−1.4f (T/B0.6) have shown that a single variable
T/B0.6 controls the QC fluctuations for a wide range of fields
and temperatures in YFe2Al10 (25). Is T/B0.6 observed as
well in the dynamical susceptibility? Fig. 4A shows that the
dynamical susceptibility has an evocative field dependence at
T = 0.07 K, χ′′∼ [A+ bB0.6]

−1 with A= 3.65 meV ·Fe/µ2
B ,

and b = 0.19 T−0.6meV ·Fe/µ2
B , suggesting a possible link to

the field dependencies observed in YFe2Al10 in the magne-
tization and specific heat at the lowest temperatures. A par-
ticularly simple formulation of χ′′ was previously proposed in
the benchmark QC system CeCu6−xAux , where the energy and
temperature dependencies of χ′′ could be separated from the
field dependence (6). Specifically, the divergence in the general-
ized susceptibility χ would only occur if E , T , and B approach
zero; otherwise, the largest of the thermal, Zeeman, or mea-
surement energy serves to cut off the divergence. The simplest
case (Fig. 2B) takes B = 0 and T = 0.07 K, where the energy
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Fig. 3. E/T scaling of the magnetic dynamics in YFe2Al10. (A) The qL inte-
grated scattering I(qK) for an energy transfer of 0.35 meV is presented at
temperatures 0.07 K (red circles), 8 K (green circles), and 20 K (blue cir-
cles). The black line is the scaled computed form factor F2

xz,yz(qK). (B). S(E)
is obtained by integrating S(q, E) over experimental values of the wave
vectors qL and qK . Within the accuracy of our measurements, S(E) is indepen-
dent of temperatures in the range from 0.07 to 24 K for the fixed energies
E = 0.35 meV (blue circles) and E = 0.7 meV (black circles). (C) The principle
of detailed balance, χ′′(E, T)∼ S(E, T) (1− exp(−E/kBT) , is used to relate
S(E, T) to the imaginary part of the dynamical susceptibility χ′′(E, T), which
has also been integrated over these same wave vectors. χ′′(E, T) is plotted
at different temperatures from 0.07 to 24 K for energy transfers of 0.35 meV
(blue circles) and 0.7 meV (black circles) and for a range of different energy
transfers from 0.35 to 1.5 meV at 0.07 K (red circles). The solid lines are fits
to the expression χ′′∝ tanh(x), where x = E/kBT . (D) The data in C can be
collapsed onto a single universal curve when χ′′T1.4 is plotted as a func-
tion of E/kBT . The solid green line compares the scaled data χ′′T1.4 with
the function x−∆ tanh(x), where x = E/kBT and ∆ = 1.4. Error bars in each
figure represent 1 SD.
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(B) The inverse of χ′′ plotted as a function of B0.6 for T = 0.07 K at different
fixed energy transfers as indicated. Error bars represent 1 SD.

dependence dominates and gives 1/
(
χ′′− C̃

)
= ãE1.4, with

C̃ = 0.053 µ2
B/meV ·Fe providing a scale for the fine tuning

needed to drive YFe2Al10 exactly to the QCP. These neutron
scattering experiments directly probe the response to the fluctu-
ating fields associated with the QCP in YFe2Al10 for energies
that are, for the most part, larger than the thermal energy kBT
and the Zeeman energy gµBB . The inverse of χ′′ is plotted as a
function of B0.6 at different fixed energy transfers in Fig. 4B. The
B = 0 intercept of 1/χ′′ decreases with decreasing energy, con-
sistent with an energy dependent cutoff. However, the slope of
the B0.6 dependence is also energy dependent, proving that the
energy and field dependencies of χ′′ are significantly intertwined
and cannot be readily separated, even when energy provides the
largest scale. Still, it is reasonable to expect that the T/B0.6 scal-
ing found in χ0(T ) is most likely to be observed in χ′′ when
the excitation energy E is small compared with the thermal and
magnetic field scales, a regime that is largely unaddressed in our
neutron scattering measurements.

The previously reported scaling analysis made it clear that
YFe2Al10 is naturally located by its composition to be very close
to a T = 0 phase transition. The neutron scattering measure-
ments reported here reveal that this phase transition is highly
unconventional. Specifically, the near divergence of S(E) as
E→ 0 shows that QC magnetic fluctuations with a timescale ξτ
dominate at the low energies probed in these experiments, while
spatial correlations ξr among these moments are absent. This
violates the foundational property of conventional phase transi-
tions (38), where ξr and ξτ are related by the dynamic exponent
z, ξzr = ξτ . An intriguing alternative has recently been suggested,
where a topological phase transition could produce anomalously
weak spatial correlations as well as reproduce several of the
experimental findings in YFe2Al10 (39, 40).

Our major finding is that the excitations detected by our
neutron scattering measurements in YFe2Al10 are those of indi-
vidual and highly localized magnetic moments, each fluctuating
independently with the same anomalous spectrum, without any
evidence for a nearby broken symmetry. The low-temperature
divergences of quantities, like the magnetic susceptibility, the
specific heat, and the electrical resistivity, all attest to the break-
down of normal metallic behavior, which we now know occurs
in the absence of magnetic order at temperatures as low as
0.07 K. The observation of E/T scaling in the neutron scattering
measurements indicates that the magnetic excitations are fun-
damentally modified relative to the damped spin waves or the
continuum of single-particle excitations that are expected near a
classical magnetic phase transition.

The small but localized moments identified by both the Curie–
Weiss susceptibility and the neutron scattering measurements

imply that YFe2Al10 forms very close to an electronic local-
ization transition. As was shown in both Fe and Mn pnictides
and chalcogenides (41–43), such moments result from Hunds
and Coulomb interactions that provide electronic correlations
that are potentially strong enough to localize one or more Fe
d orbitals in YFe2Al10. Since the localized moments emerge
from a relatively flat band (SI Appendix, Fig. S3), it is likely
that the form factor of the moments, which encodes the orbital
content, will dominate the q dependence of the scattering, just
as we have observed. The stabilization of the Fe moments is
envisaged as a continuous cross-over or transition between a
coherent metallic state where the localized moments are wholly
quenched and a state where this compensation has failed, leading
to incoherent and localized magnetic moments (41). A Mott-like
transition could ensue at T = 0 for a critical interaction strength
accompanied by QC fluctuations between these two topologically
distinct states that are degenerate at the QCP. The comparison
of the measured and computed form factors suggests that it is
the dxz ,yz orbitals that are most localized in YFe2Al10, while the
other orbitals are represented as delocalized and weakly corre-
lated electronic states that result in the overall metallic character
of YFe2Al10, evident from the temperature dependence of the
electrical resistivity as well as the modest Pauli susceptibility
and Sommerfeld constant. Consequently, it seems possible that
YFe2Al10 is very close to an OSMT (17–20) and that it is QC
fluctuations between these phases at T = 0 that lead to the non-
FL properties of YFe2Al10. Detailed investigations of the Fermi
surface in YFe2Al10, ideally as pressure or another nonthermal
parameter tunes the localized moments to extinction, will be
required to further evaluate this proposal.

For now, the nature of the T = 0 phase transition that drives
the quantum critical behavior that is so dominant in YFe2Al10

remains unknown, although its consequences are transforma-
tive. Neutron scattering provides a powerful and direct means
to show that this phase transition is not of the conventional
Landau–Ginsburg–Wilson type. Unlike previously studied sys-
tems, where similar measurements found that QC behavior was
never wholly free of the magnetic correlations associated with
proximate magnetic order, the complete absence of these cor-
relations in YFe2Al10 indicates that here the QCP stands alone
and is definitively of a type that has never been observed before.
YFe2Al10 is almost unique in that no fine tuning is required
to access its QCP, which affects a remarkably broad range of
temperatures and fields. In this sense, it might be considered
the d-electron analog of β−YbAlB4 (44, 45). Since no bulky
pressure apparatus and no potentially disruptive disorder from
compositional variation are necessary in YFe2Al10 to fine tune
the QCP, our results open the door for further explorations
of the nature and properties of this quantum phase transition
using the most powerful spectroscopic and imaging tools at our
disposal.

Materials and Methods
Samples and Experimental Setup. To measure the excitation spectrum of
YFe2Al10, neutron scattering measurements were carried out in the 0, qK , qL

scattering plane on the Multi Axis Crystal Spectrometer (MACS) instrument
at the Center for Neutron Research at the National Institute of Standards
and Technology (46). Apart from a small orthorhombic distortion in the ac
basal plane, we would expect to find similar data in the (nearly) equiva-
lent qH, qK , 0 scattering plane. The sample consisted of two coaligned single
crystals of YFe2Al10 with a total mass of 2 g mounted in a dilution refrig-
erator equipped with a superconducting magnet with an 11-T vertical field
aligned with the (100) crystal direction. To reduce background scattering
in the double-focusing mode, we used a 3.3 × 7.7-cm beam mask to focus
the neutron beam on the 1.5 × 2.5-cm sample. For all measurements, a
small bias field of about 0.025 T was used, suppressing superconductivity
of the aluminum sample holder at low temperatures and for consistency
at temperatures above Tc of aluminum, 1.2 K. Undesired background scat-
tering was eliminated by setting the dark angle of the magnet at 90°

6998 | www.pnas.org/cgi/doi/10.1073/pnas.1721493115 Gannon et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721493115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1721493115


PH
YS

IC
S

away from the (010) direction and using final neutron energy Ef = 3.0 and
3.7 meV (λf = 5.22 and 4.70 Å, respectively). Be filters were used between
the neutron source and the sample, while Be (for Ef = 3.0 meV) or BeO (for
Ef = 3.7 meV) filters were used between the sample and detector. All recip-
rocal lattice vectors are indexed as (qH qK qL), with reciprocal lattice units
qK = 2π/b = 0.62 Å−1 and qL = 2π/c = 0.70 Å−1.

Data Analysis. The quantities of interest determined in our neutron scatter-
ing measurements at a given wave vector q and energy E are the magnetic
structure factor S (q, E)and the imaginary part of the magnetic susceptibil-
ity χ′′ (q, E). Both relate to our measured neutron scattering intensity I (q, E)

in a straightforward way (47). S (q, E) is determined by dividing I (q, E) by
the square of the magnetic form factor F2(q), S (q, E)∼ I (q, E)/F2(q), while
χ′′ (q, E) is related to S (q, E) by the principle of detailed balance, where

χ′′(q, E)∼ S (q, E)
(

1− e−E/kBT
)

for a given temperature T .

Our measurements on the MACS instrument at the Center for Neutron
Research at the National Institute of Standards and Technology (46) (Fig.
1A has an example of the data) acquire the q dependence of the scat-
tered neutron intensity at different fixed energy transfers, temperatures,
and magnetic fields in the q= [0, K, L] plane (the qK–qL plane). After nor-
malizing the measured intensity by the incident neutron flux, areas of q
space contaminated by tails from Bragg reflections were masked. The results
were integrated (i.e., numerically summed) along the qL direction over the
range L = [0.8, 1.8] reciprocal lattice units (rlu) and were then normalized
by that range of qL, ∆qL, which covers one full Brillouin Zone. This zone

was selected to minimize possible contamination from the direct beam. This
procedure yields the qK dependence of our measured intensity, I(qK , E),

I (qK , E)=

∫ 1.8 rlu

0.8 rlu
I (qK , qL, E)dqL/∆qL. [2]

Examples of I(qK , E) are given in Figs. 1C, 3A, and 4A and SI Appendix, Fig.
S6. I(E) can be obtained with a similar integration of the qK dependence.
S(q, E) and S(E) are obtained from these quantities after accounting for the
form factor, which is described in SI Appendix.
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